
Mobile Lifelogger – Recording, Indexing,

and Understanding a Mobile User’s Life

Snehal Chennuru, Peng-Wen Chen, Jiang Zhu, and Joy Ying Zhang

Carnegie Mellon University
Moffett Field, CA 94035

{snehal.chennuru,pengwen.chen,jiang.zhu,joy.zhang}@sv.cmu.edu

Abstract. Lifelog system involves capturing personal experiences in the
form of digital multimedia during an entire lifespan. Recent advance-
ments in mobile sensor technologies have helped to develop these systems
using commercial smart phones. These systems have the potential to act
as a secondary memory and also aid people who struggle with episodic
memory impairment (EMI). Despite their huge potential, there are major
challenges that need to be addressed to make them useful. One of them
is how to index the inherently large lifelog data so that the person can
efficiently retrieve the log segments that interest him / her most. In this
paper, we present an ongoing research of using mobile phones to record
and index lifelogs using activity language. By converting sensory data
such as accelerometer and GPS readings into activity language, we are
able to apply statistical natural language processing techniques to index,
recognize, segment, cluster, retrieve, and infer high-level semantic mean-
ings of the collected lifelogs. Based on this indexing approach, our lifelog
system supports easy retrieval of log segments representing past similar
activities and automatic lifelog segmentation for efficient browsing and
activity summarization.

Keywords: Lifelogger, activity language, mobile computing, indexing
heterogenous data.

1 Introduction

Memory, our ability to store, retain and recall information, is crucial to day
to day life. But, our memory fades and we tend to forget intricate details of
our experiences. Memory-related problems can be very serious for people who
suffer from brain injuries or have memory diseases like the Alzheimer’s. As of
September 2009, more than 35 million people around the world are living with
Alzheimer’s disease for which episodic memory impairment (EMI) is the main
symptom [12]. And according to [3], the prevalence of Alzheimer’s is thought to
reach approximately 107 million people by 2050.

In 1945, Vannevar Bush proposed a prototype computer system named
MEMEX, whose main functionality is to share people’s burden in memoriz-
ing things. Such system has great potential in a variety of applications and is

M. Griss and G. Yang (Eds.): MOBICASE 2010, LNICST 76, pp. 263–281, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

264 S. Chennuru et al.

particularly useful for people who suffered from EMI [10]. To assist people with
this ever growing population, Bush’s MEMEX concept seems to be a promis-
ing solution and thus gives birth to the personal lifelog research area. To fulfill
Bush’s vision, a personal lifelog system must be able to 1) store a large volume
of personal multimedia data and 2) efficiently retrieve the relevant data based
on users’ requests.

Technologies today make it possible to capture one’s life experience in digital
format. The advancement in mobile sensors and ubiquitous computing allows
lifeLog systems to record almost every aspects of one’s life to provide a digital
memory [6]. While recording and storing all sensor information in a database
poses some engineering challenges, indexing them is the key to make lifelog
system useful. We need the index so that we can retrieve important pieces of
memory from the lifelogs. We can not expect users to annotate everything in the
lifelog and automatic extracting semantics from images, audio and video is still
an open research problem. Without a convenient method to index and retrieve
the recorded data, such logged memory is of little use.

In this paper, we present a new approach to indexing lifelog data using the
activity language. In this ongoing research, we convert the ambulatory sensor
inputs such as accelerometers’ readings into the so called activity language and
use the activity language as the main index of the multimedia lifelogs. The activ-
ity language approach enables us to use statistical natural language processing
methods to index, retrieve, cluster, and summarize lifelogs which are not easy
or not possible for images, audio, and video information.

The rest of the paper is organized as follows. We first describe our lifeLogger
system in Section 2. Section 3 introduces the concept of “Activity as Language”
where we quantize the sensory input and convert it into a text representation in
order to interpret the meaning of lifelogs. In Section 3.2, 3.3 and 3.5, we present
algorithms and preliminary results on activity recognition, similar activity re-
trieval, and automatic lifelog segmentation. Finally, we conclude our findings
and discuss the future works.

2 System Implementation

Our lifelogger system consists of three major parts, namely, the Lifelogger Mo-
bile Client, the Lifelogger Application Server and the Lifelogger Web Interface
(http://www.lifelogger.info). Figure 2 depicts its overall software architec-
ture.

2.1 Lifelogger Mobile Client

Thanks to the rapid advancement of commercial mobile devices, we are able to
build our Lifelogger client devices directly from off-the-shelf products. Our LifeL-
ogger Mobile Client is a helmet mounted with one Nokia N95 phone
(Figure 1).

http://www.lifelogger.info

Mobile Lifelogger 265

The software for the mobile client is written using the PyS60 SDK for the
Symbian platform. The client records various types of sensory data including i)
accelerometer for motion, ii) GPS coordinates for outdoor locations, iii) camera
view finder for pictures, iv) microphone recordings for sound, v) rotation sensor
readings for rotation, and vi) WiFi signal strength for indoor locationing. These
sensory data are all collected together with their corresponding timestamps.
The data is captured in the JSON format and transmitted to the LifeLogger
Application Server using the HTTP protocol via wireless connections.

Nokia N95 Smart
Phone

Fig. 1. Sensor helmet for collecting activity data

2.2 Lifelogger Application Server

The LifeLogger Application Server is responsible for storing, pre-processing,
modeling recorded data as an activity language and finally retrieving similar
activities of the user. It is also in charge of supplying the user interface for users
to interact with their lifelogs.

The Server consists of mainly 4 components, namely - i)Indexing Service, ii)
Similar Activities Retrieval Service, iii) Hierarchical Segmentation Service and
iv) Activity Language Corpus Database. Once the mobile client transmits the
sensor data to the server, the server pre-processes and converts the accelerom-
eter readings into the activity language and stores the data to the datastore.
The Indexing Service then indexes the activity language corpus. The Similar
Activities Retrieval Service allows the user to select a portion of the lifelog and
show similar activities performed by the user in the past. This feature allows the
system to automatically label activities that are similar in nature to the one’s
labeled manually in the past by the user.

266 S. Chennuru et al.

Lifelogger Appserver
Activity
Language
Corpus DB

JSON--HTTP

Lifelogger Web Interface

Lifelogger
Mobile Client

Indexing
Service

Similar
Activities
Service

Hierarchichal
Segmentation

Service

Lifelogger Server

Fig. 2. System Architecture of the Mobile Lifelogger System

2.3 Lifelogger Web Interface

The server-side module is implemented as a web application so that users can
access it easily through their favorite web browsers. The application provides an
easy-to-use interface for end users to browse, annotate, and search their lifel-
ogs. A personal calender based timeline is provided for all the recorded Lifelogs
(Figure 3). The user can browse through the calendar and select a particular
session that he’s interested in revisiting his memory.

To make it easy for users to recall their past living experiences, we fit the
collected images, audio, and GPS location data into one screen (Figure 4) to
let users intuitively combine these memory clues. Moreover, since all sensory
data are associated with synchronized time-stamps, users can navigate through
the data set by simply dragging the timeline at the center of the screen, and
all the three types of data would be updated simultaneously. The users are also
provided with an option to “play” their lifelogs. This feature makes the images
to automatically scrolls through, show the incremental trail of GPS on the map
and play the audio at the same time. This acts as a memory cue so that the user
can better recollect the experiences associated with that lifelog.

Users can also annotate a selected segment of lifelog by providing a short text
description. Such text description will be used to learn the association between
natural language query and the stored lifelog data. If the user is interested in a
specific part of the lifelog and would like to find all his / her lifelog segments that
are similar to it, all the user need to do is to first select that specific lifelog part
using the timeline control and then click the “Find Similar Activities” button

Mobile Lifelogger 267

Fig. 3. Personal calendar based timeline

beside it. The similar lifelog segments will be returned and listed in a table at the
bottom of the screen (Figure 4) and are already sorted based on their relevance
scores ranging from 0 to 1.

Users can also view hierarchical segmentation of different activities that they
have performed. A color code is assigned to each activity that the user has
performed over the period of the lifelog, so that he/she can easily distinguish
between different activities. Similar activities have the same color code, making
it easier for the user to identify what activities he has repeatedly performed.

3 Language-Based Indexing

3.1 Main Idea

One of challenges in indexing, retrieving and interpreting lifelogs is that a lifelog
is a collection of heterogenous sensory information and each sensory data type
requires a special method to process the raw input. In most existing lifelog ap-
plications, raw input from sensors is classified into predefined classes by trained
classifiers for further processing. This usually limits the scope of lifelog applica-
tions to those predefined activities.

268 S. Chennuru et al.

Fig. 4. Web interface of browsing/searching/annotating life logs

In this paper, we propose a novel method of representing the sensory input
as “ activity language” through quantizing the raw sensory input. Here we use
motion information as an example. To record users’ motion, we use 3-axis ac-
celerometers to measures the acceleration at the X, Y, Z direction at the time
of sampling. For the built-in accelerometers used in our experiments, the raw
readings for each axis ranges from -360 to 360 which translates into 373,248,000
different (ax, ay, az) combinations. We quantize the raw accelerometer reading
into V groups using K-Means clustering algorithm. Once the K-means clustering
algorithm converges, it results in V cluster centroids and we give each cluster a
label such as “D”, “GC” and “DFR”. We can then convert all the training and
testing accelerometer data to their nearest cluster’s label and thus convert the
ambulatory activity into “activity text” (Figure 5).

[31,271,37] [37,281,42] [37,276,47] [42,271,47] [42,266,53] [58,271,47] . . .

⇓
CZ DG GI FK C BI CS DC HQ BX FI FI BX . . .

Fig. 5. An example of quantizing accelerometer readings to activity language repre-
sentation

There are three benefits from quantizing the raw sensory input into “ activity
language” representation:

Mobile Lifelogger 269

– Dimension reduction of sensory input. High dimension input data is reduced
into one dimension to reduce the computation complexity. In the case of
accelerometer readings, the original 3-dimension input of (ax, ay, az) is now
reduced to one dimension.

– Efficient indexing and searching of lifelogs. Searching an indexed text corpus
is much easier than searching a database of real numbers. Compared to the
infinite real number space, the limited “vocabulary” size of the text repre-
sentation allows the search algorithm to be much more efficient. Index and
search algorithms such as the Inverted Index and Suffix Arrays [11] devel-
oped for strings can be applied on the “ activity language” representation of
lifelogs. This is more straight forward than searching the lifelogs based on the
cosine or Euclidean distances between the query and the logged activities.

– Uniformed representation of heterogenous sensory data. By converting differ-
ent sensory input into the same type of “ activity language” representation,
we can develop and apply the same “ activity language processing” algo-
rithms on different types of data. Although the activity language discussed
in this paper was constructed only from accelerometer readings, other types
of sensory data can be used to generate activity languages as well. For ex-
ample, in [5] we had demonstrated our preliminary results of using GPS
recordings to generate activity languages.

We call this representation “activity language” based on the analogy between
human activity and natural languages. The similarity between human activity
and language had been articulated by Burke [4] and Wertsh [18]. Based on the
“principle of language as action”, natural languages and human activities in-
deed share some important properties. For instance, they are both “mediational
means” or tools by which we achieve our ends. Additionally, they both exhibit
structure and satisfy “grammars”.

Table 1. Activity as language at different levels

Natural Language activity language Example

Word Atomic Movement Turn upper body left
Phrase Movement Stand up
Sentence Action Climb up stairs
Paragraph Activity Enter building, climb up stairs

and walk into office
Document Event Left home and ride bicycle to campus

arrived at my office at 2nd floor

Table 1 illustrates that people’s ambulatory activities share a lot in common
with natural languages at all levels. The anatomy of human bodies allows us
to perform certain atomic movements such as “turn upper body left” whereas
“jump up at 10g acceleration” is not possible. Such atomic movements form the
vocabulary of the activity language. A sequence of atomic movements performed

270 S. Chennuru et al.

in a meaningful order creates a movement such as an action of “standing up”.
Actions such as “climbing up stairs” are created by performing actions in a right
order similar to create a “sentence”. A sequence of actions builds up an activity.
The higher level concept event is composed of a series of activities in a similar
way as a document.

This “ activity language” concept serves as the foundation for our approach
to efficient lifelog retrieval. To empirically evaluate the similarity between the
ambulatory activity and natural languages, we check if the activity language
corpus follows the Zipf’s law. Zipf’s law states that given some corpus of natural
language utterances, the frequency of any word is inversely proportional to its
rank in the frequency table. In other words, the logarithm of a word’s frequency
is linear to its rank in a natural language corpus. Figure 6 plots the logarithm
frequency of word types in the activity language corpus for word type ranked 1, 2,
3, etc. Though not exactly linear, it does plot a line similar to Zipf’s distribution.

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

fr
eq

ue
nc

y)

Rank of words by frequency

Fig. 6. log(freq) vs. rank of frequency of word types in a lifelog converted as activity
language

3.2 Activity Recognition

Before applying the “activity language” concept in our lifelog system, we per-
formed a series of predefined-activity recognition experiments to justify the ben-
efits of modeling human activities as a language.

Mobile Lifelogger 271

In our approach, we view the labeled data for each activity ai as the training
corpus and train a smoothed n-gram language model over the converted activity
language text using the SRI language model toolkit [16]. For each testing “ac-
tivity sentence” t, we input it to all the pre-built language models to calculate
the probability of t being generated by activity ai and predicts the activity of
the testing sentence to be i∗ such that

i∗ = argmax
i

P (t|ai) (1)

One issue of using language models for activity recognition is that language
model probabilities are not directly comparable if their respective training data
have different vocabulary sizes. To solve this problem, each training data set is
augmented with a universal vocabulary list built from all training data sets. As
a result, all our activity language models have the same vocabulary size, and
thus their generated probabilities are comparable.

Table 2. Classification accuracy on corpus with vocabulary=100

Predicted Activity
walking running cycling

walking 94% 3% 3%
running 6% 92% 2%
cycling 8% 0% 92%

Table 3. Classification accuracy on corpus with vocabulary=200

Predicted Activity
walking running cycling

walking 95% 1% 4%
running 4% 94% 2%
cycling 2% 0% 98%

Our preliminary results of using smoothed n-gram language model for activ-
ity recognition demonstrated an average accuracy rate of 94% in distinguishing
among basic activities such as walking, running, and cycling. Table 2 and 3
compare the recognition accuracy of language models trained over a corpus of
vocabulary size 100 vs. the one with 200 word types. With a larger vocabulary
size, i.e., more atomic movement types, the activity language has more discrim-
inative power to differentiate human activities.

Figure 7 shows the average activity recognition accuracy vs. the order of n
in language model training. Overall, for this basic activity recognition task, the
order of history does not play a significant role here.

The promising results of these experiments increase our confidence in using
the activity language to improve lifelog systems’ indexability.

272 S. Chennuru et al.

Fig. 7. Recognition accuracy vs. n-gram order

3.3 Similar Activity Retrieval

In many cases, we want to find out information about activities that are not
predefined such as “how many tennis games did I play in the past two months?”
or “how much time did I spend sitting in front of TV last week?” It is not possible
to enumerate all possible activities and train Hidden Markov Models ahead of
time in order to answer such questions. In our approach, we convert the lifelogs,
in particular, the main indexing sensory information into a text representation.
This allows us to apply Information Retrieval techniques to “retrieve’ relevant
activities from the past logs to answer users’ queries.

In our implementation, a user can selects a segment from his/her lifelogs on
the web interface and indicate that he/she may want to find similar activities
from the past logs. The highlighted segment does not need to be annotated by
natural language descriptions such as “playing tennis”. The system will search
from the past life logs and return most relevant segments for user to review.

The key here is to calculate “similarity” between two segments of lifelogs.
Inspired by the BLEU metric [14] where averaged n-gram precision is used to
measure the similarity between a machine translation hypothesis and human
generated reference translations, we use averaged n-gram precision to estimate
the similarity between two lifelog segments.

Assuming that P and Q are two activity language sentences of the same length
l. P is the sequence of P1, P2, . . . , PL and Q is the sequence of Q1, Q2, . . . , QL.
Denote the similarity between P and Q as S(P,Q). Define the n-gram precision
between P and Q as Precn(P,Q) =

∑
p̃∈{All n-gram types in P} min(freq(p̃, P), freq(p̃, Q))

∑
p̃∈{All n-gram types in P} freq(p̃, P)

, (2)

and the similarity between P and Q is defined as:

Mobile Lifelogger 273

S(P,Q) =
1

N

N∑

n=1

Precn(P,Q) (3)

Precn(P,Q) calculates the percentage of n-grams in P that can also be found in
Q and S(P,Q) averages the precision over 1-gram, 2-gram and up to N -gram.
In our experiments, we empirically set N = 5.

Table 4 shows an example of calculating the similarity between activity sen-
tence P (“NB NB P P P P P P NB NB”) and Q (“NB P P NB NB P NB P
P P”).

Table 4. Calculating the similarity between two activity sentences using averaged
n-gram precision

n n-gram freqP freqQ min Precn
1 NB 4 4 4

P 6 6 6
10/10=1.0

2 NB NB 2 1 1
NB P 1 3 1
P P 5 3 3

P NB 1 2 1
6/9 = 0.67

3 NB NB P 1 1 1
NB P P 1 2 1

P NB NB 1 1 1
P P NB 1 1 1
P P P 4 1 1

5/8 = 0.63

4 NB NB P P 1 0 0
NB P P P 1 1 1

P P NB NB 1 1 1
P P P NB 1 0 0
P P P P 3 0 0

2/7 = 0.29

5 NB NB P P P 1 0 0
NB P P P P 1 0 0

P P P NB NB 1 0 0
P P P P NB 1 0 0
P P P P P 2 0 0

0/6 = 0.0

S(P,Q) = 0.52

Given a query sentence of l words, we assume that similar activities in the
lifelog should also be of length l. This assumption makes the retrieval algorithm
easier to implement as varied length activity retrieval would require activity
segmentation. For a lifelog with G words, there are G − l different strings of l

274 S. Chennuru et al.

words long. In our current setting, a 24 hours lifelog contains about 200 million
activity words. Calculating the similarity between each of the G− l strings with
the query can be computationally expensive. To speed up the retrieval, we use
suffix arrays to pre-select strings in the corpus that have high order n-gram
matches with the query and calculate S(P,Q) scores for those strings only. The
observation is that if a string in the lifelog is similar to the query, then it should
have many high order n-grams matched with those in the query string.

Top R similar activity segments is returned to the user on the web interface
(as shown in lower panel in Figure 4). User can load each segment to “play” the
corresponding lifelogs and for our ongoing experiments evaluate if the segment
is truly “similar” to the query.

3.4 Hierarchical Segmentation of Lifelogs

Lifelog records a user’s daily life as a continuous sequence of sensory data. After
converting the sensory data to activity language text, a lifelog is now a long
string of text. Just as we need punctuations, sentence boundaries and paragraph
boundaries in written text, it would make lifelogs more readable if we could
automatically segment the data based on user’s activities.

Table 5. Configuration of the automatic segmentation experiments

Configuration Value

Activity Type Playing frisbee, Playing basketball
Playing table tennis, Playing tennis

Activity Duration 5 to 10 minutes each
Lifelog Length 40 to 50 minutes each
Accuracy Measure F1 score

The underlining assumption of our segmentation algorithm is that when a user
switches his/her activity at time t, the similarity between string [t−w, t−1] and
[t, t+w] should be much lower than if t is inside the same activity for a window
of size w. For a window size w, define the “change of activity” at time t as:

H(t, w) = −log(0.00001+ S([t− w, t− 1], [t, t+ w − 1])). (4)

The higher the value of H(t, w), the more likely user changed his/her activity at
time t. Figure 8 shows the H value at each data points given different window
sizes for a segment of lifelog.

It can be noticed that: (1) peaks of activity change identified by larger windows
are also peaks identified by smaller windows but not vice versa; and (2)activity
changes over larger windows are smoother than smaller windows. Intuitively,
larger window size captures changes of larger-scale activities whereas smaller
window captures changes of smaller activities. Based on this finding, we first
segment the lifelog data using large window size and then recursively segment

Mobile Lifelogger 275

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2000 2500 3000 3500 4000

C
ha

ng
e

of
 B

eh
av

io
r

Time

WindowSize=100
WindowSize=200
WindowSize=500

WindowSize=1000
WindowSize=2000

Fig. 8. Activity changes calculated by different size of sliding windows

the data using smaller windows. This results in a hierarchical segmentation of
lifelogs which allows user to efficiently browse through the lifelog instead of
playing the whole lifelog (Figure 10).

To evaluate the quality of this automatic segmentation method, experiments
were performed with the configuration shown in Table 5. For every experiment,
the participant would wear the sensor helmet to perform a series of different
activities and there would be an observer who was in charge of recording the
timestamps at which the activity changes occur. The collected human anno-
tations would then serve as ground truth to help us evaluate the accuracy of
the automatic segmentation. Only the first level of the segmentation would be
evaluated and the metric we used is the F1 score calculated as

F = 2 ∗ precision ∗ recall/(precision+ recall). (5)

Table 6 shows the F1 scores of our automatic segmentation method according to
different window sizes. Overall, our segmentation method achieved an F1 score
of 60%.

3.5 Segmentation Clustering of Lifelogs

Hierarchical segmentation of the lifelogs shows different activities performed by
the user over time. However, it would be further useful if the system groups

276 S. Chennuru et al.

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 2000 2100 2200 2300 2400 2500

Time

Behavior Changes
First order derivative of Behavior Changes

Peaks identified

Fig. 9. Identifying peaks in the behavior-change-curve

Fig. 10. Hierarchically segmented lifelog. Activity boundaries detected automatically
by the system and descriptions are added by the user.

Mobile Lifelogger 277

similar segments so that user perceives similar activities he/she has performed.
By performing unsupervised clustering on the Autosegmentation ouput, we can
group similar activities.

K-means clustering algorithm is chosen for its simplicity and performance [7].
As it requires similarity or distance between two segments, we use a similarity
measure analogous to Section 3.3 - averaged n-gram precision. But, the key
difference is that the segments need not be of the same length.

Let P and Q be two activity language sentences, with lengths l and m respec-
tively. P is the sequence of P1, P2, . . . , PL and Q is the sequence of Q1, Q2,
. . . , QM . Denote the similarity between P and Q as S(P,Q). Define the n-gram
precision between P and Q as Precn(P,Q) =

1

2

∑

p̃∈{All n-gram types in P or Q}
min(freq(p̃, P), freq(p̃, Q))

(
1

∑
p̃∈{All n-gram types in P} freq(p̃, P)

+

1
∑

q̃∈{All n-gram types in Q} freq(q̃, Q)
) (6)

and the similarity between P and Q is defined as:

S(P,Q) =
1

N

N∑

n=1

Precn(P,Q) (7)

Each sentence is vectorized using the frequencies of all its n-grams. Each di-
mension of the vector represents one n-gram type. Using the same example in
Section 3.3, an activity sentence P (“NB NB P P P P P P NB NB”) and Q
(“NB P P NB NB P NB P P P”). Therefore, the vectors for sentence P and Q
are constructed as

VP = (4, 6, 2, 1, 5, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2)

VQ = (4, 6, 1, 3, 3, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0)

Each component of the these vectors is the frequency of one of the n-gram types
in the n-gram column of Table 4. Note that if a particular n-gram does not
appear in a sentence, the component of that n-gram is set to zero. e.q. n-gram
(”NB NB P P P”) in sentence Q.

The centroid of cluster is constructed by calculating the average vector of
all the vectors in the given cluster.

We have applied this method to the output of hierarchical segmentation to
generate clustering results at different levels. The preliminary results show that
the k-means algorithm can converge quickly, within 3-4 iterations, when running
with a small number of clusters as 5. Due to the limited volume of annotated
data, we could not evaluate the results in a systemical manner. However, manual

278 S. Chennuru et al.

Table 6. F1 Score vs. Window Size

Window Size 100 200 300 400 500 600 700 800 900 1000

Precision (%) 26.09 40.00 43.75 46.67 41.67 44.44 44.44 50.00 50.00 66.67

Recall (%) 60.00 80.00 70.00 70.00 50.00 40.00 40.00 50.00 40.00 60.00

F1 Score (%) 36.36 53.33 53.84 56.00 45.45 42.11 42.11 50.00 44.44 63.16

cross-checking between the clustering results and the user annotations at the top
level shows some level of relevance. This is outside of the scope of this paper and
we will leave it for future work.

4 Related Work

4.1 Activity Recognition

There have been several techniques for recognizing or distinguishing basic
human activities. They can be categorized into two flavors: heuristic threshold-
based classifiers and pattern recognition techniques such as decision trees, nearest
neighbor, Naive Bayes, support vector machines (SVM), neural networks, Hid-
den Markov Models (HMM) and Gaussian mixture models [13]. For recognizing
high-level human activities, several attempts had been made in [1,15]. Among
these techniques, the most popular ones we see so far are those based on HMM.
These HMM-based approaches classify the input sensory information into one
of the predefined activities such as walking, running, and standing. However,
since HMM assumes the first order Markov chain in the state space and usually
does not consider the inherent “grammar” or “structure” of human activities,
the activities that can be recognized by HMM are limited to those pre-defined in
the training data, which as a result limits HMM’s application in people-centric
computing.

4.2 Lifelog System

Different approaches have been used to implement a lifelog system. The
MyLifeBits system [6] is designed to store and manage everything in a person’s
lifetime that can be captured in digital format. Its initial goal was to store all per-
sonal information found in PCs such as articles, video, office documents, email,
keystrokes, and screen mouse clicks, etc. It then evolved into storing all ambient
information of a person’s daily life via a specialized camera device named Sense-
Cam. MyLifeBits supports capture, storage, management, and retrieval of many
media types, and its sophisticated database design is capable of storing a large
volume of multimedia data. However, MyLifeBits only applies a basic metadata-
based indexing approach which requires users to manually annotate most of the
collected data in order to have meaningful search results. Our works address this
issue well by providing a more effective indexing scheme which requires less user

Mobile Lifelogger 279

involvement and provides more meaningful search results by taking the “mean-
ing” of the collected media into account. Another lifelog system implementation
is discussed in [8]. This work focuses on realtime storage and retrieval of lifelog
in a ubiquitous environment. The developed system supports semi-automatic
activity analysis and provides an intuitive graphical interface for users to browse
their lifelogs that correlates the space and temporal information of the displayed
sensory data.

In addition to our language approach to indexing lifelog, Kim et al presented
a multimodal sensor fusion technique which supports automatic generation of
lifeline’s metadata [9]. The key idea is to combine the analysis results of different
kinds of low-level sensory data to better infer higher-level context information
about the collected lifelog. For example, by combining the analysis of audio, GPS,
and accelerometer readings, the system is able to better identify the environment
in which the lifelog was taken. Machine learning techniques such as decision tree
and Gaussian Mixture Model (GMM) are used to analyze the collected low-level
sensory data. Similar techniques to this sensor fusion approach are explored in
[2,17]. The former uses video key frame summarization and conversation scene
detection to fulfill efficient lifelog retrieval. The latter proposes an integrated
technique to process lifelog data using correlations between different types of
the captured data from multiple sensors.

Kyoko et al. [19] have developed a wearable lifelogging device to recognize
the experiences and activities of cats and post them as tweets on Twitter. C4.5
decision tree is used to recognize and classify different activities performed by
cats such as eating, sleeping running.

5 Conclusions and Future Work

In this paper, we present our Mobile Lifelogging system to record, index and un-
derstand the life experiences of a mobile user. We discuss several functions of the
system such Similar Activity Retrieval (Section 3.3) and Automatic Hierarchical
Segmentation (Section 3.5) for efficiently retrieving the lifelogs and help the user
visualize them. We present a novel yet straightforward approach of processing
lifelogs of heterogenous sensory data. We verify the similarity between activity
and language by demonstrating Zipf’s distribution over our activity language
corpus. The experimental results presented in Section 3.2 demonstrate high ac-
curacy of using language models for human activity recognition. Unlike the tra-
ditional HMM approach which is limited to activity recognition task, modeling
activity as language enables many other applications such as similar activity
retrieval, and hierarchical activity segmentation. Besides, this language-based
modeling approach can be applied to other types of sensory input such as geo-
locations. Extracting high level semantic information from primitive activities
that are recognized from the sensory data still remains a challenging problem.
We will conduct user study to evaluate the effectiveness of our similar activity
retrieval service. We will also carry out more experiments to generate sufficient

280 S. Chennuru et al.

annotated data. With these data, we hope to extend our work of hierarchical
activity segmentation by grouping atomic sensory events in the sequence pro-
gressively to build abstraction hierarchy of HHMM towards automatic lifelog
summarization.

References

1. Aipperspach, R., Cohen, E., Canny, J.: Modeling human behavior from simple sen-
sors in the home. In: Proceedings of IEEE Conf. on Pervasive Computing, Dublin,
Ireland, pp. 337–348 (April 2006)

2. Aizawa, K., Tancharoen, D., Kawasaki, S., Yamasaki, T.: Efficient retrieval of life
log based on context and content. In: CARPE 2004: Proceedings of the the 1st
ACM Workshop on Continuous Archival and Retrieval of Personal Experiences,
pp. 22–31. ACM, New York (2004)

3. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the
global burden of alzheimer’s disease. Alzheimer’s and Dementia 3(3), 186–191
(2007); predicted 107 million people will suffer from Alzheimer by 2050

4. Burke, K.: Language as Symbolic Action. University of California Press (1966)
5. Chen, P., Chennuru, S., Buthpitiya, S., Zhang, Y.: A language-based approach to

indexing heterogeneous multimedia lifelog. In: Proceedings of 12th International
Conference on Multimodal Interfaces (2010)

6. Gemmell, J., Bell, G., Lueder, R., Drucker, S., Wong, C.: Mylifebits: fulfilling the
memex vision. In: MULTIMEDIA 2002: Proceedings of the Tenth ACM Interna-
tional Conference on Multimedia, pp. 235–238. ACM, New York (2002)

7. Hartigan, J.A.: Clustering Algorithms. Wiley (1975) ISBN 0-471-35645-X
8. Kim, I.-J., Ahn, S.C., Kim, H.-G.: Personalized Life Log Media System in Ubiq-

uitous Environment. In: Stajano, F., Kim, H.-J., Chae, J.-S., Kim, S.-D. (eds.)
ICUCT 2006. LNCS, vol. 4412, pp. 20–29. Springer, Heidelberg (2007)

9. Kim, I.-J., Ahn, S.C., Ko, H., Kim, H.G.: Automatic lifelog media annotation based
on heterogeneous sensor fusion. In: Proceedings of IEEE International Conference
on Multi Sensor Fusion and Integration for Intelligent Systems, Seoul, Korea, Au-
gust 20-22 (2008)

10. Lee, M.L., Dey, A.K.: Lifelogging memory appliance for people with episodic mem-
ory impairment. In: UbiComp 2008: Proceedings of the 10th International Confer-
ence on Ubiquitous Computing, pp. 44–53. ACM, New York (2008)

11. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

12. Neergaard, L.: Report: 35 million-plus worldwide have dementia. Associate Press
(September 21, 2009)

13. Nguyen, A., Moore, D., McCowan, I.: Unsupervised clustering of free-living human
activities using ambulatory accelerometry. In: Proceedings of the 29th Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology Society
(EMBS), Lyon, France, August 22-26, pp. 4895–4898 (2007)

14. Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic eval-
uation of machine translation. Technical Report RC22176(W0109-022), IBM Re-
search Division, Thomas J. Watson Research Center (2001)

15. Patterson, D.J., Liao, L., Fox, D., Kautz, H.: Inferring High-Level Behavior from
Low-Level Sensors. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp
2003. LNCS, vol. 2864, pp. 73–89. Springer, Heidelberg (2003)

Mobile Lifelogger 281

16. Stolcke, A.: Srilm – an extensible language modeling toolkit. In: Proc. Intl. Conf.
on Spoken Language Processing, Denver, CO, vol. 2, pp. 901–904 (2002)

17. Takata, K., Ma, J., Apduhan, B.O., Huang, R., Jin, Q.: Modeling and analyzing
individual’s daily activities using lifelog. In: ICESS 2008: Proceedings of the 2008
International Conference on Embedded Software and Systems, pp. 503–510. IEEE
Computer Society, Washington, DC (2008)

18. Wertsch, J.V.: Mind As Action. Oxford University Press, USA (1998)
19. Yonezawa, K., Miyaki, T., Rekimoto, J.: Cat@log: sensing device attachable to

pet cats for supporting human-pet interaction. In: ACE 2009: Proceedings of the
International Conference on Advances in Computer Enterntainment Technology.
ACM (2009)

	Mobile Lifelogger – Recording, Indexing, and Understanding a Mobile User’s Life
	Introduction
	System Implementation
	Lifelogger Mobile Client
	Lifelogger Application Server
	Lifelogger Web Interface

	Language-Based Indexing
	Main Idea
	Activity Recognition
	Similar Activity Retrieval
	Hierarchical Segmentation of Lifelogs
	Segmentation Clustering of Lifelogs

	Related Work
	Activity Recognition
	Lifelog System

	Conclusions and Future Work
	References

