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Abstract. Continuous stress monitoring may help users better under- 
stand their stress patterns and provide physicians with more reliable data 
for interventions. Previously, studies on mental stress detection were lim- 
ited to a laboratory environment where participants generally rested in a 
sedentary position. However, it is impractical to exclude the effects of 
physical activity while developing a pervasive stress monitoring appli- 
cation for everyday use. The physiological responses caused by mental stress 
can be masked by variations due to physical activity. 

We present an activity-aware mental stress detection scheme. 
Electrocar- diogram (ECG), galvanic skin response (GSR), and 
accelerometer data were gathered from 20 participants across three 
activities: sitting, stand- ing, and walking. For each activity, we gathered 
baseline physiological measurements and measurements while users were 
subjected to mental stressors. The activity information derived from the 
accelerometer en- abled us to achieve 92.4% accuracy of mental  stress 
classification for 10-fold cross validation and 80.9% accuracy for 
between-subjects classi- fication. 

Keywords: Mental stress, electrocardiogram, galvanic skin response, 
physical activity, heart rate variability, decision tress, Bayes net, support 
vector machine, stress classifier.  

1 Introduction 

Stress is a physiological response to the mental, emotional, or physical chal- lenges 
that we encounter. Immediate threats provoke the body’s “fight or flight” 
response, or acute stress response [5]. The body secretes hormones, such as 
adrenaline, into the bloodstream to intensify concentration. There are also many 
physical changes, such as increased heart rate and quickened reflexes. Under healthy 
conditions, the body returns to its normal state after dealing with acute stressors. 

Unfortunately, many of the stressors in modern life are ongoing. Chronic stress 
can be detrimental to both physical and mental health. It is a risk fac-tor for 
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hypertension and coronary artery disease [22, 12]. Other physical disor- ders, 
including irritable bowel syndrome (IBS), gastroesophageal reflux disease 
(GERD), and back pain, may be caused or exacerbated by stress [16]. Chronic 
stress also plays a role in mental illnesses, such as generalized anxiety disorder 
and depression [11]. 

Chronic stress is difficult to manage because it cannot be measured in a 
consistent and timely way. One current method to characterize an individual’s 
stress level is to conduct an interview or to administer a questionnaire during a 
visit with a physician or psychologist. This method provides only a momentary 
snapshot of the individual’s stress level, as most individuals cannot accurately 
recall the history of the ebb and flow of their stress symptoms [3]. 

Continuous monitoring of an individual’s stress levels is essential for under- 
standing and managing personal stress. A number of physiological markers are 
widely used for stress assessment, including: galvanic skin response, several fea- 
tures of heart beat patterns, blood pressure, and respiration activity [31, 15]. 
Fortunately, miniaturized wireless devices are available to monitor these physio- 
logical markers. By using these devices, individuals can closely track changes in 
their vital signs in order to maintain better health. 

Measuring physiological signals during everyday activity is more difficult than 
in a rigorous laboratory environment. First, the physiological responses caused 
by mental stress can be masked by variations due to physical activity [1]. For 
example, people may have higher heart rate when standing than when sitting. Heart 
rate may also increase when people are mentally stressed. Hence, using heart rate 
alone as an indicator to detect mental stress may lead to misclas- sification. Second, 
signal artifacts caused by motion, electrode placement, or respiratory movement 
affect the accuracy of measured recordings. Third, it is also difficult to determine 
the ground truth of a user’s stress level when label- ing training data in mobile 
environment. These factors increase the difficulty of developing a pervasive 
mental stress detection application for everyday use. 

We introduce an activity-aware, multi-modal system that combines ac- 
celerometer, ECG, and GSR information to differentiate between physical ac- tivity 
and mental stress. We conducted a user study with 20 participants across three 
different physical activities: sitting, standing, and walking. With activ- ity 
information derived from the accelerometer, we achieved 92.4% accuracy for  
10-fold cross validation and 80.9% accuracy for between-subject’s classification. 

In the next section, we describe how we can measure the body’s responses to 
mental stress. Next, we discuss prior work on stress detection. Section 4 describes 
our experimental protocol and our physiological feature extraction and 
classification methods. Experimental results are presented in Section 7. 

2 Background 

The autonomic nervous system (ANS) regulates the body’s major physiolog- ical 
activities, including the heart’s electrical activity, gland secretion, blood pressure, 
and respiration. The ANS has two branches: the sympathetic nervous system 
(SNS) and the parasympathetic nervous system (PNS). The SNS mobi- lizes the 
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body’s resources for action under stressful conditions. In contrast to the SNS, the 
PNS relaxes the body and stabilizes the body into steady state. 

2.1 Heart Rate Variability (HRV) and Stress 

Under acute stress, the SNS increases heart  rate, respiration activity,  sweat gland 
activity, etc. After the stress has passed, the PNS reverses the stress re- sponse [17]. 
Since the ANS controls the heart, measuring cardiac activity is an ideal, non-
invasive means for evaluating the state of the ANS. 

An ECG is a recorded tracing of the electrical activity generated by the heart. 
Figure 1 shows a P wave, a QRS complex, and a T wave in the ECG. The P wave 
represents atrial depolarization, the QRS represents ventricular depolarization, and 
the T wave reflects the rapid repolarization of the ventricles [8]. The R-R interval is 
the time interval between two R peaks and is used to calculate heart rate. 

 

Fig. 1. Electrocardiogram sample 

Heart rate variability (HRV) refers to the beat-to-beat variation in the R-R interval. 
HRV analysis can be categorized into time-domain and spectral-domain analysis. 
Several time-domain parameters include: 

– mean HR: mean heart rate (beats per minute); 
– mean RR: mean heartbeat interval (ms); 
– SDNN: standard deviation of RR-intervals between normal beats; 
– RMSSD: root mean square of the difference between successive RR-intervals; 
    and 
– pNN50: the percentage of heartbeat intervals with a difference in successive 

heartbeat intervals greater than 50 ms. 

Three widely used components can be found in HRV power spectrum: 
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– LF (0.04-0.15 Hz): a low-frequency component that is mediated by both 
the SNS and PNS; 

– HF (0.15-0.4Hz): a high-frequency component mediated by the PNS; and 
– LF/HF: LF to HF ratio that is used as an index of autonomic balance. 

2.2 Galvanic Skin Response (GSR) and Stress 

GSR is a measure of the electrical resistance of the skin. A transient increase in 
skin conductance is proportional to sweat secretion[6]. When an individual is 
under mental stress, sweat gland activity is activated and increases skin conduc- 
tance. Since the sweat glands are also controlled by the SNS, skin conductance 
acts as an indicator for sympathetic activation due to the stress reaction. 

The hands and feet, where the density of sweat glands is highest, are usually 
used to measure GSR. There are two major components for GSR analysis. Skin 
conductance level (SCL) is a slowly changing part of the GSR signal, and it can 
be computed as the mean value of skin conductance over a window of data. A 
fast changing part of the GSR signal is called skin conductance response (SCR), 
which occurs in relation to a single stimulus. Widely used parameters for GSR 
include the amplitude and latency of SCR and average SCL value[2]. 

3 Related Work 

The validity of using ECG and GSR measurements in mental stress monitor- ing 
has been demonstrated in both psychophysiology and bio-engineering. HRV 
analysis based on ECG measurement is commonly used as a quantitative marker 
describing the activity of the autonomic nervous system during stress. For exam- 
ple, Sloten et al. conclude that the mean RR is significantly lower (i.e., the heart 
rate is higher) with a mental task than in the control condition while pNN50 is 
significantly higher in the control condition than with a mental task [26]. 

Also, conventional short-term HRV features (e.g., a 5-minute sample win- dow) 
may not capture the onset of acute mental stress for a mobile subject. Salahuddin 
et al. noted that HR and RR-intervals within 10 sec, RMSSD and pNN50 within 
30 sec, high frequency band (HF: 0.15 to 0.4 Hz) within 40 sec, LF/HF, 
normalized low frequency band (LF: 0.04 to 0.15 Hz), and normalized HF within 
50 sec can be reliably used for monitoring mental stress in mobile settings [23]. 
Hence, mental stress can be recognized with most HRV features calculated within 
one minute. 

Boucsein provided an extensive coverage of early research of GSR related to 
stress [2]. He showed that slowly changing SCL and SCR aroused by specific 
stimulus are sensitive and valid indicators for the course of a stress reaction. Setz 
et al. demonstrated the discriminative power of GSR in distinguishing stress 
caused by a cognitive load and psychosocial stress by using a wearable GSR device 
in an office environment [25]. In this study, analysis of the data showed that the 
distributions of the SCL peak height and the SCR peak rate carry information 
about the stress level of a person. 
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Some research has used multiple physiological features to determine the ex- 
istence of the subject’s stress response. Zhai and Barreto applied an interactive 
“Paced Stroop Test,” a psychological test of the subject’s mental attention and 
flexibility, as a stimulus to elicit emotional stress in the subject [33]. The Paced 
Stroop Test requires the subject to select the font color of a word shown on the 
screen. The word itself names a potentially different color. The authors proposed 
to extract features from the subject’s physiological response (blood volume pulse, 
galvanic skin response, skin temperature and pupil diameter) during both the 
congruent phase (matching color name and font color) and incongruent phase 
(mismatching color name and font color). An example of the incongruent phase 
is shown in Figure 3. Three learning algorithms, Naive Bayes, Decision Tree, and 
Support Vector Machine (SVM), are used to classify relaxed and stressed states. 
The SVM classifier reached an accuracy of 90.1% with 20-fold cross validation. 

Some experiments have been conducted  in the real world. For instance, Healey 
and Picard measured drivers’ stress reactions by monitoring multiple physiological 
signals, such as ECG, GSR, electromyogram (EMG), and respira- tion in a 
prescheduled route setting [10]. They used 5-minute intervals of data during the rest, 
highway, and city driving conditions to distinguish between three levels of driver 
stress. Heart rate and skin conductance provided the highest over- all correlations 
with drivers’ stress level across multiple drivers and driving days, reaching an 
accuracy of over 97%. 

Most previous research considers distinguishing the physiological response to 
mental stress from subjects at rest. While developing mental stress monitoring 
algorithms in real-life ambulatory situations, it is crucial to take physical activity 
(e.g.,walking) and posture (e.g., sitting or standing) into account. Cardiovascu- lar 
variability is highly affected by changes in body posture and physical activ- ity 
[30]. In Van Steenis et al.’s sample, subjects’ mean HR increased significantly 
from a supine to sitting posture (from 66 to 77 bpm), from a sitting to standing 
posture (86 bpm), and from a standing posture to dynamic body movements (92 
bpm). A major obstacle for ambulatory monitoring is that physiological 
dysregulation or emotion effects can be confounded by physical activity. Many 
physiological parameters, including heart rate, respiratory sinus arrhythmia, and 
skin conductance level, are strongly affected by both anxiety and exercise [32]. 
The daily routines involve different psychophysiological body activation charac- 
teristics. Kusserow et al.’s study showed that the physical-related and mental- 
related routines that are correlated with heart activity can be characterized and 
visualized as different activation patterns using RR-intervals and accelerometer 
data [13]. Schumm et al.’s work validated that it is possible to provoke and mea- 
sure GSR with the startle event during different walking speeds [24]. However, 
the faster a person is walking, the more the peak distribution of GSR approaches 
a uniform distribution. Activity information is also helpful in ECG-based iden- 
tity authentication area. The perturbation of the ECG signal due to physical 
activity is a major obstacle in applying the technology in real-world situations. 
Sriram et al.’s work presented a novel ECG- and accelerometer-based system 
that can authenticate individuals in an ongoing manner under various activity 
conditions [27]. 
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Thus, physical activity distorts the result of mental stress detection  in a mobile 
health monitoring scenario. In this paper, we compensate for the effects of physical 
activities by extracting a set of accelerometer features that characterize different 
physical activities along with ECG and GSR features. We hypothesize that the 
accelerometer features provide the necessary auxiliary information for differentiate 
physical activity and mental. 

4 Methodology 

In this section, we describe the components of the wireless sensor system we used, 
the procedure of the experimental environment, and the segmentation of 
experimental dataset. 

 

          (a) ECG sensor and chest strap      (b) GSR sensor                 (c) Accelerometer 

Fig. 2. SHIMMER sensors including ECG, GSR, and accelerometer 

4.1 Wireless Sensor Network 

We used the SHIMMER platform developed by Intel’s Digital Health Group. 
SHIMMER is a small wireless sensor platform with an integrated 3-axis ac- 
celerometer designed to support wearable applications. We also used SHIM- MER’s 
ECG and GSR daughter boards for data acquisition. The sensor data from the ECG 
sensor and accelerometer were sampled at 100 Hz, and the data from the GSR 
sensor were sampled at 32 Hz. Data were transmitted to a PC via Bluetooth 
connectivity and saved to binary and comma-separated value files. We used three 
sensor nodes for the wireless sensor network configuration. Pho- tos of the 
sensors are shown in Figure 2. The ECG sensor node was strapped to an elastic 
chest belt and three electrodes were placed on the body to form lead II and lead 
III1 recording configurations. The GSR sensor was attached on a wrist band. 
Then, skin conductance was measured at the base of two fingers by measuring the 
electrical current that flowed as a result of applying a constant voltage. The third 
sensor node which was placed on the waist belt was used to collect accelerometer 
data. 

                                                           
1 (Lead II is the voltage between the left leg (LL) electrode and the right arm (RA) 

electrode), and Lead III is the voltage between the (positive) left leg (LL) electrode and 
the left arm (LA) electrode.  
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4.2 Experimental Protocol 

20 participants were monitored, 13 men and 7 women. Participants were stu- 
dents, faculty, and staff at our university. A computer application that randomly 
presented Stroop Color-word interference tests and mental arithmetic problems was 
provided as stressor. The Stroop test has been widely utilized as a psy- chological or 
cognitive stressor to introduce emotional response and autonomic reactivity [28]. 
Because participants would answer so many questions during the study, we added 
a variant of the Stroop test to prevent habituation, where participants were 
asked to select either color-name or font-color. The mental arithmetic is based on 
the Montreal Imaging Stress Task (MIST), consisting of two levels of difficulty 
under time pressure [7]. The mental arithmetic will adapt to participants’ level or 
adjust the time limit in order to maintain an appropriate level of stress. The 
participants completed the mental tasks by interacting with a 19-inche touch-
screen. Examples of two mental tasks are shown in Figure 3. When the participant 
provided an answer before the end of time limit, the feed- back “correct” or 
“wrong” was displayed. The interface also shows the elapsed time and the 
participant’s accuracy rate. 

Participants were confronted with mental stress in each of three different 
conditions: sitting, standing, or walking. Each condition consisted of a baseline 
measurement with no stressor, measurement during the mental tasks, and a 
recovery segment: 

1. Baseline segment (10 minutes): Listen to meditation music (in seated, 
stand- ing, or walking position).  

2. Mental task segment (10 minutes): Complete Stroop test and mental arith- 
metic under time pressure while seated, standing, or walking.  

3. Recovery segment (10 minutes): Sit in a chair with closed eyes and listen to 
meditation music.  

All participants completed three conditions in random order. For the baseline and 
mental task segments, the participant had to complete the physical activity 
simultaneously. For example, when the participant was in the mental task seg- 
ment of walking session, the participant was required to walk on the treadmill at 
3 mi/hr and complete the mental task using the touch screen at the same time. 

4.3 Data Collection 

We collected sensor data from each participant for three physical activity condi- 
tions. The data were separated into six datasets. Hence, for each participant, we 
collected six data sets shown in Figure 4. The dataset for each segment contains 
19200 GSR samples and 60000 ECG and accelerometer samples.The dataset for 
all 20 participants, including the six segments, is around 45 Megabytes.  
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                    (a) Stroop Test User Interface            (b) Mental Arithmetics User Interface 

Fig. 3. Screenshots of the stressor application 

 

(a) Sitting condition 

 

(b) Standing condition 

 

(c) Walking condition 

Fig. 4. Experimental conditions 

5 Data Analysis 

5.1 Feature Extraction 

For each participant’s 60 minutes of data, we segment each channel of data into a 
60-second window to obtain the data windows ω1 , ω2 , ..., ω60 . We denote Fi as the 
feature vector extracted from the data window ωi and Fi (j) is the jth feature  
in the feature vector Fi . We create a set of feature vectors F for each participant’s 
data set. Each segment in the experiment protocol has 10 feature vectors  
(e.g. F1  − F10  for SitBase, F11  − F20  for SitStress,..., F51  − F60  for WalkStress).  

We chose a 60-second window for two reasons. First, the HRV features that we 
used in this study can distinguish between stressed and baseline segments using  
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60-second windows [23]. Second, the 60-second feature window reduces the 
impact of misclassified R-peaks by averaging HRV features within the window. 
All feature extraction algorithms are implemented in MATLAB. To eliminate 
the artifacts caused by variations in electrode contact and physical motion, we 
applied both moving average and band-pass filtering techniques.  For R-peak 
detection, we mainly adapted a derivative method [19] with modifications. 

HRV analysis: HRV analysis methods can be categorized into time domain and 
spectral domain analysis. Time domain analysis is calculated directly from RR-
intervals over the feature window. Examples of time domain features include 
mean value of the RR-interval (mean RR), standard deviation of the RR-interval 
(Std RR), mean value of the HR (mean HR), standard deviation of the HR (Std 
HR), RMSSD, and pNN50. Moreover, in the spectral domain methods, a power 
spectrum density (PSD) estimate is calculated for the RR interval series. Fre- quently 
used spectral measures are the very low frequency (VLF, 00.04 Hz), low frequency 
band (LF) and high frequency band (HF), and the ratio LF/HF. These spectral 
domain features are often interpreted as a measure of sympathovagal balance 
(autonomic state influence by the sympathetic and parasympathetic nervous 
system). We first calculated six time-domain features of HRV including mean RR, 
Std RR, mean HR, Std HR, RMSSD, and pNN50. Then, we applied a Fast 
Fourier Transform (FFT) to convert the time-domain RR-interval sequence to 
the power spectrum. The frequency components are used to calculate three 
spectral-domain features of HRV for each window: LF, HF, and LF/HF ratio. 

GSR analysis: Due to the startle response (the physiological response of body to a 
sudden stimulus), the resistance of the skin can vary. The GSR can measure these 
subtle differences [29]. All GSR signals were filtered with a 256-point low- pass 
filter with 3Hz cutoff frequency to reduce noise. We calculated three GSR 
features: the total number of the startle responses in the segment, the sum of the 
response magnitude, and the sum of the response duration. These three features 
characterize the startle response, and Healey and Picard demonstrated their 
reliability [10]. Two additional features, mean and standard deviation of skin 
conductance level, are calculated over the feature window. Figure 5 shows the R-
R interval and skin conductance recordings of a subject over six experimental 
segments. 

Accelerometer analysis: Olguin and Pentland’s work indicated that an ac- 
celerometer placed on hip significantly helped classify activities such as sitting, 
running, crawling, and lying down [18]. Therefore, we placed one accelerometer 
on the waist belt close to the hip in order to maximize the difference of signal 
among sitting, standing, and walking activities. For each of the three axial di- 
mensions, we calculated twelve features: mean value, standard deviation, energy, 
and correlation of each two axes. Table 1 lists the features derived from the ECG, 
GSR, and accelerometer data. 
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(a) RR interval data of a subject 

 
(b) Skin conductance of a subject 

Fig. 5. RR interval and GSR data in six experiemental segments 

Table 1. Feature Vectors 

Sensor Features
f 1-f 9 ECG Mean RR, Std RR, Mean HR, Std HR 

RMSSD, pNN50, LF, HF, LF/HF ratio 
f 10-f 14 GSR Mean SCL, Std SCL, 

Total magnitude, Duration, 
and Number of startle responses 

f 15-f 26 Accel Mean of X, Y and Z axis 
Standard deviation of X, Y, and Z axis 
Energy of X, Y, and Z axis 
Correlation coefficient of XY, YZ, and ZX

5.2 Feature Normalization 

Skin conductivity and heart rate signals are dependent on each individual’s initial 
physiological level. Even when the GSR or HR baseline level is measured from 
the same individual, these signals are likely day-dependent due to variations in 
physiology caused by diet or sleep, variations in mental state affected by mood, 
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or variations in the sensor’s connectivity with skin [20]. Hence, to eliminate the 
intra-individual factor, we applied Equation 1 to each feature in feature vector set 
F. Since we conducted a short recording interval (one hour) for each participant, 
day-to-day variation caused by mood fluctuations is not considered in this study.  

                                                         F (j) − Zmin (j) 

                                F (j)norm = 
Zmax(j) − Zmin(j), where 

Zmin (j) = min{Fi (j)}, ∀i ∈ |F | 
                                 Zmax (j) = max{Fi (j)}, ∀i ∈ |F |                                                         (1) 

Equation 1 describes the normalization process for each feature. The first step is 
to subtract the minimum value from each feature such that the feature with 
minimum value becomes 0. Then, the feature values are divided by the overall range 
in six segments to make all the features lie between 0 to 1. The normalized feature 
values are fed to the classifiers described in the next section. 

6 Stress Classification 

We used the WEKA machine learning engine to train classifiers using various 
learning methods, including the J48 Decision Tree, Bayes Net, and support vec- 
tor machine (SVM) for stress inference [9]. We divided the training data into two 
different sets in order to evaluate how activity information may influence the 
results of stress inference. One set of training data only includes the ECG- and 
GSR-related features while the second set also includes the accelerometer 
information. We also evaluated classification performance for between-subjects 
datasets and within-subject datasets. 

6.1 Decision Tree 

Decision Tree is a commonly used machine learning technique that uses a divide- 
and-conquer approach to classify testing data. During the learning stage, the tree 
structure is constructed. The tree structure has internal nodes and leaves. Internal 
nodes represent the test conditions while the leaves represent the clas- sification 
results. We used a J48 Decision Tree for mental stress classification. Again, since 
we are interested in observing how the accelerometer information affects the 
accuracy of mental stress classification, we separated the training data into two 
sets. One dataset includes features extracted from accelerometer, ECG, and GSR 
recordings. The other dataset only consists of ECG and GSR features. When the 
Decision Tree is being constructed, the most informative feature (with a higher 
information gain) will be used near the root. Therefore, we are interested in 
observing the constructed decision tree structure to see if the accelerometer 
information is used in the test conditions and provides higher information gain. 
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6.2 Bayesian Network 

We are also interested in using a Bayesian network structure to model the prob- 
abilistic relationships among physical and mental stress. Figure 6 shows two 
Bayesian network structures with and without considering the activity informa- 
tion to predict the existence of mental stress.  

 

(a) Bayesian network with activity 
information 

(b) Bayesian network without activity 
informa- tion 
 

Fig. 6. Variable S represents a binary stress state and variable P represents the three physical 
activities. Variables A, E, and G are the accelerometer, ECG, and GSR features, 
respectively. 

By comparing the inference results of the models in Figure 6a and in Fig- ure 
6b, we can investigate the effects of activity information in a mobile stress 
detection scenario. 

In Figure 6a, S ∈ {baseline, stressed} represents a binary stress state, and P ∈ 

{sitting, standing, walking} represents the three physical activities. A, E, and G 
are the subsets of features defined in Table 1. A = (a1 ,...,a12 ) is a 12- feature 
vector corresponding to the accelerometer measure. E = (e1 ,...,e9 ) is a 9-feature 
vector related to the HRV parameters. G = (g1 ,...,g5 ) represents a set of 5 GSR-
related features. Equation 2 shows the joint probability distribution encoded by 
the Bayesian network structure shown in Figure 6a. The Bayesian network 
structure shown in Figure 6b only uses physiological signals from ECG and GSR 
to infer the probability of the mental stress state. 

                                                 P (S, P, A, E, G) = 

            P (S) · P (P ) · P (A|P ) · P (E|P, S) · P (G|P, S)             (2) 

We ran the K-Means clustering algorithm with the Euclidean distance metric on 
accelerometer data to automatically label variable P. Because we have three types 
of activities (sitting, standing, and walking), we set K = 3. Figure 7a shows an 
example of accelerometer raw data we collected from the experiment.  
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Figure 7b shows the class of activity derived from Figure 7a using the K-
Means algorithm. 

 

(a) Accelerometer data from one subject (red:x-axis, green:y-axis, and blue:z-axis) 

 
(b) Activity classes derived from accelerometer data using the K- means algorithm 

Fig. 7. Accelerometer data of a subject during three activities and the activity class derived 
by the K-Means algorithm 

The probability distribution of S conditioned on the three observed variables 
(A = a, E = e, and G = g) can be obtained by marginalizing the activity variable P 
as shown in Equation 3. 

P (S|A = a,E = e,G = g) =

|p|∑

i=0

P (S, P = pi|A = a,E = e,G = g)

                                 

(3)

 

The binary class of the stress state is estimated by maximizing the posterior 
probability in Equation 4. 

sestimated = argmax
S

|p|∑

i=0

P (S, P = pi|A = a,E = e,G = g)

                     (4) 

An evaluation of cross validation for these two Bayesian networks is presented in 
Section 7. 
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6.3 Support Vector Machine 

Support Vector Machine (SVM) is a classifier that performs classification by con- 
structing a high-dimensional hyper-plane [4]. The constructed high-dimensional 
hyper-plane is optimized to separate the testing data into two classes. SVM also 
allows different types of kernel functions to transform testing data points into a 
higher dimensional space and make the transformed data easier to be classi- fied. 
Since SVM has recently become a popular machine learning technique for 
classification, we are interested in investigating its performance with our testing 
dataset.  

7 Experimental Results 

In this section, we present the results from two experiments and a comparison of 
ECG and GSR feature efficacy. First, to investigate how a combination of features 
affect stress classification accuracy, we design four feature combinations from the 
measured accelerometer, ECG, and GSR data. Second, we test if the classifiers 
generalize across subjects by training our classifier on subset of subject data and 
testing our classifier on the remainder. Finally, we analyze the ECG and GSR 
features in six conditions across 20 participants. 

7.1 Cross Validation with Different Feature Combinations 

The first type of feature combination includes data measured from the accelerom- 
eter, ECG, and GSR. In each of the other three types of feature combinations, one 
feature is excluded. For each of the three classifiers described in Section 6, we 
evaluated its classification accuracy using these four types of feature combi- 
nations. Figure 8 plots the results of using 10-fold cross validation. For all of the 
three types of classifiers, excluding data recorded from the accelerometers de- 
grades in the classification accuracy. The experimental results provide evidence to 
support our hypothesis that accelerometer data help the classification accu- racy in 
a mobile stress detection scenario; physiological signals are both affected by 
physical activities and mental stress levels. 

Furthermore, since heart rate is highly affected by the intensity of physical 
activities in our experiment, the classification results are even better for Bayesian 
network and SVM classifiers without including ECG features compared to the all-
feature combination. Unlike ECG, the GSR features are good indicators to 
identify the presence of mental stress. When GSR features are excluded, the accuracy 
of each classifier decreases compared to the all-feature combination. We also found 
that the best classification accuracy (92.4%) is obtained from using the decision 
tree classifier with the all-feature combination. Moreover, the structure of the 
decision tree uses the energy of the x-axis from the accelerometer data as the root 
test condition. Several accelerometer features are also used as test conditions close 
to the root of the tree. It proves that activity information provides higher 
information gain in the decision tree learning stage. Table 2 shows more detail of 
the cross validation results on 1200 samples. The grey cells highlight correctly 
recognized instances (true-positives). 
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Fig. 8. Accuracy of the three classifiers using different feature combinations 

Table 2. Confusion matrix for the combination of three classifiers and different feature 
combinations 

 

7.2 Between-sub jects Experiment 

We randomly selected a subset of our twenty subjects and used their data to train our 
classifier. The, we tested the classifier on the remainder. For a given between-subjects  

 

 

Fig. 9. Classification accuracy between subjects with the three classifiers 
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classification setting, we repeated 10 times and calculated the average accuracy. To 
observe the effect on the size of the subset data, we changed the number of subjects in 
the training data set from 3, 6, ...to 18. The results shown in Figure 9 demonstrate 
that the SVM classifier outperforms the other two classifiers for between-subjects 
classification. 

7.3 Comparison of HRV and GSR Parameters 

Table 3 compares HRV features for the six experimental segments: (SitBase, Sit- 
Stress, StandBase, StandStress, WalkBase, and WalkStress). Each HRV param- 
eter is calculated by the average value across 20 participants for each segment. 
The mean RR interval decreases in all of the three mental task segments while the 
mean HR increases. The trend of mean RR and HR proves their efficacy in 
distinguishing mental stress across the three physical activities. The pNN50 
feature also has a tendency to decrease from the baseline to the mental task seg- 
ment. In the walking condition, pNN50 significantly decreases compared to the 
lower-intensity activities (sitting and standing). The standard deviation of RR is 
relatively high in walking condition and decreases the percentage of heartbeat 
intervals with difference in successive heartbeat intervals greater than 50 ms.  

Table 3. Comparison of HRV parameters in six conditions 

HRV Sit Sit Stand Stand Walk Walk
Parameters Base Stress Base Stress Base Stress

∗Mean RR (ms) 887.59 814 752.07 722.43 586.03 562.94

Std RR (ms) 70.88 85.39 82.44 68.35 92.47 98.94

∗Mean HR (bmp) 69.53 75.59 82.84 85.66 107.09 110.79

Std HR (bmp) 5.54 7.56 8.00 9.50 18.98 16.21

∗pNN50 (%) 19.54 15.69 12.09 11.38 4.49 4.23

LF (%) 7.04 8.45 7.49 7.77 9.43 9.45

HF (%) 6.25 6.51 6.33 6.73 13.95 15.64

LH Ratio 1.34 1.51 1.45 1.48 0.67 0.71

 

 
The last three rows in Table 3 are three spectral-domain parameters. The LF 

component is an indicator for both sympathetic modulations and cardiac vagal 
activity. It slightly increases from the baseline during all three activities. The HF 
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component is considered to reflect parasympathetic modulations. There is a large 
increase in the HF component when the participants are walking. The imbalance 
of increase on LF and HF causes the LH ratio (LF / HF), a widely adapted index 
of sympathetic modulations, to decreases from sitting to walking. The HF 
increases during exercise has also been noted by other researchers [21].  

From our analysis of all HRV parameters, we found that mean HR and RR are the 
most reliable features to recognize mental stress across three physical activities. The 
standard deviation of RR and HR did not demonstrate a coherent relation to the 
baseline and stressed segments. Spectral-domain parameters are sensitive to the 
physical activity conditions. Hence, this explains why excluding HRV features even 
increases in accuracy compared to the all-feature combination as shown in Figure 8.  

Table 4 lists five GSR parameters for each segment. For each startle response, 
we can indicate its duration and magnitude. The total duration was calculated by 
accumulating the total elapsed time of the responses in the window. The total 
magnitude was measured by summing up the difference of the onset and the peak 
of each startle response in window. The number of response occurrences over the 
one minute window was also recorded. Total duration, total magnitude, total 
occurrence of the responses, and mean GSR level illustrate an obvious increase 
from baseline to stressed segment. However, the standard deviation does not 
provide significant change between conditions. 

8 Discussion and Conclusion 

Previous mental stress studies were conducted  in the laboratory with seden- tary 
subjects. However, the controlled setting in a laboratory is not suitable for mobile 
mental stress monitoring because physical activity affects the measured 
physiological signals. The main goal of this study was to determine whether ac- 
tivity information can compensate for the interactive effects of mental stress and 
physical activity, which affect the accuracy of mental stress detection. Therefore, 
we conducted a user study in which participants completed baseline and mental 
task segments across three physical activities (sitting, standing, and walking).  

Table 4. Comparison of GSR parameters in six conditions 

GSR Sit Sit Stand Stand Walk Walk
Parameters Base Stress Base Stress Base Stress

∗Total duration(second) 3.17 14.30 4.16 13.15 13.72 16.32

∗Total magnitude(μSiemens) 0.79 2.04 0.75 3.32 1.69 1.97

∗Total occurrence 1.09 6.58 3.13 6.37 5.63 7.47

∗Mean GSR(μSiemens) 4.69 4.83 6.19 6.97 6.42 7.22

Std GSR(μSiemens) 0.62 0.53 0.62 0.71 0.63 0.52
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This paper presented a multimodal approach to model the mental stress 
activation affected by physical activities using accelerometers, ECG, and GSR 
sensors. Our analysis showed that accelerometer data is necessary to improve 
mental stress detection in a mobile environment. We also noticed that the De- 
cision Tree classifier has the best performance in our experiments using 10-fold 
cross validation. Decision Tree is recognized as one of the classification methods 
with low computational complexity [14]. Therefore, the performance along with 
the low complexity of the Decision Tree classifier makes it a practical design 
choice for stress detection on mobile devices. 

Furthermore, we also compared how physical activities and mental stress affect 
HRV and GSR parameters. We found that the GSR features are relatively 
independent of the three activities, even when participants were walking at a 
3mi/hr. The between-subjects experiment demonstrated that we need to use up 
to 90% of subjects’ data to achieve the classification accuracy of around 80%. It 
indicates that physiological signals tend to be user-dependent; hence, mental stress 
monitoring applications should also rely on personalized data in the training 
stage. We plan to further investigate the user-dependent attribute with more 
participants in the future. This study was limited to three specific activities and a 
relatively short recording time. The next step is to design a mobile platform enabling 
participants to wear sensors on a daily basis. 

Our activity-aware scheme for mental stress detection can facilitate the  
de- velopment of many affective mobile applications using physiological signals 
(e.g., stress management, affective tutoring, and emotion-aware human computer 
in- terfaces). Including activity recognition techniques to interpret users’ emotional 
states helps produce more feasible wearable sensors in everyday life.  
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