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Abstract. Mobile phones have become a primary communication device 
nowadays. In order to maintain proper functionality, various existing security 
solutions are being integrated into mobile devices. Some of the more 
sophisticated solutions, such as host-based intrusion detection systems (HIDS) 
are based on continuously monitoring many parameters in the device such as 
CPU and memory consumption. Since the continuous monitoring of many 
parameters consumes considerable computational resources it is necessary to 
reduce consumption in order to efficiently use HIDS. One way to achieve this is 
to collect less parameters by means of cost-sensitive feature selection 
techniques.  In this study, we evaluate ProCASH, a new cost-sensitive feature 
selection algorithm which considers resources consumption, misclassification 
costs and feature grouping. ProCASH was evaluated on an Android-based 
mobile device. The data mining task was to distinguish between benign and 
malicious applications. The evaluation demonstrated the effectiveness of 
ProCASH compared to other cost sensitive algorithms.  

Keywords: Intrusion Detection, Mobile Devices, Malware, Security, Android, 
sCost sensitive feature selection.  

1 Introduction 

Smart mobile phones have become a primary communication device for many 
individuals. In 2008, the converged mobile device segment outpaced the rest of the 
industry growing 22.5% compared to 2007 [1]. Integrating the traditional functionality 
of mobile phones with special computer-enabled features not previously associated 
with telephones, smart phones require various security solutions in order to maintain 
their proper functionality and to protect against malicious behavior. Many of these 
solutions have migrated from desktop computers where they were initially introduced.  

Some of the more sophisticated solutions, such as host-based intrusion detection 
systems (HIDS), continuously monitor many parameters in the device. Data mining 
techniques are then applied to the collected data in order to detect abnormal states. As 
opposed to desktop devices which have evolved over the years into robust instruments 
with massive resources, mobile devices are constraint-based devices since they are 
limited, mainly in battery power but in memory and CPU as well. Therefore, since the 
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continuous monitoring of many parameters consumes considerable computational 
resources it is necessary to reduce consumption in order to efficiently use HIDS on 
mobile devices. One way to reduce the power consumption is to monitor those 
features whose acquisition requires less power while maintaining the data mining 
process performance. To implement this task it is necessary to make a smart decision 
on which variables to monitor.  

Another important aspect involved in determining which subset of features to 
monitor is feature grouping which arises occasionally when feature costs vary with 
the choice of a prior feature. For instance, let us assume that the raw data about two 
feature values lies on the same sector on a rotating disk. In order to monitor the first 
feature value we need to pay two cost units. The first cost unit is for uploading the 
page from the hard disk to the main memory; the second supplementary cost unit is 
paid in order to read the raw data from the main memory and then to perform the 
required calculations to induce the feature value from the raw data. Then, in order to 
monitor the second feature, we only need to pay the second supplementary cost unit 
since the page is already in main memory. Hence, information about the feature 
grouping must be tailored into the feature selection process. 

 In addition to the resource costs, when deciding which features subset to monitor, 
it is also necessary to consider misclassification costs.  In some applications the cost 
of false positive (FP) and false negative (FN) costs bear a different penalty. For 
example, if the false positive (FP) cost is substantially higher than the false negative 
(FN) cost, we would prefer to sample features that would reduce the false positive 
(FP) errors over features that reduce the false negative errors.  

In this study, we evaluate ProCASH, a new cost-sensitive feature selection 
algorithm sensitive to the resources, and misclassification costs as well as feature 
grouping. ProCASH was evaluated on an Android-based mobile device and the data 
mining task focused on smart phone security. Extensive experimentation s 
demonstrated the effectiveness of ProCASH compared to other algorithms. 

The rest of the paper is structured as follows. In section 2 we present related work; 
in section 3 we introduce the ProCASH cost sensitive feature selection algorithm; in 
section 4 we describe the datasets we used for the evaluation and the evaluation 
results; section 5 presents a summary and concluding remarks. 

2 Related Work 

Cost-sensitive learning is an essential task in several real-world applications. Turney 
et al. [2] presented a  taxonomy of the main types of costs involved in inductive 
concept learning. Two costs, misclassification cost and test cost (which is equivalent 
to the resource consumption which is consumed when a feature is being monitored) 
are particularly relevant to this paper. 

Turney [3] was the first to consider both test and misclassification costs. Turney's 
approach presents the inexpensive classification with an expensive test (ICET) 
system. ICET uses a method that employs a hybrid approach, combining a greedy 
search heuristic (decision tree) with a genetic algorithm for building a decision tree 
that minimizes the total cost objective which is composed of test and misclassification 
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costs. Furthermore, ICET considers feature grouping. Although the ICET is robust, it 
is very time consuming as well. Chai et al.  [4] offered  csNB, a new cost-sensitive 
classifier based on a naïve Bayes algorithm. Several works, such as  [8] [10] use a cost-
sensitive decision tree for the classification task.  Ling et al. [5] proposed a decision 
tree algorithm which applies a new splitting criterion, minimal total cost, to training 
data instead of the well known minimum entropy measurement. In another paper, 
Sheng et al. [6] offered a framework where a decision tree is built for each new test 
case. Ling et al.  [7]subsequently updated their strategy for building cost-sensitive 
decision trees by incorporating possible discounts when obtaining the values of a 
group of attributes with missing values in the tree building algorithm. Sheng et al.  [9] 
suggested a hybrid cost-sensitive decision tree, DTNB that reduces the minimum total 
cost by integrating the advantages of a cost-sensitive decision tree and those of the 
cost-sensitive naïve Bayes. While it uses the cost-sensitive decision tree in order to 
decide which tests to choose, for the classification task it uses the cost-sensitive naïve 
Bayes. Freitas et al.  [10] suggest a new splitting criterion in building decision trees 
that considers different aspects of test costs. They examine several cost-scale factors 
that regulate the influence of tests costs as it can make trees more sensitive to tests 
costs.  They also suggest how to embed the risk cost for performing the test in the 
new cost-sensitive splitting criterion. The risk cost captures the change in the quality 
of life due to performing these tests on the patient. However, no experiments were 
carried out in regard to risk cost. 

3 ProCASH- A Cost-Sensitive Algorithm 

In this paper we introduce ProCASH, a cost-sensitive algorithm which takes as its 
starting point a similar preprocessing step as the CASH algorithm. However, unlike the 
CASH algorithm, ProCASH does not assume that all cost types have the same cost 
units; While CASH evaluation measurement is the summation result of the different 
costs, ProCASH evaluation metric is, the achieved average misclassification cost given 
a maximal budget of resource cost. Furthermore, in contrast to CASH which used the 
genetic algorithm as its search algorithm, ProCASH uses a new search algorithm. 

CASH  [11] is a cost-sensitive feature selection method which uses a new fitness 
function based on comparing histograms. This algorithm follows the filter approach. 
The CASH algorithm takes into account resource costs as well as feature grouping 
and misclassification costs. The 

CASH algorithm consists of four main steps: preprocessing; creating an initial 
population of individuals; computing the fitness of each individual; and applying a 
genetic algorithm to the initial population. CASH assumes that all types of costs are 
given in the same scale and therefore, it uses as an evaluation metric the average total 
cost which is composed of the summation of the average misclassification and 
resource cost.   

CASH's preprocessing step is composed of four sub-steps. In the first sub-step, 
CASH computes the average a priori cost which indicates when a features subset 
should not be obtained. That is to say, if the average a priori cost, computed according 
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to the distribution of classes in the training set, is lower than the average 
misclassification cost achieved by the features subset, CASH will not choose this 
subset. Then, in the second sub-step CASH computes histograms for each class value 
of each feature in the training dataset. In the third sub-step, CASH computes for each 
feature how it classifies the records in the training dataset. This computation is based 
on a cost- sensitive majority rule that classifies all the records in a certain bin to the 
class which minimizes the misclassification cost. Finally, in the fourth sub-step, 
CASH calculates for each feature the misclassification cost ratio it assigns to each 
record in the training dataset. The motivation for calculating the misclassification cost 
ratio of a certain feature is to supply the algorithm with the knowledge of whether or 
not the decision is sufficiently distinctive. That is to say, based on the distribution of 
the classes in a certain bin of a feature, the CASH algorithm tries to estimate what is 
the likelihood that the algorithm's classification was correct.  

As opposed to CASH, ProCASH adds an alteration to the preprocessing step by 
changing the way that the classification decision of each feature to each record is 
carried out. For each feature and record, ProCASH checks if the misclassification cost 
ratio is larger than a certain threshold. If so, ProCASH add the record to a list of 
records that have not been correctly classified by that feature.  Furthermore, in 
contrast to CASH which used the genetic algorithm as its search algorithm, ProCASH 
uses a new search algorithm. In the beginning of the search, ProCASH's search 
method first looks for an initial subset with which it starts the search by performing 
the two following steps. Firstly, it gathers each feature in the training set that: (1) has 
classified correctly more than a predefined threshold of the training set's records; (2) 
whose feature resource cost is no higher than the resource constraint; and (3) whose 
average misclassification cost of all the records in the dataset is lower than the 
average a priori cost Secondly, ProCASH builds the initial selected features subset by 
iteratively selecting features with the minimal average misclassification cost from the 
features that were gathered in the previous step. ProCASH continues to add features 
to the initial subset until the point is reached where the addition of an extra feature 
causes the initial chosen subset's resource cost to exceed the resource constraint.  

Then, after the initial feature subset necessary to start the search has been chosen, 
ProCASH computes a list of all the records that have not been correctly classified by 
at least one of the chosen subset features. ProCASH then starts the search with the 
initial chosen subset by iteratively adding to the chosen subset one feature which 
holds the minimum misclassification cost. ProCASH continues to add features to the 
chosen subset as long as: (1) the number of records that have not been correctly 
classified  by at least one feature  in the chosen subset is larger than five percent of 
the records in the training set and (2) the chosen subset's features resource cost does 
not exceed the resource constraint. Finally, ProCASH returns as output the chosen 
subset of features. 

4 Experiments 

In this section we present and analyze empirical results obtained from evaluating a 
cost-sensitive malware detection framework designed for Android devices  [12].  Our 
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goal was to explore malware detection when using ProCASH in comparison to 
several other cost-sensitive algorithms, all constrained by a specific CPU 
consumption budget cost.  

ProCASH was implemented in Java. In order to evaluate the performance of 
ProCASH, we compared it to four algorithms: csDT_csf1 classifier [10], csDT_csf2 
classifier [10], GA+META+CsId3 [3] and GA+META_ICF [3]. The csDT_csf is a 
classifier which follows the embedded approach. csDT_csf employs a cost-sensitive 
decision tree to obtain a setting for the cost-scale factor (csf), that adjusts the strength 
of the bias towards lower cost attributes. The GA+META_GA+META_ICF is a 
wrapper algorithm which uses GA+META_ICF  [13] as its fitness function and the  
genetic search as its search algorithm.  The GA+META_CsId3 is a wrapper algorithm 
which uses the same heuristic function as in CSID3 [14] [15] algorithm and the genetic 
search as its search algorithm. For each feature selection algorithm (ProCASH, 
GA+META+ICF and GA+META+CSID3) based on the training set, the algorithm 
selects a feature subset. Then, features that were not selected were eliminated from 
the corresponding training and testing set. Afterward, a decision tree was induced on 
each of the training sets and its performance was evaluated on the corresponding test 
set. We used the J48 classifier, a Java implementation in WEKA [16] data mining 
applications of the C4.5 decision tree algorithm that Quinlan [17] introduced. In order 
to make our classifier cost-sensitive to misclassification costs, we used a meta-learner, 
implemented in Weka MetaCostClassifier [18]. 

The rest of this section is composed of the following subsections:  In subsection 
4.1 we describe the datasets we used; in subsection 4.2 we show the metrics and the 
statistical tests for measuring the performance of the algorithms and compare them; in 
subsection 4.3 we describe the experiment plan; in subsection 4.4 we describe the 
evaluation results followed by a discussion in subsection 4.5. 

4.1 Datasets 

There are several types of threats targeting mobile malware. In our research we focus 
on attacks against the phones themselves and not the service provider's infrastructure 
[34]. Four classes of attacks on a mobile device were identified  [6]: unsolicited 
information, theft-of-service, information theft and denial-of-service (DoS). Since 
Android is a new platform and there are yet no known instances of Android malware, 
we developed four applications that perform denial-of-service and information theft. 
The first malware we developed was the "Tip Calculator", a calculator which 
unobtrusively performs a DoS attack. When a user clicks the "calculate" button to 
calculate the tip, the application starts a background service that waits for a period of 
time and then launches several hundreds CPU-consuming threads. The attack almost 
absolutely paralyzes the device. The system becomes very unresponsive and the only 
effective choice is to shutdown the device (which also takes some time). An 
interesting observation is that the Android system often kills a CPU-consuming 
service but always keeps on re-launching it a few seconds later. 

Also, we developed three malicious information theft applications. The first 
malware includes a set of two Android applications exploiting the Shared User ID 
feature. In Android, each application requests a set of permissions which is granted at 
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installation time. The Shared User ID feature enables multiple applications to share 
their permission sets, provided they are all signed with the same key and explicitly 
request the sharing. It is noteworthy that the sharing is done behind the scenes without 
informing the user or asking for approval, resulting in implicit granting of 
permissions. The first Android application is Schedule SMS, a truly benign 
application that enables one to send delayed SMS messages to people from a contact 
list for which the application requests necessary permissions. The second application, 
Lunar Lander, is a seemingly benign game that requests no permissions.  

Once both applications are installed and the Lunar Lander obtains the capability to 
read the contacts and send SMS messages, it exhibits a Trojan-like behavior, leaking 
all of the contact names and phone numbers through SMS messages to a pre-defined 
number. This resembles RedBrowser - a Trojan masquerading as a browser that 
infects mobile phones running J2ME by obtaining and exploiting SMS permissions.  

The second information theft application masquerades as a Snake game and misuses 
the device's camera to spy on the unsuspecting user. The Snake game requests Internet 
permission for uploading top scores and while depicting the game on the screen, the 
application is unobtrusively taking pictures and sending them to a remote server. 

The third and last malicious information theft application we developed, HTTP 
Upload, also steals information from the device. It exploits the fact that access to the 
SD-card does not require any permission. Therefore, all applications can read and 
write to/from the SD-card. The application requires only Internet permission and in 
the background it accesses the SD card, steals its contents and sends it through the 
Internet to a predefined address. 

The small number of malicious applications left us with a class imbalance problem. 
The class imbalance problem occurs when one of the classes is represented by a very 
small number of cases compared to the other classes. This problem has been 
recognized as a crucial problem in machine learning and data mining since it causes 
serious negative effects on the performance of standard learning methods (which 
assume a balanced distribution of the classes). Several solutions to the imbalance 
problem have been proposed: assigning distinct costs to the classification errors; 
internally biasing the discrimination-based process; re-sampling the original data set 
(either by over-sampling the minority class and/or under-sampling the majority class) 
until the classes are approximately equally represented, or by duplicate vectors from 
the minority class. We decided to cope with this problem by under-sampling the 
benign class, i.e., using only part of the benign applications that were generated for 
the first set of experiments and duplicating the vectors of malicious applications. 

The four malicious applications were installed on two Android devices. A 
monitoring application, which continuously sampled various features on the device, 
was installed and activated on the devices. The conditions were regulated and 
measurements were logged on the SD-card. Three of the four malicious applications 
(Tip Calculator, Snake, and HTTP Uploader) were used for 10 minutes by each user, 
while in the background the application collected feature vectors every 2 seconds. The 
Lunar Lander game was not used for 10 minutes. The only malicious functionality of 
the Lunar Lander game was to send SMSs to a predefined destination. Therefore, 
when the Lunar Lander game was the only application used on the device, we 
expected that all of the vectors would be identical. Hence, we decided to sample this  
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application once during the short period of the attack and the sampled. These feature 
vectors were then duplicated and aligned with the number of vectors from the rest of 
the applications. 

In addition to malicious applications, 20 benign tool applications from the Android 
framework and Android market were used. All the benign tool applications were 
verified to be virus-free before installation by manually exploring the permissions that 
the applications required and by using a static analysis of .dex files. Each of the two 
Android devices had one user who used each of the 20 applications for 10 minutes; in 
the background, the monitor application collected new feature vectors every 2 
seconds. All the vectors were labeled with their true class: ‘tool’ or ‘malicious’. 

Then, for each device, five dataset were generated. To create the 5 datasets for each 
device, we divided randomly the 20 tool application that were used for the first sub 
experiment to 5 groups of size 4, while none of the tools overlapped across the 
different groups. For each device, the feature vectors of each group were added to a 
different dataset out of the 5 datasets of the device. The feature vectors for the 
malicious application were collected and added to each one of the 10 datasets (5 
dataset for each user of the two users).The reason for choosing only 4 tool 
applications is to guarantee that the different classes are equally represented in each 
dataset. After the division we had 10 groups, 5 for each device.  

Table 1 indicates the CPU power consumption costs, with and without group 
discount, of each feature when it is being monitored by the monitoring application. 
Costs were estimated using the CPU profiler which can be found in Android's SDK 

The first column represents the different features that the agent extracted from the 
device. The extracted features are clustered into two primary categories:  Application 
Framework and Linux Kernel. Features belonging to groups such as Messaging, 
Phone Calls and Applications belong to the Application Framework category and 
were extracted through APIs provided by the framework. Features from such groups 
as Keyboard, Touch Screen, Scheduling and Memory belong to the Linux Kernel 
category. Some Linux Kernel features can be extracted directly from Java. For 
example, Memory and Scheduling parameters can be accessed directly through a 
special filesystem-based interface of the Kernel and so can be extracted through the 
usage of ordinary Java I/O classes. 

A total of 88 features were collected for each monitored application. The second 
column presents the feature group assignment indication. There are 15 unique groups. 
Tests carried out on a group are discounted in terms of CPU power consumption cost. 
The most common reason that features were in the same group is that they are read 
from the same file-like source. Therefore, the entire file must read even if only a 
single feature is needed. However, once we paid the reading cost for the first feature, 
we no longer need to pay the reading cost for a second feature on the same file. As an 
example,  all the  features  in the group Binder were written on the same file and the 
agent only needed to open the file, which has a common CPU power consumption 
cost (18.25%) that is shared for all the features in that group. Then, in order to process 
each one of the features in that file (10 features in total), we only had to pay for each 
feature an additional CPU power consumption cost of 0.2. The other 14 groups are as 
follows: Sysfs, Scheduler_Statistics, Load_Average, Virtual_Machine_Statistics, 
Keyboard_Dynamics, System_configuration, Pressure_Dynamic, Process_Statistcs, 
Phone_Call, SMS, Logcat, Keyboard, Network and Misc. 
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Table 1. Feature CPU consumption cost before and after discount and feature grouping  

Feature Group Before 
discount 
cost 

After 
discount 
cost 

Local_RX_Packets Network 13.2 0.2 
Local_RX_Bytes Network 13.2 0.2 
Local_RX_Packets Network 13.2 0.2 
Local_TX_Bytes Network 13.2 0.2 
WiFi_TX_Packets Network 13.2 0.2 
WiFi_TX_Bytes Network 13.2 0.2 
BC_Transaction Binder 18.45 0.2 
BC_Reply Binder 18.45 0.2 
BC_Acquire Binder 18.45 0.2 
BC_Release Binder 18.45 0.2 
Binder_Active_Nodes Binder 18.45 0.2 
Binder_Total_Nodes Binder 18.45 0.2 
Binder_Ref_Active Binder 18.45 0.2 
Binder_Ref_Total Binder 18.45 0.2 
Binder_Death_Active Binder 18.45 0.2 
Binder_Death_Total Binder 18.45 0.2 
Binder_Transaction_Active Binder 18.45 0.2 
Binder_Transaction_Total Binder 18.45 0.2 
Binder_Trns_Complete_Active Binder 18.45 0.2 
Binder_Trns_Complete_Total Binder 18.45 0.2 
Free_Pages Virtual_Machine_Statistics 11.35 0.2 
Inactive_Pages Virtual_Machine_Statistics 11.35 0.2 
Active_Pages Virtual_Machine_Statistics 11.35 0.2 
Anonymous_Pages Virtual_Machine_Statistics 11.35 0.2 
Mapped_Pages Virtual_Machine_Statistics 11.35 0.2 
File_Pages Virtual_Machine_Statistics 11.35 0.2 
Dirty_Pages Virtual_Machine_Statistics 11.35 0.2 
Writeback_Pages Virtual_Machine_Statistics 11.35 0.2 
DMA_Allocations Virtual_Machine_Statistics 11.35 0.2 
Page_Frees Virtual_Machine_Statistics 11.35 0.2 
Page_Activations Virtual_Machine_Statistics 11.35 0.2 
Page_Deactivations Virtual_Machine_Statistics 11.35 0.2 
Minor_Page_Faults Virtual_Machine_Statistics 11.35 0.2 
Batery_Voltage Sysfs 1 0.95 
Battery_Current Sysfs 1 0.95 
Battery_Temp Sysfs 1 0.95 
Button_Backlight Sysfs 1 0.95 
Keyboard_Backlight Sysfs 1 0.95 
LCD_Backlight Sysfs 1 0.95 

 



390 Y. Weiss et al.  

Table 1. (continued) 

Battery_Level_Change Sysfs 1 0.95 
Avg_Key_Flight_Time Keyboard_Dynamics 0.56 0.2 
Del_Key_Use_Rate Keyboard_Dynamics 0.56 0.2 
Avg_Trans_To_U Keyboard_Dynamics 0.56 0.2 
Avg_Trans_L_To_R Keyboard_Dynamics 0.56 0.2 
Avg_Trans_R_To_L Keyboard_Dynamics 0.56 0.2 
Avg_Key_Dwell_Time Keyboard_Dynamics 0.56 0.2 
Yield_Calls Scheduler_Statistics 4.5 0.2 
Schedule_Calls Scheduler_Statistics 4.5 0.2 
Schedule_Idle Scheduler_Statistics 4.5 0.2 
Running_Jiffies Scheduler_Statistics 4.5 0.2 
Waiting_Jiffies Scheduler_Statistics 4.5 0.2 
Load_Avg_1_min Load_Average 2.55 0.2 
Load_Avg_5_mins Load_Average 2.55 0.2 
Load_Avg_15_mins Load_Average 2.55 0.2 
Runnable_Entities Load_Average 2.55 0.2 
Total_Entities Load_Average 2.55 0.2 
CPU_Usage Process_Statistics 13.9 0.2 
Running_Processes Process_Statistics 13.9 0.2 
Context_Switches Process_Statistics 13.9 0.2 
Processes_Created Process_Statistics 13.9 0.2 
Outgoing_SMS Log_Cat 1.25 0.2 
Garbage_Collections Log_Cat 1.25 0.2 
Camera Log_Cat 1.25 0.2 
Orientation_Changing System_Configuration 0.75 0.75 
Keyboard_Opening Keyboard 0.75 0.2 
Keyboard_Closing Keyboard 0.75 0.2 
Incoming_SMS SMS 0.65 0.2 
Package_Changing Misc 0.65 0.2 
Package_Restarting Misc 0.65 0.2 
Incoming_Calls Phone_Calls 2.55 0.2 
Outgoing_Calls Phone_Calls 2.55 0.2 
Missed_Calls Phone_Calls 2.55 0.2 
Avg_Touch_Pressure Pressure_Dynamics 0.25 0.25 
Avg_Touch_Area Pressure_Dynamics 0.25 0.25 

 

4.2 Experiment Plan: Detecting Android Malware in a Cost Sensitive Fashion 

In this study, our two types of costs were not measured by the same unit cost. One 
cost, the CPU power consumption, was measured on a scale of the CPU percentage 
utilized when monitoring a certain feature from the device. The other cost, 
misclassification, was measured in dollar ($) terms. Therefore, when given a maximal 
budget of CPU power consumption cost, our evaluation metric was the achieved 
average misclassification cost. The lower the evaluation measure value was, the better 
the algorithm performed.  
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We used hypothesis tests in order to examine if ProCASH's average 
misclassification costs and execution times were statistically significant lower than 
the other algorithms’. We performed an Adjusted Friedman cost hypothesis test  [19] 
with a 5% significance level. If the null hypothesis was rejected, we then conducted a 
Bonferroni-Dunn post Hoc [19] with a 5% significance level. 

The purpose of the experiment was to evaluate the ability of the proposed methods 
to distinguish between malicious and benign applications given a specific CPU 
processing power budget. We used 10 datasets extracted from two different devices, 
evaluated five cost sensitive methods, four misclassification cost matrices and nine 
CPU processing power budgets. The division of the dataset into training and testing 
sets was performed in such a way that the benign and malicious applications in the 
training and testing set were different. For each one of the 10 datasets (generated by 
selecting 5 times 4 different benign applications for each device), each time a 
different malicious application and different benign application were not included in 
the training set but were included in the testing set. 

4.3 Experiment Results 

Table 2 presents the average misclassification cost obtained in all of the runs. The 
first column represents the CPU consumption power budget cost. The second column 
represents the algorithms that were compared. Then, each of the following columns 
showed the average misclassification cost on the different cost matrices. As can be 
seen from Table 2, the average misclassification cost of the ProCASH algorithm tends 
to be better than that of all the other algorithms. ProCASH outperforms csDT_csf2, 
GA+META_ICF and GA+META_CSID3 algorithms in all of the cost matrices and 
under all the CPU consumption budgets. Furthermore, ProCASH algorithm 
outperforms csDT_csf1 in almost all of the cases except three. Tables 3 and 4 present 
the results of adjusted Friedman and Bonferroni-Dunn statistical hypothesis tests 
respectively.  From Table 3 we can see that the null-hypothesis, that all classifiers 
perform the same, was rejected using the adjusted Friedman test on all of the 
misclassification cost matrices. The adjusted Friedman test was conducted with a 
confidence level of 95%. Table 4 indicates that the ProCASH algorithm significantly 
outperforms all of the four algorithms at confidence levels of 95% in all of the 4 
misclassification cost matrices. Additionally, Figures 1 and 2 represent the 
performance of each algorithm in each of the CPU budget costs, given a 
misclassification matrix cost when the FP cost and FN cost are equal to $10 and when 
the FP cost is equal to $10 and the FN cost is equal to $5 respectively. We can see in 
Figures 1 and 2 that the ProCASH algorithm outperformed the rest of the algorithms 
with significant differences in the majority of the datasets. Moreover, we can see that 
ProCASH performance improved as the budget cost increased, until a certain budget 
was reached where ProCASH performance stayed the same. This implies that at a 
certain point, ProCASH decided that sampling more features would cause overfitting 
to the training set and would not improve the classification performance on the  
testing set.  
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Table 2. Comparing cost sensitive algorithms: summary of experimental results 

Budget 
cost 

Algorithms Misclassification cost matrices 
( FN cost_FP cost) 

  FN=$10 
FP=$10 

FN=$8 
FP=$10 

FN=$7.5 
FP=$10 

FN=$5 
FP=$10 

1 ProCASH $1.72 $1.66 $1.49 $1.50 
1 csDT_csf1 $4.27 $3.95 $2.96 $1.86 
1 csDT_csf2 $4.67 $4.21 $3.34 $2.56 
1 GA+META_ICF $3.35 $3.18 $2.85 $1.87 
1 GA+META_CSID3 $3.35 $3.16 $2.77 $2.26 

5 ProCASH $1.81 $1.68 $1.77 $1.49 
5 csDT_csf1 $1.61 $1.87 $1.73 $2.10 
5 csDT_csf2 $2.40 $2.46 $2.05 $1.86 
5 GA+META_ICF $2.24 $2.42 $2.34 $2.66 
5 GA+META_CSID3 $2.70 $2.24 $2.50 $2.58 

10 ProCASH $1.81 $1.68 $1.71 $1.49 
10 csDT_csf1 $1.61 $1.87 $1.74 $2.10 
10 csDT_csf2 $2.41 $2.47 $2.06 $1.85 
10 GA+META_ICF $2.27 $2.00 $1.78 $2.63 
10 GA+META_CSID3 $2.66 $2.54 $2.23 $2.46 

15 ProCASH $1.21 $1.04 $0.99 $0.94 
15 csDT_csf1 $1.61 $1.87 $1.74 $2.10 
15 csDT_csf2 $2.41 $2.47 $2.06 $1.85 
15 GA+META_ICF $2.95 $2.74 $2.55 $2.58 
15 GA+META_CSID3 $2.44 $2.12 $2.35 $1.75 

20 ProCASH $1.21 $1.04 $0.99 $0.94 
20 csDT_csf1 $1.61 $1.87 $1.74 $2.10 
20 csDT_csf2 $2.41 $2.47 $2.06 $1.85 
20 GA+META_ICF $2.49 $2.36 $2.39 $2.63 
20 GA+META_CSID3 $2.51 $2.99 $3.00 $2.96 

25 ProCASH $1.21 $1.04 $0.99 $0.94 
25 csDT_csf1 $1.61 $1.87 $1.74 $2.10 
25 csDT_csf2 $2.41 $2.47 $2.06 $1.85 
25 GA+META_ICF $2.13 $1.84 $1.79 $2.26 
25 GA+META_CSID3 $2.59 $2.71 $2.52 $2.69 

30 ProCASH $1.21 $1.04 $0.99 $0.94 
30 csDT_csf1 $1.61 $1.87 $1.74 $2.10 
30 csDT_csf2 $2.41 $2.47 $2.06 $1.85 
30 GA+META_ICF $3.12 $3.07 $2.64 $3.65 
30 GA+META_CSID3 $2.25 $2.06 $1.79 $3.00 

35 ProCASH $1.21 $1.04 $0.99 $0.94 
35 csDT_csf1 $1.61 $1.87 $1.74 $2.10 
35 csDT_csf2 $2.41 2$.47 $2.06 $1.85 
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Table 2. (continued) 

35 GA+META_ICF $2.64 $2.37 $2.32 $2.95 
35 GA+META_CSID3 $2.48 $2.66 $2.03 $2.98 

40 ProCASH $1.21 $1.04 $0.99 $0.94 
40 csDT_csf1 $1.61 $1.87 $1.74 $2.10 
40 csDT_csf2 $2.41 $2.47 $2.06 $1.85 
40 GA+META_ICF $2.25 $1.82 $1.94 $2.12 
40 GA+META_CSID3 $3.52 $3.19 $2.65 $2.83 

Table 2. adjusted Friedman tests results for each one of the misclassification cost matrices 

F(4,8) with Critical Value of 2.69 

Misclassification cost 
(FP-FN) 

FN=$10 
FP=$10 

FN=$8 
FP=$10 

FN=$7.5 
FP=$10 

FN=$5 
FP=$10 

Friedman statistic value 13.6 17.92 18.55 21.72 

Table 3. The superscript "+" indicates that the average total cost of ProCASH was significantly 
higher than the corresponding algorithm at a confidence level of 95% 

Average 
Misclassification  
cost 

FN=$10 
FP=$10 

FN=$8 
FP=$10 

FN=$7.5 
FP=$10 

FN=$5 
FP=$10 

csDT_csf1 +0.12 +1.61 +2.41 +2.25 
csDT_csf2 +0.17 +0.38 +0.28 +0.36 
GA+META_ICF +0.12 +0.32 +3 +2.77 
GA+META_CSIC3 +0.25 +0.17 +0.38 +0.38 

 

Fig. 1. The average misclassification cost that was obtained for each algorithm in each CPU 
consumption budget constraint, given a misclassification cost matrices of FP cost=10 and FN 
cost =$10 
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Fig. 2. The average misclassification cost that was obtained for each algorithm in each CPU 
consumption budget constraint, given a misclassification cost matrices of FP cost=FN cost =$5 

4.4 Discussion 

The advantages of the new ProCASH algorithm, as the experimental study indicates, 
can be summarized as follows:  

1. When compared to state-of-the-art, cost sensitive algorithms, ProCASH 
performed better in distinguishing between malicious and benign applications on 
Android mobile devices under a wide range of CPU resource budget constraints and 
misclassification cost matrices.  

2. Since ProCASH follows the filter approach, it can be used in conjunction with 
any classification algorithm and not only decision tree classifiers. Potentially, there 
might be domains in which using other classifiers will dramatically reduce the 
average misclassification cost. 

5 Experiments 

Host-based intrusion detection systems (HIDS) are based on continuously monitoring 
many parameters in the device such as CPU and memory consumption. Then, data 
mining techniques are applied to the collected data in order to detect abnormal states. 
Since the continuous monitoring of many parameters consumes considerable 
computational resources it is necessary to reduce consumption in order to used HIDS 
on mobile devices. 

One way to achieve this is to collect less parameters by means of cost-sensitive 
feature selection techniques.  One way to reduce computational resource consumption 
is to collect fewer parameters by means of cost-sensitive feature selection techniques.  
In this study, we evaluated ProCASH, a new cost-sensitive feature selection algorithm 
sensitive to resource and misclassification costs and feature grouping. ProCASH was  
evaluated on an Android mobile device. The data mining task was to distinguish 
between benign and malicious applications.  The results indicate that ProCASH 
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outperforms other cost-sensitive algorithms in terms of average misclassification costs 
in all of the CPU resource budget constraints. 
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