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Abstract. In this paper we present our initial work on a mobile phone
application for assisting stroke rehabilitation. We believe that using a
mobile phone to administer and track stroke rehabilitation is novel. We
call our system Dr. Droid and focus on the automated scoring of motions
performed by patients being administered the Wolf Motor Function Test
(WMFT) by placing a smart phone in a holster at the patients wrist.
We have developed a complete software application that administers the
test by giving audio and visual instructions. We collect a motion trace
by sampling the 3-axis accelerometer available on the phone. We double-
integrate the acceleration data and apply a novel reorientation algorithm
to correct for mis-alignment of the accelerometer. Using dynamic time
warping and hidden Markov models we assign an objective, quantitative
score to the patient’s exercises. We validate our method by performing
experiments designed to simulate the motions of a stroke patient.

Keywords: mobile sensing, gesture recognition, personal health moni-
toring, telemedicine, stroke rehabilitation.

1 Introduction

Each year in the United States approximately 795,000 people suffer from a stroke.
Of those strokes, about 29% are fatal [14]. Many of the remaining 71% of stroke
patients will require some form of rehabilitation. Stoke rehabilitation is per-
formed in the hope that the patients will maintain or regain range and detail of
motion lost during the stroke.

Damage to the brain caused by a stroke often manifests itself as paralysis
or loss of motor control on one side of the body, particularly with one limb.
Several tests designed to quantify and monitor the rehabilitation progress of a
stroke patient exist. In this work we focus on the Wolf Motor Function Test [11]
(WMFT). The WMFT test focuses on range of motion in the upper extremity
with a set of 17 exercises such as lifting a soda can to the mouth or turning a
key. Table 1 shows a list of these exercises.

Scoring for the WMFT is based on two scores. The first score is the time
required to perform the exercise. This time is measured by a test administrator
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Table 1. Wolf Motor Function Test task descriptions

1. Forearm to table (side)†(1)

2. Forearm to box (side)

3. Extend elbow (side)†(2)

4. Extend elbow (weight)
5. Hand to table (front)
6. Hand to box (front)
7. Weight to box*
8. Reach and retrieve

9. Lift can†(3)

10. Lift pencil
11. Lift paper clip
12. Stack checkers
13. Flip cards
14. Grip strength*

15. Turn key in lock†(4)

16. Fold towel
17. Lift basket

* Indicates un-timed tasked
† Indicates activities evaluated in this paper

using a stop-watch. The maximum possible score is 120 seconds. The second score
is the functional analysis (FA) score. This score ranges from zero (meaning the
affected limb can not perform the activity at all), to five (meaning the motion
appears normal). The FA score is determined ‘off-line’ by a specially trained
WMFT evaluator using a video of the patient.

A test that requires trained administers and evaluators greatly increases the
cost of administering the WMFT and similar tests. Additionally, these tests are
usually performed in an office or clinical setting under video observation. This
setting maybe uncomfortable for the patient (which may lead to reluctance to
attend future testing sessions), while adding additional overhead to the cost.

Researchers have shown that the variations between trained WMFT admin-
istrators and evaluators is low and the test reliable [9,4], at the cost of several
hours of time for one or two trained practitioners. Additionally, timing errors of
up to one second are likely when using a stop-watch to time the exercises [6].
This same work showed that automated timing of the WMFT is possible using
wrist mounted accelerometers.

In this work we focus on both automating and scoring the WMFT in such
a way as to provide quantitatively meaningful scores, while reducing the costs
associated with the test and improving the patients experience.

Dr. Droid is our platform to assist stroke rehabilitation. We have devoped
an application that runs on a smart phone worn on the patients wrist during
the WMFT. Accelerometers in the device will record the motion of the patient.
This acceleration data is then processed to give a quantitive score judging the
quality of motion. For the hardware platform we use mobile phones running
the Android operating system. Mobile phones are a good choice because they
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Fig. 1. Screen shot of the Dr. Droid application showing the wrist mounted phone and
visual cues

are nearly ubiquitous and provide a rich array of sensor modalities at a cost
approaching free. Additionally, the Android operating system provides an open,
flexible platform that allows rapid application development. Combined together,
these two aspects of the Android mobile phone allow us to provide an inexpensive
way to administer the test at a time and location of the patients choosing, with
at least as much quantitive information (time and FA score) as is currently
available. Additionally, since the application is hosted on a smart phone, we
enable a host of other telemedicine and digital health care applications.

There are four main contributions of this work: 1. We use a mobile phone
in a novel way to make stroke rehabilitation inexpensive and comfortable for
the patient, while also returning standardized, objective scores; 2. We develop
two scoring algorithms based on a novel reorientation technique that corrects
for errors caused by mis-alignments in the accelerometer sensor data. Thus we
allow some flexibility in how the phone is mounted to the patients wrist; 3. We
have implemented a complete system running on Android-based smart phones;
4. And finally we provide a quantitive comparison of three scoring algorithms
under two testing modalities.

The rest of this paper is organized as follows: section 2 describes the Dr.
Droid smart phone application and the scoring algorithms; section 3 describes
the experiments conducted to verify our algorithms; section 4 describes related
work in the literature; finally, we conclude and discuss the future work we aim
to undertake in section 5.
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2 Dr. Droid

This section describes the Dr. Droid application and scoring algorithms. First
we provide a brief description of the system design and application operation.
Second we describe in detail the algorithms we use to arrive at an objective score
for a patients motion.

2.1 Assistive Application and Remote Control

The Android operating system provides a Java based programming framework
for application development [1]. We used this framework to develop the Dr. Droid
application. The Dr. Droid application provides several features. Users first may
decide to perform an individual or a series of tests. Dr. Droid then prompts the
user with visual, textual and spoken descriptions of the exercise under test. The
user then performs the required action. Finally, our scoring algorithms (see sec-
tion 2.2) compare the performed action to a template and return a set of scores.
When performing a series of exercises the user is then presented and prompted
with the next test. Finally, a database of past scores is retained, allowing the
user to track the progress and report results to a practitioner. Given the average
age of stroke patients and considering their ability to control a mobile device we
have attempted to develop an as easy to use application as possible.

During development of Dr. Droid, we realized that it can be awkward to
push buttons on the phones display while it is holstered at the wrist. As stroke
patients in rehabilitation have limited mobility, we also developed a remote-
control application using the XMPP protocol. This application also runs on
Android phones and allows an assistant (medical practitioner or friend/family)
to start and stop the timing of a test or to advance to the next test. XMPP is an
open messaging protocol, thus our remote control application is not limited to
running on a second phone. The remote control can be run on a desktop, laptop
or tablet PC.

2.2 Data Processing and Scoring Algorithms

The core goal of Dr. Droid is to score how naturally a patient moves while
performing an excercise. To do so, we perform an analysis that is very similar
to gesture recognition. Gesture recognition is used in several related fields, from
handwriting recognition on tablet-PCs or PDAs to gaming environments like the
Nintendo Wii. However, our problem is slightly different. In gesture recognition
the software system is trained with a ‘vocabulary’ of gestures and an unknown
action is evaluated against the vocabulary and the most likely match is chosen
as the detected gesture. In this work we know a-priori which gesture (exercise) is
being performed, we only need to know how ‘well’ or ‘poorly’ it was performed.

Many machine learning algorithms have been used for gesture recognition, see
the X-wand [19] project for an example where several were evaluated with the
same hardware. In order to provide meaningful scores to the patient, we selected
algorithms that provide a numeric metric of the similarity between two gestures.
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Fig. 2. Graphical illustration of our novel path-based reorientation algorithm

Two algorithms, dynamic time warping [7] and hidden Markov models [5]
are a natural fit to this constraint. DTW is based on a dynamic programming
technique and finds the minimal cost required to warp one signal onto the other,
as long as the difference between two signals can be measured by some distance
function. HMMs return the likelihood that a given signal belongs to a given
(previously trained) class.

The Dr. Droid application collects acceleration data from the 3-axis accelerom-
eter that is a standard feature of Android smart phones. The data is sampled
at 50Hz. The WMFT allows a maximum test duration of 120 seconds, thus our
acceleration traces contain no more than 18,000 samples. The phone used for
testing, the Google Nexus One, has a 1GHz processor and is capable of scoring
the motions using the above algorithms in a fraction of a second.

We include three scoring algorithms primarily because to date we have not
had access to stroke patients to collect training data. Therefore, we cannot con-
clusively calculate which of our scoring methods correlates best with the FA
scores given by trained observers. We also hypothesize that our algorithms may
pick up on different aspects of a motions natural-ness and thus provide richer
feedback about a patient’s motion than a single FA score.

Path-Based Orientation Correction. Many difficulties with gesture recog-
nition based on acceleration data are rooted in the orientation problem. If the
orientation of the accelerometer is different between the training and test data,
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(b) HMM discrimination

Fig. 3. Histogram showing the ability of the DTW and HMM algorithm to score similar
motions with similar scores. Intra-class scores (blue) cluster together, indicating similar
scores are given to similar motions.

many gesture recognition algorithms preform poorly. Researchers have developed
several techniques to reorient acceleration data [10], but this has proven to be
difficult and many systems solve this problem by requiring that for optimal per-
formance, the orientation of the device is constrained. Furthermore, variations
in the amplitude of the action require some sort of normalization, which also
reduces the accuracy of gesture recognition.

However, the prescribed nature of our testing environment leads to a novel
solution for the above limitations. First, we observe that the amplitude of the
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test is fixed by the definition of the WMFT. Second, we observe that if one
considers the starting point for a test as the origin of a 3-D reference frame,
then the ending points for two motions performing the same exercise will have
approximately the same coordinates. Acceleration data collected with a mis-
oriented sensor will describe the path in a rotated reference frame.

Therefore, in order to reorient the motion traces to best align them with the
template action, we need only to calculate the rotation necessary to align the
end-point of a motion with the end point of the template. To do so we calculate
the cumulative double integration of the acceleration data to obtain the 3-D path
traced by the wrist mounted phone. Then we calculate the homogenous rotation
matrix that will move the 3-D (x, y, z) coordinate at the end of the trace to the
(x, y, z) coordinate of the template motion. The rotation matrix is then applied
to every (x, y, z) coordinate in the path to reorient the data.

We found that using this reoriented path data provided the best results with
the DTW and HMM algorithms. Please see figure 2 for a graphical illustration
of the reorientation algorithm.

Dynamic Time Warping. Given two discrete signals A[t] and B[t] of length
N and M respectively, DTW finds the best match between A[t] and B[t] by
warping (compressing or stretching) B[t] where necessary to minimize the dis-
tance between the signals. DTW is a flexible algorithm in that one may define
the distance metric as necessary. We are working with the reoriented 3D path
data, so signals A[t] and B[t] comprise a sequence of (x, y, z) points. We thus
choose the distance metric to be the Euclidian distance between the points. Then
∀i ε 1..N, ∀j ε 1..M we define the N by M distance matrix, D as follows:

D(i, j) =

√
(A[i]x −B[j]x)2 + (A[i]y −B[j]y)2 + (A[i]z −B[j]z)2

The DTW algorithm then finds the least-cost path through the distance matrix
from D(1, 1) to D(N,M). Please see [7] for details of the algorithm.

An additional advantage of this algorithm is that it naturally handles se-
quences of different lengths. We expect the completion time to vary between
tests, but do not need to normalize or resample the time series when using
DTW. If A[t] and B[t] are the same signal, then the cost is zero. As the signals
vary in path and time, the cost increases.

Thus, motions of similar path and time will receive lower scores. Less natural
or longer motions will receive larger scores. Therefore, we conclude that the path
based DTW score is a similarity metric and we use the cost calculated to traverse
the matrix as the DTW component of the Dr. Droid score.

Hidden Markov Models. Hidden Markov models are a well known method
for modeling noisy, time-varying processes. They are used in many areas such as
speech, gesture and handwriting recognition; natural language processing, and
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Table 2. Comparing the average results of our scoring algorithms across two emulation
methods

(a) DTW Scoring

Exercise Avg. Score - Normal Avg. Score w/ weights Avg. Score ‘poor motion’

1 2079.35 4877.96 19041.85
2 5925.08 3834.49 10499.91
3 20313.27 17464.42 33212.71
4 15911.03 18382.09 160464.70

(b) HMM Scoring

Exercise Avg. Score - Normal Avg. Score w/ weights Avg. Score ‘poor motion’

1 -151.14 -184.08 -210.55
2 -300.47 -286.03 -376.95
3 -365.47 -378.73 -498.45
4 -225.32 -304.72 -377.48

(c) Smoothness Scoring

Exercise Avg. Score - Normal Avg. Score w/ weights Avg. Score ‘poor motion’

1 411.97 725.14 523.39
2 274.17 327.78 487.05
3 284.16 521.34 673.18
4 2456.56 5393.08 4590.48

bioinformatic applications such as DNA analysis. The process being modeled is
assumed to be a Markov process where the state-sequence is unknown, but the
emissions from the states are observed. Once trained, a HMM will return the
probability that a given sequence of observed emissions was generated by the
modeled process. We assume a linear topology for our Markov process.

In order to train the HMM, we need to express the 3D path as a sequence of
discreet states. Similar to work done on 2D handwriting recognition [8], we pro-
pose the following approach that is novel in the 3D gesture processing literature.
From one (x, y, z) point in the path data we discretize the direction of travel
necessary to reach the next point. With three axes (x, y, z) and three possible
directions {-,0,+} there are 27 possible movements. The series of 3D points is
converted into sequence of states labeled with the corresponding state number.
This state-sequence representation of the path data is then used in the training
and querying of a HMM for each exercise in the WMFT. In order to determine
the HMM component of the Dr. Droid score we calculate the log-likelyhood that
a given path describes the given exercise.

Smoothness. If one observes a stroke patient performing the WMFT (see [3]
for a video), it will be observed that the motion is often jerky or halting. In order
to quantify the smoothness of a motion we have developed a third metric based
on the average energy of the acceleration signal over time. For this metric we
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operate directly on the 3-axis accelerometer data. We segment the acceleration
signal into frames of 12 samples with an overlap of 6 samples. The energy of the
acceleration signal in each frame is calculated and the average of these energy
values is returned as the Smoothness component of the Dr. Droid score.

3 Experimental Evaluation

In this section we describe two experiments undertaken to verify the correctness
of our scoring algorithms. We first describe the experiments and then provide a
quantitative comparison of the results.

The goal of the Dr. Droid scoring metrics can be summarized as follows:
similar motions should receive similar scores. We first collected training data of
natural motion. We chose four exercises from the WMFT (marked with a † in
table 1) that are representative of the different types of motion in the WMFT.
We called these four exercises ‘task 1’ through ‘task 4.’

Three of the authors then performed the exercises 50 times with the phone
holstered at the wrist (see figure 1). These training examples were used to develop
the path based DTW algorithm and to train the HMM.

First, we needed to evaluate if the DTW and HMM algorithm would give
similar (low) scores to similar motions. To do so we scored all of the training
examples against each other, both intra-class and inter-class. See figure 2.2 for a
histogram of the resulting scores for the DTW and HMM algorithm with task 1
used intra-class. In these figures we see that indeed the intra-class scores cluster
at the lower magnitude end of each graph (log likelihood scores are negative).
This implies that our algorithms meet our goal of scoring similar motions with
low scores. The results for the other tasks were similar.

Next we performed two experiments to emulate the motion of a stroke pa-
tient. In the first experiment we attached 10 pounds of weight to the forearm
under test. In the second experiment we executed motions that emulated the
difficulty and limited range of motion exhibited by patients as seen in videos of
the WMFT. For the DTW algorithm we chose a ‘golden example’ from among
our 150 training examples for each exercise. The golden example was defined
as the training example with the minimum average score when compared to all
other training examples of a particular task. The golden example is then used
as the template signal for our DTW algorithm. For the HMM and Smoothness
algorithms we calculated the score as described above.

Table 2 contains a summary of the experiment results. These results overall
show that we have met our goal of giving larger scores to unnatural motion.
Average scores highlighted in blue indicate scores where the scoring algorithm
correctly scored the experimental motions as ‘worse’ than the training exam-
ples. Scores highlighted in red indicate where the scoring algorithm gave a ‘bet-
ter’ score to the unnatural motion. These results, while not ideal, are worth
discussing.

First we note that all of the red results occur in the weighted experiment.
While performing the weighted experiment we noted that the weights made the
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exercises more difficult, but they did not necessarily make our movement un-
natural. Moving the arm when weighted required very deliberate and thoughtful
actions, which may have yielded efficient, correct motions.

However, when we look at the results for the ‘poor motion’ experiment, we see
very good results. All of the algorithms score these purposely unnatural motions
much higher than the training data. Therefore we can conclude that our scoring
algorithms, when used on data featuring a range of motions from very unnatural
to natural will give meaningful scores.

4 Related Work

As stroke rehabilitation is an important medical necessity, there is a large body
of work in this area. Similar to our research is robotic assisted research. Fasoli
et. al and Lo et. al [12],[15] describe robotic therapies that allow the scoring
and tracking of patient progress. Closer still to our work is the AutoCITE [16]
project. AutoCITE is a computer and specialized workstation deployed at the
patients home. AutoCITE allows computerized testing, however it is expensive
and once installed, fixed in location.

Specific to the WMFT test, Wade et. al [6] explore using a wrist mounted
accelerometer to automate the timing of the WMFT. A recent masters thesis by
Avinash Parnandi [2] builds on this work to attempt a similar goal of automating
the FA scoring aspect of the WMFT using machine learning techniques, however
the system requires a custom sensor board and wearable computer.

Accelerometer based gesture recognition is a well developed field, with Pyl-
vanainen contributing a book chapter [18] to Springer’s LNCS. More recently,
Liu et al. [13] developed a DTW based gesture recognition for mobile phones,
while Prekopcsak [17] used HMM and support vector machines to do gesture
recognition on Nokia smart phones. All of these methods operate directly on the
acceleration data and thus require orientation constraints.

5 Conclusion and Future Work

In this paper we have presented a application that uses a mobile phone to im-
prove stroke rehabilitation. Using a mobile phone in this manner is novel and
provides a less expensive and more flexible rehabilitation process to patients and
medical practitioners. We describe Dr. Droid, a complete system that adminis-
ters the stroke rehabilitation protocol and provides quantitive scores of a patients
movement. To generate these scores we present a novel path based reorientation
algorithm that improves the performance of our DTW and HMM algorithm.
We tested Dr. Droid experimentally to verify the system design and scoring al-
gorithms provide a working user experience and meaningful scores. Finally, we
discuss several opportunities for future research.

Dr. Droid to date has served as a proof-of-concept application to test the
suitability of the Android mobile phone to this applicaiton.
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To prove our scoring algorithms at a minimum provide the same information
about a patient as the functional ability score, we need to test our algorithms
against data collected from actual stroke patients over the course of their re-
covery. In order to obtain this data we first hope to expand on the work of a
colleague at USC who has kinematic models based on data captured from stroke
patients. These models are in the form of joint angle vs. time. The path taken
by the wrist and the acceleration data can be recovered from these models. The
timing and functional ability scores for these models are also available. If our
algorithms prove successful scoring the motions, then we envision a study where
practitioners at a stroke rehabilitation clinic solicit volunteers to wear a holstered
phone during their WMFT exercises.

We also will work to improve the Dr. Droid application as well. We hope
to collect feedback from practitioners and patients regarding the features and
usability of the application. We also will improve the remote control applica-
tion which we see as expanding into an interactive tool to help practitioners,
patients and caregivers track the patient rehabilitation progress. We will include
automatic timing algorithms to further improve the accuracy of the Dr. Droid
scores.

Telemedicine and health monitoring are large and active fields of research.
At this point in the development of Dr. Droid we have to date focused on the
scoring algorithms. We recognize that health data is considered some of the most
sensitive data one might collect. Any number of privacy schemes may be applied
to our system and will be added at a later date. Additionally, Internet enabling
the application to allow automatic uploading of scores to a patients doctor or
therapist is also and obvious extension of our work. We would like to recognize
that we have not ignored these aspects in designing Dr. Droid, but thus far they
have been beyond the scope of our work.

Acknowledgments. The authors would also like to thank Dr. Eric Wade for
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