
Towards Cloud Mobile Hybrid Application

Generation Using Semantically Enriched
Domain Specific Languages

Ajith Ranabahu, Amit Sheth,
Ashwin Manjunatha, and Krishnaprasad Thirunarayan

Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) Center
Wright State University, Dayton, Ohio 45435
{ajith,amit,ashwin,tkprasad}@knoesis.org,

http://knoesis.org/cloud

Abstract. The advancements in computing have resulted in a boom of
cheap, ubiquitous, connected mobile devices as well as seemingly unlim-
ited, utility style, pay as you go computing resources, commonly referred
to as Cloud computing. Taking advantage of this computing landscape,
however, has been hampered by the many heterogeneities that exist in
the mobile space as well as the Cloud space.

This research attempts to introduce a disciplined methodology to de-
velop Cloud-mobile hybrid applications by using a Domain Specific Lan-
guage (DSL) centric approach to generate applications. A Cloud-mobile
hybrid is an application that is split between a Cloud based back-end
and a mobile device based front-end. We present mobicloud, our proto-
type system we built based on a DSL that is capable of developing these
hybrid applications. This not only reduces the learning curve but also
shields the developers from the native complexities of the target plat-
forms. We also present our vision on propelling this research forward by
enriching the DSLs with semantics. The high-level vision is outline in the
ambitious Cirrocumulus project, the driving principle being write once -
run on any device.

1 Introduction

Lately there have been interesting changes at both ends of the spectrum of com-
puting power. On one end there has been a boom in mobile computing devices,
fueled by fast growing communication networks. On the other end, there has
been substantial growth in high-end data centers that offer cheap, on-demand
and virtually unlimited computing resources, popularly named Cloud computing.
In the backdrop of these advances in computing and the growth of data intensive
domains such as social networks, a new class of applications have emerged taking
advantage of not only the on-demand scalability of computing clouds but also
the sophistication of current mobile computing devices.

M. Griss and G. Yang (Eds.): MOBICASE 2010, LNICST 76, pp. 349–360, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

350 A. Ranabahu et al.

This class of applications, named cloud-mobile hybrids, are characterized by
the need for data-intensive computations or extreme scalability in the back-end
and mobile device based front-ends. Figure 1 illustrates the structure of a cloud-
mobile hybrid application.

Fig. 1. Structure of a Cloud-Mobile hybrid

An illustrative example of a cloud-mobile hybrid would be an implementation
of the Privacy Score [11] algorithm. Privacy score is a numerical indicator of
the level of private details exposed by an individual in a social network. This
score is a relative measure and requires substantial computations in the back-
end. These computations can be performed in parallel. Presenting the score to
the user is preferred to be via a mobile device, prompted by the increasing use of
mobile devices to interact with social networks. Developing such an application,
however, is significantly difficult than any other application development effort.

The state-of-the-art in mobile front-ends has changed from mobile-enabled
Web sites to platform native applications. These native applications offer a better
user experience by tightly integrating with the host platform and taking full
advantage of the capabilities of the device. There is no universal development
methodology and developers must pick and choose from a multitude of different
mobile platforms. Similar choices need to be made in the Cloud space which
is fragmented due to vendor specific service interfaces, restricted run-times and
many others. Hence, developers have to cope with fragmentation at two different
levels and often the efforts are focused on only selected mobile platforms and
clouds. Developing portable hybrid applications in an economical and efficient
manner is clearly a challenge.

We believe the key in overcoming portability issues is to follow a model-driven
development pattern. However, there is no one level of abstraction that can be

Towards Cloud Mobile Hybrid Application Generation 351

applied to modeling. Instead, one requires multiple models with varying granular-
ities to cover different aspects of the application. Although semantic modeling is
favored at a higher level, developers prefer detailed, concrete syntactic represen-
tations such as DSLs. The relationship between the representations of different
granularities need to be established, often through explicit annotations. A slic-
ing of the Cloud modeling space and the different types of models required have
been discussed in [21] and showing the relevance of semantic models. We discuss
four different types of semantics, data, functional, non-functional and system in
Section 4.1 where each type addresses a specific aspect in an application. For
example data semantics provide platform agnostic data definitions that support
data portability.

In this paper we present MobiCloud, our early attempt to introduce a method-
ology for developing Cloud-mobile applications using DSLs. DSLs offer a mid-
level abstraction that is developer friendly but also allows room for high level
models to be attached. We also discuss the role of semantic models and the vi-
sion outlined by the ambitious Cirrocumulus project1. The goal of Cirrocumulus
is to enable platform agnostic application development, deployment and man-
agement, intended to be achieved using DSLs infused with high-level semantic
models as well as semantic-enriched middleware.

2 Motivation and Background

Our motivation for this research primarily comes from the lack of a clear method-
ology to develop portable applications for Clouds and mobile devices. The recent
attention on Cloud-mobile hybrids and the difficulty in developing such applica-
tions clearly indicated the void in this space.

Portability issues arise primarily due to the heterogeneity (fragmentation) in
both Cloud and mobile platforms. There is ample evidence that such hetero-
geneities exist and they are indeed the root of many of the issues the industry
is facing today.

The Consumer Electronics Show (CES)2 is the premier showcase of the con-
sumer electronics devices and is indicative of trends in the current and future
mobile device markets. During the last CES event, developers openly expressed
frustration over a lack of consolidation of mobile platforms [10]. This is one of
many complaints about the state of the fragmentation in the mobile space where
there is no standardization in how applications are developed or deployed into
mobile devices.

Similar fragmentation has happened in the Cloud space with each vendor de-
veloping their own paradigm [4]. The Cloud remains a largely non-standard space
despite the efforts from National Institute of Standards and Technology (NIST)
to standardize it. Recent industry surveys indicate that the practitioners still
consider vendor lock-in a serious hindrance to Cloud computing adoption[19].

1 http://knoesis.wright.edu/research/srl/projects/cirrocumulus/
2 http://www.cesweb.org/

352 A. Ranabahu et al.

Some experts have also suggested that vendors may purposely promote the Cloud
to be a heterogeneous patchwork of frameworks for business reasons [3].

These heterogeneities force developers to be locked-in to a selected set of
platforms. Catering for multiple platforms is a time consuming and highly ex-
pensive venture only a few would attempt. This research focuses on overcoming
the platform lock-in by using an independent language to develop applications.

2.1 Use of DSLs

A DSL is a programming language or executable specification language that of-
fers, through appropriate notations and abstractions, expressive power focused
on, and usually restricted to, a particular problem domain [2]. DSL centric ap-
proaches have been used in many domains, particularly due to the expressiveness
in the domain of interest, runtime efficiency and reliability due to the narrow
focus [22]. For example, mathematicians are quite familiar with specialized lan-
guages such as MATLAB [8] that provide a convenient way to write matrix
oriented programs. Domain of a DSL can be arbitrarily scoped, i.e. a DSL may
cater for a generic domain such as Mathematics or be extremely narrow, say
configurations for a particular computer game [23].

The emergence of powerful interpreted languages, such as Ruby, have been
a key enabler for many modern DSLs. A Ruby based DSL has been success-
fully used in the IBM Sharable Code (ISC) project [14] to provide programming
abstractions for light weight service compositions (a.k.a. mashups).

DSLs are considered as the key component in the software factories approach
by Greenfield et al.[7]. Some of these philosophies have played a critical role in
adding features to the Microsoft Visual Studio development suite. One of the
pertinent arguments Greenfield presents is that many of the goals of Object
Oriented Programming (OOP) were impossible to achieve in practice due to the
lack of sufficient level of abstraction. A DSL is capable of raising the level of
abstraction to achieve convenience in developing and software reuse.

A DSL however is not the silver bullet that provide a universal solution. DSLs
by definition, cater to only a specific domain and become inapplicable outside
the targeted domain. For example, the IBM Sharable Code DSL is only useful
to prepare service compositions. However, given a class of applications, a DSL
greatly reduces the effort required to create programs and lowers the barriers to
entry.

3 A DSL for Cloud Mobile Hybrids

We now present the prototype DSL focused in this research. Named MobiCloud
to indicate the presence across mobile and Cloud spaces, the DSL caters for inter-
active Web applications driven by Create, Retrieve, Update and Delete (CRUD)
operations. These applications typically use multiple data structures in a data
centric back-end and use a mobile or Web based front-end to manipulate these
data structures. The use of Cloud in these applications is primarily for scala-
bility, i.e., the application itself may not require a massive processing capability

Towards Cloud Mobile Hybrid Application Generation 353

but is likely to receive a large number of simultaneous requests and hence needs
to scale accordingly. Typically, these can be horizontally scaled, i.e. the load can
be shared across multiple replicas.

An example of such an application is a to-do list manager similar to the
very popular task manager application offered by Remember the Milk3. This
application allows users to create to-do items using their mobile devices and
stores them in a Cloud data store. These reminders can later be retrieved as a
list, either on a mobile device or on the Web. Creating an application of this
nature from scratch requires developing the following components:

(1) A data storage mechanism tied to the storage technology of choice.
(2) A service layer capable of exposing the operations on the data store.
(3) A service access layer in the targeted front-end capable of accessing the
services defined on the server side.
(4) Relevant user front-end components.

Long running software engineering research on design patterns has identified the
most appropriate design pattern for this type of applications is the Model-View-
Controller (MVC) pattern. Figure 2(a) illustrates the major components present
in a MVC based design. Figure 2(b) illustrates the split of these components
across the back-end and the front-end.

We designed a DSL that closely resembles the MVC pattern giving separate
specifications of each of the major components. This has been a conscious design
decision since many developers are already familiar with the MVC pattern thus
it would be natural for them to use this DSL.

(a) The Model View Controller
(MVC) Design Pattern

(b) Splitting Model, View and Con-
troller across the front-end and back-
end

Fig. 2. MVC Design Pattern and the its usage for Cloud-Mobile Hybrids

We now present a hello world application written using this DSL to exem-
plify the features of the language. Listing 1.1 depicts the DSL script for this
application. The intention of this application is to illustrate the main language
features.
3 http://www.rememberthemilk.com/

354 A. Ranabahu et al.

(1) A minimal model with only one attribute.
(2) A minimal controller with only one action.
(3) A minimal view demonstrating a minimal user interface.

This application displays a greeting message on the mobile device by fetching it
from the remote, cloud based data storage via a RESTful service interface.

Listing 1.1. The DSL script for the hello world application

recipe : h e l l owor ld do
metadata : id => ’ he l lowor ld−app ’

models
model : g r e e t ing ,

{ : message => : s t r i n g }

#con t r o l l e r s
control ler : s a yh e l l o do
action : r e t r i e v e , : g r e e t i n g

end

views
view : show greet ing ,
{ :models =>[: g r e e t i n g] ,
: control ler => : s ayhe l l o ,
: action => : r e t r i e v e }

end

We limit the elaboration on our DSL for brevity. Further details of the imple-
mentation of this prototype language is available from the MobiCloud technical
report [12]. An on-line tool kit and a number of examples, including the com-
plete language specification in BNF are also available 4. The current system is
capable of generating functionally equivalent back-end applications for Google
Appengine and Amazon EC2. The front-end capabilities include Android 1.5
and Blackberry platforms.

4 Discussion

4.1 Role of Semantics

Semantic models have been applied in many domains to provide platform-neutral
specifications. For example, our faceted classification and search system APIHut
uses a taxonomy to organize the functional characteristics of Web APIs [6]. An-
other domain dependent example is GoodRelations, a standardized vocabulary
for product, price, and company data [9].

4 http://knoesis.org/mobicloud

Towards Cloud Mobile Hybrid Application Generation 355

Semantic Web community has been using semantic models to overcome issues
of portability and interoperability for years and these are the very issues the
Cloud computing community is facing today. A particularly relevant research
work was on semantics for Web services where four types of semantics has been
identified for a service [20]. Figure 3(a) illustrates an adaptation of the four types
of semantics to the Web application domain.

Figure 3(b) illustrate the analysis of the modeling space we presented in [21].
This slicing indicates the applicability of the existing models as well as the voids
that are present.

(a) Four types of Semantics (b) 3 dimensional slicing of the modeling space

Fig. 3. Four types of semantics and its relevance to the modeling space

The key in creating such a breakdown is to direct the model creation and
usage towards specific aspects. For example semantic data models (ontologies)
can be applied independent of the other aspects of the application. While the
direct adaptation of the service oriented semantic categorization may not be the
best in the application domain, a similar categorization would be immensely
helpful in applying semantics to Cloud-mobile hybrids.

There are three potential uses of semantics in cloud-mobile hybrid application
generation.

(1) A key limitation, even with the use of the DSL is reusable data modeling.
This is very important in the back-end when the need to migrate applications
arise. Existing clouds use a myriad of data models, making the task of migrat-
ing across data stores that follow different models a challenge. Model-agnostic
semantic data definitions, coupled with the lifting-lowering data migration strat-
egy [16] originally proposed for Web service data mediation is directly applicable
here. A semantic data model can be referenced with in the DSL rather than defin-
ing one in-line. There are many well established, public semantic data models
such as Friend-of-a-friend (FOAF) that can be reused in data definitions.
A mechanism to enable data references is illustrated in Listing 1.2.

356 A. Ranabahu et al.

(2) Non-functional details of an application are generally interleaved into the
logic. However, many of these capabilities can be separated from the functionality
and layered on the core functional implementations. Aspect Oriented Program-
ming (AOP) [5] is a relatively new philosophy that advocates a clean separation
of cross cutting non-functional concerns. Semantic models can be used to specify
these non-functional capabilities and linked to the DSL via annotations.
(3) System details for the application including the deployment parameters and
scaling configuration can be expressed via semantic models. In fact such descrip-
tions are being used commercially today. Elastic Computing Modeling Language
(ECML), Elastic Deployment Modeling Language (EDML) and Elastic Manage-
ment Modeling Language (EMML) by Elastra Inc. [1], highlighted in Figure 3(b)
is a prime example of a system oriented semantic model. This type of configu-
ration may also be linked to the DSL via annotations.

Listing 1.2. Using a Reference to Define Data Types

model : person , { : ref => ” f o a f : Person”}

4.2 Application UI Features

A potential limitation of the current tool is the generic nature of the applica-
tions that are being generated. The generated UI’s use minimal decorations and
are focused on functionality, rather than visual appeal. Even if the generic UI
features can be improved, developers may want to customize their application’s
visual components. There are two possible solutions:

(1) Use a secondary DSL to define custom UI components and attach them to
the views. The XAML [15] UI language is one such well established DSL.
(2) Use the generated projects to bootstrap custom development. This is simi-
lar to the model driven development process followed by many major software
companies where a high level model, such as UML diagram, is used to bootstrap
the development process.

Listing 1.3 is a UI description written in XAML and Listing 1.4 shows how this
could be incorporated in to the DSL.

Listing 1.3. An Example XAML template for the Greetings UI

<Canvas>
<Rectangle F i l l=”PowderBlue ” />
<TextBlock

Foreground=”Teal”
FontFamily=”Verdana”
FontSize=”18”
FontWeight=”Bold”
Text=”<%@model . message%>” />

</Canvas>

Towards Cloud Mobile Hybrid Application Generation 357

Listing 1.4. Using a Reference to XAML based UI template

view : show greet ing ,
{ :models =>[: g r e e t i n g] ,

: control ler => : s ayhe l l o ,
: action => : r e t r i e v e ,
: uiref => ” h e l l o . xaml”}

4.3 User Defined Back-end Functions

Custom actions beyond the simple CRUD operations become an absolute neces-
sity when the applications grow in complexity. Similar to the customization of
the UI, this DSL may be enhanced to enable plug-in-in actions using user defined
functions. These actions may also be written in other DSLs such as PIGLatin [18]
scripts. Listing 1.5 shows a possible extension of the DSL to embed a PIGLatin
script for a custom back-end function based on Apache Hadoop.

Listing 1.5. Embedding a PIGLatin script in a custom action

action : s o r t i t ems ,
: item , { : lang => ’PIG’} do

%{
A=load ’ items ’ us ing PigStorage ()

as (a , b , c) ;
B=so r t A by a ;
}

end

4.4 Deployment Complexity

Although the generated applications can be tested on the provided mobile device
emulators, deployment to the actual device may require a signing step (using an
authenticated key) and optionally an upload to a vendor controlled app store.
Some of these work flows have been deliberately kept as human centric oper-
ations by the vendors. Even if there are Web APIs present, managing keys,
security certificates and other deployment operations require the presence of a
different layer of automation. Although such facilities are out of scope of this
work, adding a middleware layer capable of managing deployments and subse-
quent management tasks, such as Altocumulus [13], would improve the reach
and the usability of the DSL.

5 Vision for the Future

Our vision on the future of the Cloud applications indeed include DSLs as well as
semantic-aware middleware layer [17]. The mobicloud DSL is the early attempt
to realize this vision as outlined in Figure 4.

358 A. Ranabahu et al.

Fig. 4. The High Level Objective of the Cirrocumulus Project

The Cirrocumulus project attempts to provide the following capabilities to sup-
port portability and interoperability objectives.

(1) The ability to design and develop (program) with no assumptions about a
specific target platform, data model or runtime behavior.
(2) The ability to deploy the artifacts to multiple platforms with no re-architecture
or re-programming.
(3) The ability to manage and tune the deployed artifacts with no consideration
of where they are deployed and migrate them to a different platform if neces-
sary.Management refers to the tasks such as taking backups, moving log files etc.

Although these objectives were formed to cater for Cloud portability, they also
apply to Cloud-mobile hybrids and to mobile application portability as well.
MobiCloud system gave us an opportunity to test the water with respect to our
development philosophy.

Several insights were gained from the feedback received on the MobiCloud on
line tool kit.

(1) Some experienced developers considered the top-down design and develop-
ment process not flexible enough to create presentable applications. This is in-
deed the case with high levels of abstractions. However, the default applications
with the basic functionality would serve the majority case. Experienced devel-
opers can still use the DSL to generate the boiler plate code and continue to
customize it as mentioned in Section 4.2.
(2) There was great interest in having a reverse engineering tool to convert an
existing application to the DSL. Such a tool in practice would be semi-automated
rather than fully automated. A conversion, even with human involvement, would
bring value by enabling migrations at a later point and act as an incentive to
convert existing programs to the DSL.

6 Conclusion

Our experimental DSL has clearly demonstrated the applicability of DSLs to
generate cloud-mobile hybrids, as part of a larger goal of bring portability to

Towards Cloud Mobile Hybrid Application Generation 359

Cloud applications. Although there are many possible improvements, we believe
that our philosophy is promising in transforming the Cloud-mobile hybrid ap-
plication development process. By reusing many existing and well-established
semantic technologies, this approach will be able to create, deploy, and manage
Cloud-mobile hybrids efficiently and cost-effectively.

References

1. Charlton, S.: Model Driven Design and operations for the Cloud. In: To-
wards Best Practices in Cloud Computing Workshop, pp. 17–26 (2009),
http://bit.ly/cSPAin (last accessed August 27, 2010)

2. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35(6), 26–36 (2000)

3. Durkee, D.: Why cloud computing will never be free. Communications of the
ACM 53(5), 62–69 (2010)

4. Economist Opinion Section: Clash of the Clouds. The Economist (2009), published
online at http://bit.ly/cBRAfB (last accessed August 27, 2010)

5. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming: Introduction.
Communications of the ACM 44(10), 29–32 (2001)

6. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A faceted
classification based approach to search and rank web apis. In: IEEE International
Conference on Web Services, pp. 177–184 (2008)

7. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks and Tools. In: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 16–27. ACM (2003)

8. Hanselman, D., Littlefield, B.C.: Mastering MATLAB 5: A comprehensive tutorial
and reference. Prentice Hall PTR, Upper Saddle River (1997)

9. Hepp, M.: GoodRelations: An Ontology for Describing Products and Services Of-
fers on the Web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI),
vol. 5268, pp. 329–346. Springer, Heidelberg (2008)

10. Johnson, A.: Apps call, but will your phone answer?, published online, at
http://bit.ly/7OfKeO (last accessed August 27, 2010)

11. Liu, K., Terzi, E.: A Framework for Computing the Privacy Scores of Users in
Online Social Networks. In: Proceedings of the 2009 Ninth IEEE International
Conference on Data Mining, pp. 288–297. IEEE Computer Society (2009)

12. Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K.: A Domain
Specific Language Based Method to Develop Cloud-Mobile Hybrid Ap-
plications. Tech. rep., Kno.e.sis Center, Wright State University (2010),
http://knoesis.wright.edu/library/publications/MobiCloud.pdf (last ac-
cessed August 27, 2010)

13. Maximilien, E., Ranabahu, A., Engehausen, R., Anderson, L.: Toward cloud-
agnostic middlewares. In: Proceeding of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Applica-
tions, pp. 619–626. ACM (2009)

14. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An Online Platform for Web APIs
and Service Mashups. IEEE Internet Computing 12(5), 32–43 (2008)

15. Microsoft Corporation: Extensible Application Markup Language. Microsoft De-
veloper Network, MSDN (2008)

http://bit.ly/cSPAin
http://bit.ly/cBRAfB
http://bit.ly/7OfKeO
http://knoesis.wright.edu/library/publications/MobiCloud.pdf

360 A. Ranabahu et al.

16. Nagarajan, M., Verma, K., Sheth, A.P., Miller, J., Lathem, J.: Semantic Inter-
operability of Web Services-Challenges and Experiences. In: IEEE International
Conference on Web Services (ICWS), pp. 373–382 (2006)

17. Oberle, D.: Semantic Management of Middleware (Semantic Web and Beyond:
Computing for Human Experience). Springer-Verlag New York, Inc., Secaucus
(2006)

18. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM (2008)

19. Rightscale.com: The Skinny on Cloud Lock-in (2009), published online at
http://bit.ly/LZc80 (last accessed August 27, 2010)

20. Sheth, A.: Semantic Web Process Lifecycle: Role of Semantics in Annotation, Dis-
covery, Composition and Orchestration. In: Workshop on E-Services and the Se-
mantic Web (ESSW 2003) in 12th International World Wide Web (WWW) Con-
ference, Budapest, Hungary (2003) (invited presentation)

21. Sheth, A., Ranabahu, A.: Semantic modeling for cloud computing, part 1. IEEE
Internet Computing 14, 81–83 (2010)

22. Spinellis, D.: Notable design patterns for domain-specific languages. The Journal
of Systems & Software 56(1), 91–99 (2001)

23. Sweeney, T.: Unreal Script Language Reference (1998),
http://unreal.epicgames.com/UnrealScript.html (last retrieved August 27,
2010)

http://bit.ly/LZc80
http://unreal.epicgames.com/UnrealScript.html

	Towards Cloud Mobile Hybrid Application Generation Using Semantically Enriched Domain Specific Languages

	Introduction
	Motivation and Background
	Use of DSLs

	A DSL for Cloud Mobile Hybrids
	Discussion
	Role of Semantics
	Application UI Features
	User Defined Back-end Functions
	Deployment Complexity

	Vision for the Future
	Conclusion
	References

