
VStore++: Virtual Storage Services

for Mobile Devices

Sudarsun Kannan, Karishma Babu, Ada Gavrilovska, and Karsten Schwan

Center for Experimental Research in Computer Systems
Georgia Institute of Technology

{sudarsun,karishma,ada,schwan}@cc.gatech.edu

Abstract. This paper addresses media sharing via an approach that
offers ‘fungible’ storage, where storage services implement virtual stores
that are dynamically mapped to suitable ‘nearby’ or otherwise avail-
able physical devices. In particular, the novel VStore++ system pro-
vides seamless and flexible data storage, access, and sharing services, by
exploiting virtualization technology to aggregate and make use of both
‘nearby’ and private storage (e.g., in a mobile user’s home), and public
storage resources offered on remote cloud platforms.

Keywords: mobile virtualization, cloud computing.

1 Introduction

Mobile devices with their increased CPU speeds, core counts, memory sizes, and
improved communication rates may well become the next generation personal
computers. To meet the resulting increased end user demands for rich and diverse
types of services on these platforms, however, industry must address constraints
that include issues with battery life, processing capabilities dwarfed by those
of server systems, limited storage, smaller display form factors, and others. In
response, our research is exploiting the fact that mobile devices are often sur-
rounded by and used in contexts where there are many other resources that
could enhance their capabilities. Consider, for instance, the enormous aggregate
processing power and storage capacity available in say, a soccer stadium in the
forms of other spectators’ devices, the server systems supporting broadcast and
organizational functions, and devices engaged in ancillary tasks like security.
Another example are users’ homes where there may be home PCs, laptops, and
computerized home entertainment systems. Further, often associated with such
resources is locally captured state like home videos, security images, or the con-
text information needed to distinguish important from less important content.

Locally available resources and context suggest solutions that use distributed,
multi-device service implementations. We formulate the following simple princi-
ples for mobile service realization and delivery:

M. Griss and G. Yang (Eds.): MOBICASE 2010, LNICST 76, pp. 323–328, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



324 S. Kannan et al.

• Fungibility for dynamic flexibility: physical resources should be ‘fungible’, so
as to create dynamic options in the mappings from the resources applications
believe they are using – virtual resources – to the physical resources actually
being used.

• Explicit cooperation: devices must agree to participate in service delivery,
creating sets of cooperative devices operating in common domains (e.g., a
user’s home).

• Guided active management: since the ‘best’ mappings of virtual to physical
resources depend on current context, user needs, and resource availabilities,
active management of these mappings must have continuous inputs from
methods that monitor these factors.

• Automation and independence: guided management should not require end
user participation, i.e., it should be automated, and in addition, manage-
ment should be independent of specific operating systems or application
frameworks being present on mobile devices.

• Universal operation: managed services should function wherever mobile de-
vices are used, which implies that there must also be ways to store and access
global state across disconnected periods of operation. Access to Internet-
based services, therefore, is a critical element of any solution for fungible
mobile services.

Current solutions that ‘simply use the Internet’ are insufficient. Although they
clearly enhance mobile devices via remote (e.g., for storage, DropBox, Gmail,
etc.), they are lacking in terms of independence and universal operation. This is
because of (1) disconnected operation – where sometimes, mobile devices will not
be able to access Internet services like those offered by public cloud infrastruc-
tures,(2) undue communication overheads or costs – referring to the performance
(or lack thereof) or the expense of reaching Internet resources in comparison to
the lower costs of using local resources and exploiting locally available state, and
(3) data privacy or security, for which it may be preferable to use and maintain
local resources that cannot be accessed by others.

The VStore++ service described in this paper provides efficient, fungible stor-
age for mobile devices. This is done by exploiting distributed storage via a ‘co-
operative’ model in which devices choose to participate in joint data storage and
access. Interactions may take place across wireless networks, as in the aforemen-
tioned case of the soccer stadium, across the Internet, when using Internet-based
resources like cloud storage, or across wired links when the mobile device op-
erates in a user’s home. The outcome is a ‘personal mobile cloud’ comprised of
a dynamically varying set of interacting devices that cooperate to provide end
users with seamless storage services.

The implementation of VStore++ attains fungibility and independence by op-
erating at the virtualization level, where it can use local disks, remote machines’
stores, or even Internet-connected storage in ways that are transparent to and
independent of end users, application frameworks, and even the operating sys-
tems running on mobile devices. At the same time, since the context in which the
mobile device operates will change dynamically, as will end user requirements,



VStore++: Virtual Storage Services for Mobile Devices 325

VStore++ will track resource availability in order to direct requests to whichever
resource is currently accessible, using a global index maintained during its op-
eration. This is done in ways that maintain user-defined data access controls.
Further, VStore++ as a service can be used wherever there is connectivity to
participating devices and using whichever connectivity methods are currently
available, but automation in terms of making such choices or determining suit-
able storage targets remains subject of our future work. The outcome is a storage
service accessible from a wide range of platforms, independent and potentially
decoupled from their inherent constraints.

VStore++ has been implemented on Atom-based machines that are virtu-
alized with the Xen open source hypervisor. Its evaluation uses a prototypical
‘home’ setup in which there is cooperation among mobile devices, tethered home
machines like PCs, and remote services like Amazon’s EC2 storage. Our ongo-
ing work is exploring mobile services other than storage, is developing meth-
ods for automatically guided management, and is improving the ubiquity by
inter-operating by use of other service delivery means, such via cable or satel-
lite TV-based connections. Performance results reported in this paper clearly
demonstrate the utility of fungibility, showing much improved performance when
storage resources are local vs. in public clouds and showing advantages with local
aggregation when there is substantial local state or when there are requirements
for fast local response (as with home security systems, for instance).

2 VStore++ Architecture and Implementation

To provide end-users with mobile devices seamless access to state stored on
diverse locally present storage resources, as well as remote, publicly available
compute and storage cloud platforms, VStore++ must implement transparent
enforcement of varying sharing policies on objects, and search for content be-
longing to other domains, both local and remote, via standard content access
interfaces (e.g., the file system interface) In addition, there must be interfaces
for dynamically associating with data accesses additional functionalities such
as trust management, access control, location attributes, and methods for data
manipulation or customization. VStore++ attains these implementation goals
using as its service interface that of an object-based file system, virtualized for
use by guest domains. VStore++’s basic object API is enhanced with additional
object-level metadata (e.g., privacy attributes) and with ‘activity specifications’
that make it possible to associate data manipulation functions with object ac-
cesses. VStore++ is implemented in a trusted service domain, which is ‘dom0’
in its Xen-based prototype.

The main components of VStore++, illustrated in Figure 1, are:

1. Virtualized object-based file system: VStore++ is a virtualized storage
service exposing an object-based file system interface. Internally, it uses a stan-
dard file system to represent objects, using a one-to-one mapping of objects to
files. The current implementation is based on the PVFS object-based file system,



326 S. Kannan et al.

Fig. 1. VStore++ Architecture

but alternative, more lightweight implementations are currently under consider-
ation (e.g., based on SyncFS).
2. Peer-to-peer service: this layer provides the facilities for establishing peer-
to-peer overlays, for object searches, for request routing and for dynamic overlay
management (e.g., participant discovery, etc.) in ad hoc mobile environments.
The current implementation is based on the lightweight Chimera peer-to-peer
overlay system. In order to support robust and efficient tag-based routing ser-
vices, as needed by VStore++ to enable discovery of and access to remotely
stored tagged data, a scalable DHT layered on top of Chimera’s key based rout-
ing service provides file system-like semantics, i.e., insert and retrieve operations.
The DHT layer also provides additional features, including caching, replication,
node failure detection, and handling of new node arrivals.
3. Enhancement services: additional services associated with VStore++,
at runtime, can provide functionality that includes (i) run-time trust mecha-
nisms [2], (ii) methods that protect data via data manipulation functions that
range from simple read/write permissions to content-dependent processing like
watermarking for images, etc., or (iii) location mechanisms that operate with
or without GPS hardware support, by using approximate GPS coordinates ob-
tained via services such as Georgia Tech’s WhereAmI or mechanisms such as
WiFi triangulations, marker recognition, or others.
4. Interface to public/remote clouds: in order to seamlessly enable access to
state or services available on ‘nearby’ vs. remote resources, such as those present
in current public cloud platforms like Amazon’s EC2, VStore++ transparently
integrates corresponding cloud client components. The same metadata services
which keep track of location of ‘nearby’ content, are used to encode operations
and accompanying attributes needed for access to the remote cloud storage.

3 Experimental Evaluation

For brevity, this section outlines only some of the experimental results of our re-
search, with the dual goals of illustrating the feasibility of supporting virtualized



VStore++: Virtual Storage Services for Mobile Devices 327

Fig. 2. VStore++ virtualization overheads

file sharing solutions such as VStore++ on mobile platforms and demonstrat-
ing the potential advantages of such a solution compared to pure ‘Internet’-
based methods. Experiments are conducted using the current VStore++ im-
plementation on Xen-3.0.4 as the virtualization platform, with PVFS-2.6.3 as
the object-based storage service, and Chimera 1.20 for DHT and peer-to-peer
communication services. The experimental testbed consists of dual-core 1.66GHz
Intel Atom N280 netbooks and multiple 3 GHZ 64-bit core-duo laptops, running
Linux 2.6.16 on Xen. Access to Amazon S3 cloud storage is via a home-based
broadband link, to better emulate future wireless bandwidths.

To determine the overheads due to virtualization, we compare the virtual-
ized VStore++ implementation with one that runs on a non-virtualized system,
where the client directly interacts with the ‘back-end’ server. The graphs in Fig-
ure 2 show that the use of Xen contributes from 4.5% to 15.74% to the data
access latencies of VStore++’s operations. In large part, these are due to our
use of TCP sockets for VM-dom0 communication. It is known that such costs
can be reduced substantially by using shared memory based VM-VM communi-
cation mechanisms already available in the open source community. At the same
time, the moderate costs of this un-optimized implementation enable function-
ality and flexibility that is otherwise not easily attainable – storage fungibility,
independence, and universal operation, as well as the ability to transparently
extend the data access service with additional functionality, such as location
transparency, rich access control policies, useful data manipulations (e.g., for
privacy protection), etc.

Additional experiments evaluate the impact of virtualization on sustainable
throughput rates, with results indicating that for smaller file sizes (200 KB)
virtualization impacts performance by no more than 10%. As file sizes increase,
particularly as the distributed store becomes more full, overheads increase. Such
costs are accompanied, however, by substantially increased total storage capac-
ity and flexibility. Overheads can be reduced through additional optimizations
of Xen for small form factor devices, and by using additional hardware-level
virtualization support available on these (Atom-based) devices.



328 S. Kannan et al.

Fig. 3. Benefits of service delivery via local vs. remote entities

Finally, to demonstrate the importance of enabling access to local- vs. remote
‘cloud’ services, we compare between the latencies and response time variability
between accesses to ‘nearby’ storage (i.e., in our prototypical ‘home’ environ-
ment) vs. to Amazon’s EC2 storage service. The measurements in Figure 3 show
that access to local storage can not only be seamlessly integrated under the
VStore++ interface, but that it also results in superior access properties (e.g.,
response time and jitter), which may be critical for certain types of services.

4 Conclusions and Future Work

VStore++ is an experimental vehicle for understanding and exploring ways to
construct ‘personal clouds’ comprised of dynamic sets of mobile and stationary
computing platforms. By using virtualization technology to access storage service
at the object level rather than at the block level, VStore++ can associate useful
semantic data with storage objects, such as privacy or access control metadata,
and can then use such information to enforce diverse end user requirements.
Performance evaluations show that the VStore++ hybrid solution of using both
local and remote resources for data storage can be superior to the purely Internet-
based service offering now available to mobile platforms, with additional benefits
derived from the ability to deal with trust and data privacy concerns.

Our ongoing and future work is exploring two avenues toward further enriching
mobile services. One direction of research is considering other services, such as
those needed for multimedia delivery and customization, and for universal service
operation in lieu of certain dynamic resource deficiencies. Another direction is
to automate virtual to physical resource mappings under changing conditions,
such as when a mobile device’s battery become depleted.

References

1. Seshasayee, B., Narasimhan, N., Biljani, A., Pai, A., Schwan, K.: VStore - Efficiently
Storing Virtualized State Across Mobile Devices. In: MobiVirt 2008 (2008)

2. Kong, J., Schwan, K.: ProtectIt: Trusted Distributed Services Operating on Sensitive
Data. In: EuroSys 2008 (2008)


	VStore++: Virtual Storage Services for Mobile Devices

	Introduction
	VStore++ Architecture and Implementation
	Experimental Evaluation
	Conclusions and Future Work
	References




