
Activity-Aware Mental Stress Detection

Using Physiological Sensors

Feng-Tso Sun1, Cynthia Kuo1,2, Heng-Tze Cheng1, Senaka Buthpitiya1,
Patricia Collins1, and Martin Griss1

1 Carnegie Mellon University
{lucas.sun,hengtze.cheng,senaka.buthpitiya,
patricia.collins,martin.griss}@sv.cmu.edu

2 Nokia Research Center
cynthia.kuo@nokia.com

Abstract. Continuous stress monitoring may help users better under-
stand their stress patterns and provide physicians with more reliable data
for interventions. Previously, studies on mental stress detection were lim-
ited to a laboratory environment where participants generally rested in
a sedentary position. However, it is impractical to exclude the effects of
physical activity while developing a pervasive stress monitoring appli-
cation for everyday use. The physiological responses caused by mental
stress can be masked by variations due to physical activity.

We present an activity-aware mental stress detection scheme. Elec-
trocardiogram (ECG), galvanic skin response (GSR), and accelerometer
data were gathered from 20 participants across three activities: sitting,
standing, and walking. For each activity, we gathered baseline physio-
logical measurements and measurements while users were subjected to
mental stressors. The activity information derived from the accelerom-
eter enabled us to achieve 92.4% accuracy of mental stress classifica-
tion for 10-fold cross validation and 80.9% accuracy for between-subjects
classification.

Keywords: Mental stress, electrocardiogram, galvanic skin response,
physical activity, heart rate variability, decision tress, Bayes net, support
vector machine, stress classifier.

1 Introduction

Stress is a physiological response to the mental, emotional, or physical chal-
lenges that we encounter. Immediate threats provoke the body’s “fight or flight”
response, or acute stress response [5]. The body secretes hormones, such as
adrenaline, into the bloodstream to intensify concentration. There are also many
physical changes, such as increased heart rate and quickened reflexes. Under
healthy conditions, the body returns to its normal state after dealing with acute
stressors.

Unfortunately, many of the stressors in modern life are ongoing. Chronic stress
can be detrimental to both physical and mental health. It is a risk
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factor for hypertension and coronary artery disease [22,12]. Other physical disor-
ders, including irritable bowel syndrome (IBS), gastroesophageal reflux disease
(GERD), and back pain, may be caused or exacerbated by stress [16]. Chronic
stress also plays a role in mental illnesses, such as generalized anxiety disorder
and depression [11].

Chronic stress is difficult to manage because it cannot be measured in a con-
sistent and timely way. One current method to characterize an individual’s stress
level is to conduct an interview or to administer a questionnaire during a visit
with a physician or psychologist. This method provides only a momentary snap-
shot of the individual’s stress level, as most individuals cannot accurately recall
the history of the ebb and flow of their stress symptoms [3].

Continuous monitoring of an individual’s stress levels is essential for under-
standing and managing personal stress. A number of physiological markers are
widely used for stress assessment, including: galvanic skin response, several fea-
tures of heart beat patterns, blood pressure, and respiration activity [31,?]. For-
tunately, miniaturized wireless devices are available to monitor these physiolog-
ical markers. By using these devices, individuals can closely track changes in
their vital signs in order to maintain better health.

Measuring physiological signals during everyday activity is more difficult than
in a rigorous laboratory environment. First, the physiological responses caused
by mental stress can be masked by variations due to physical activity [1]. For
example, people may have higher heart rate when standing than when sitting.
Heart rate may also increase when people are mentally stressed. Hence, using
heart rate alone as an indicator to detect mental stress may lead to misclas-
sification. Second, signal artifacts caused by motion, electrode placement, or
respiratory movement affect the accuracy of measured recordings. Third, it is
also difficult to determine the ground truth of a user’s stress level when label-
ing training data in mobile environment. These factors increase the difficulty of
developing a pervasive mental stress detection application for everyday use.

We introduce an activity-aware, multi-modal system that combines accelerom-
eter, ECG, and GSR information to differentiate between physical activity and
mental stress. We conducted a user study with 20 participants across three differ-
ent physical activities: sitting, standing, and walking. With activity information
derived from the accelerometer, we achieved 92.4% accuracy for 10-fold cross
validation and 80.9% accuracy for between-subject’s classification.

In the next section, we describe how we can measure the body’s responses
to mental stress. Next, we discuss prior work on stress detection. Section 4
describes our experimental protocol and our physiological feature extraction and
classification methods. Experimental results are presented in Section 7.

2 Background

The autonomic nervous system (ANS) regulates the body’s major physiolog-
ical activities, including the heart’s electrical activity, gland secretion, blood
pressure, and respiration. The ANS has two branches: the sympathetic nervous
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system (SNS) and the parasympathetic nervous system (PNS). The SNS mobi-
lizes the body’s resources for action under stressful conditions. In contrast to the
SNS, the PNS relaxes the body and stabilizes the body into steady state.

2.1 Heart Rate Variability (HRV) and Stress

Under acute stress, the SNS increases heart rate, respiration activity, sweat
gland activity, etc. After the stress has passed, the PNS reverses the stress re-
sponse [17]. Since the ANS controls the heart, measuring cardiac activity is an
ideal, non-invasive means for evaluating the state of the ANS.

An ECG is a recorded tracing of the electrical activity generated by the heart.
Figure 1 shows a P wave, a QRS complex, and a T wave in the ECG. The P wave
represents atrial depolarization, the QRS represents ventricular depolarization,
and the T wave reflects the rapid repolarization of the ventricles [8]. The R-R
interval is the time interval between two R peaks and is used to calculate heart
rate.

Fig. 1. Electrocardiogram sample

Heart rate variability (HRV) refers to the beat-to-beat variation in the R-R
interval. HRV analysis can be categorized into time-domain and spectral-domain
analysis. Several time-domain parameters include:

– mean HR: mean heart rate (beats per minute);
– mean RR: mean heartbeat interval (ms);
– SDNN: standard deviation of RR-intervals between normal beats;
– RMSSD: root mean square of the difference between successive RR-intervals;

and
– pNN50: the percentage of heartbeat intervals with a difference in successive

heartbeat intervals greater than 50 ms.

Three widely used components can be found in HRV power spectrum:

– LF (0.04-0.15 Hz): a low-frequency component that is mediated by both the
SNS and PNS;

– HF (0.15-0.4Hz): a high-frequency component mediated by the PNS; and
– LF/HF: LF to HF ratio that is used as an index of autonomic balance.
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2.2 Galvanic Skin Response (GSR) and Stress

GSR is a measure of the electrical resistance of the skin. A transient increase
in skin conductance is proportional to sweat secretion[6]. When an individual is
under mental stress, sweat gland activity is activated and increases skin conduc-
tance. Since the sweat glands are also controlled by the SNS, skin conductance
acts as an indicator for sympathetic activation due to the stress reaction.

The hands and feet, where the density of sweat glands is highest, are usually
used to measure GSR. There are two major components for GSR analysis. Skin
conductance level (SCL) is a slowly changing part of the GSR signal, and it can
be computed as the mean value of skin conductance over a window of data. A
fast changing part of the GSR signal is called skin conductance response (SCR),
which occurs in relation to a single stimulus. Widely used parameters for GSR
include the amplitude and latency of SCR and average SCL value[2].

3 Related Work

The validity of using ECG and GSR measurements in mental stress monitor-
ing has been demonstrated in both psychophysiology and bio-engineering. HRV
analysis based on ECG measurement is commonly used as a quantitative marker
describing the activity of the autonomic nervous system during stress. For exam-
ple, Sloten et al. conclude that the mean RR is significantly lower (i.e., the heart
rate is higher) with a mental task than in the control condition while pNN50 is
significantly higher in the control condition than with a mental task [26].

Also, conventional short-term HRV features (e.g., a 5-minute sample window)
may not capture the onset of acute mental stress for a mobile subject. Salahuddin
et al. noted that HR and RR-intervals within 10 sec, RMSSD and pNN50 within
30 sec, high frequency band (HF: 0.15 to 0.4 Hz) within 40 sec, LF/HF, normal-
ized low frequency band (LF: 0.04 to 0.15 Hz), and normalized HF within 50 sec
can be reliably used for monitoring mental stress in mobile settings [23]. Hence,
mental stress can be recognized with most HRV features calculated within one
minute.

Boucsein provided an extensive coverage of early research of GSR related
to stress [2]. He showed that slowly changing SCL and SCR aroused by specific
stimulus are sensitive and valid indicators for the course of a stress reaction. Setz
et al. demonstrated the discriminative power of GSR in distinguishing stress
caused by a cognitive load and psychosocial stress by using a wearable GSR
device in an office environment [25]. In this study, analysis of the data showed
that the distributions of the SCL peak height and the SCR peak rate carry
information about the stress level of a person.

Some research has used multiple physiological features to determine the ex-
istence of the subject’s stress response. Zhai and Barreto applied an interactive
“Paced Stroop Test,” a psychological test of the subject’s mental attention and
flexibility, as a stimulus to elicit emotional stress in the subject [33]. The Paced
Stroop Test requires the subject to select the font color of a word shown on the
screen. The word itself names a potentially different color. The authors proposed



Activity-Aware Mental Stress Detection Using Physiological Sensors 215

to extract features from the subject’s physiological response (blood volume pulse,
galvanic skin response, skin temperature and pupil diameter) during both the
congruent phase (matching color name and font color) and incongruent phase
(mismatching color name and font color). An example of the incongruent phase
is shown in Figure 3. Three learning algorithms, Naive Bayes, Decision Tree, and
Support Vector Machine (SVM), are used to classify relaxed and stressed states.
The SVM classifier reached an accuracy of 90.1% with 20-fold cross validation.

Some experiments have been conducted in the real world. For instance, Healey
and Picard measured drivers’ stress reactions by monitoring multiple physiolog-
ical signals, such as ECG, GSR, electromyogram (EMG), and respiration in a
prescheduled route setting [10]. They used 5-minute intervals of data during the
rest, highway, and city driving conditions to distinguish between three levels
of driver stress. Heart rate and skin conductance provided the highest overall
correlations with drivers’ stress level across multiple drivers and driving days,
reaching an accuracy of over 97%.

Most previous research considers distinguishing the physiological response to
mental stress from subjects at rest. While developing mental stress monitoring
algorithms in real-life ambulatory situations, it is crucial to take physical activity
(e.g.,walking) and posture (e.g., sitting or standing) into account. Cardiovascu-
lar variability is highly affected by changes in body posture and physical activ-
ity [30]. In Van Steenis et al.’s sample, subjects’ mean HR increased significantly
from a supine to sitting posture (from 66 to 77 bpm), from a sitting to standing
posture (86 bpm), and from a standing posture to dynamic body movements
(92 bpm). A major obstacle for ambulatory monitoring is that physiological
dysregulation or emotion effects can be confounded by physical activity. Many
physiological parameters, including heart rate, respiratory sinus arrhythmia, and
skin conductance level, are strongly affected by both anxiety and exercise [32].
The daily routines involve different psychophysiological body activation charac-
teristics. Kusserow et al.’s study showed that the physical-related and mental-
related routines that are correlated with heart activity can be characterized and
visualized as different activation patterns using RR-intervals and accelerometer
data [13]. Schumm et al.’s work validated that it is possible to provoke and mea-
sure GSR with the startle event during different walking speeds [24]. However,
the faster a person is walking, the more the peak distribution of GSR approaches
a uniform distribution. Activity information is also helpful in ECG-based iden-
tity authentication area. The perturbation of the ECG signal due to physical
activity is a major obstacle in applying the technology in real-world situations.
Sriram et al.’s work presented a novel ECG- and accelerometer-based system
that can authenticate individuals in an ongoing manner under various activity
conditions [27].

Thus, physical activity distorts the result of mental stress detection in a mo-
bile health monitoring scenario. In this paper, we compensate for the effects of
physical activities by extracting a set of accelerometer features that characterize
different physical activities along with ECG and GSR features. We hypothesize
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that the accelerometer features provide the necessary auxiliary information for
differentiate physical activity and mental.

4 Methodology

In this section, we describe the components of the wireless sensor system we
used, the procedure of the experimental environment, and the segmentation of
experimental dataset.

(a) ECG sensor and chest
strap

(b) GSR sensor (c) Accelerometer

Fig. 2. SHIMMER sensors including ECG, GSR, and accelerometer

4.1 Wireless Sensor Network

We used the SHIMMER platform developed by Intel’s Digital Health Group.
SHIMMER is a small wireless sensor platform with an integrated 3-axis ac-
celerometer designed to support wearable applications. We also used SHIM-
MER’s ECG and GSR daughter boards for data acquisition. The sensor data
from the ECG sensor and accelerometer were sampled at 100 Hz, and the data
from the GSR sensor were sampled at 32 Hz. Data were transmitted to a PC
via Bluetooth connectivity and saved to binary and comma-separated value files.
We used three sensor nodes for the wireless sensor network configuration. Pho-
tos of the sensors are shown in Figure 2. The ECG sensor node was strapped to
an elastic chest belt and three electrodes were placed on the body to form lead
II and lead III 1 recording configurations. The GSR sensor was attached on a
wrist band. Then, skin conductance was measured at the base of two fingers by
measuring the electrical current that flowed as a result of applying a constant
voltage. The third sensor node which was placed on the waist belt was used to
collect accelerometer data.

1 (Lead II is the voltage between the left leg (LL) electrode and the right arm (RA)
electrode), and Lead III is the voltage between the (positive) left leg (LL) electrode
and the left arm (LA) electrode.
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4.2 Experimental Protocol

20 participants were monitored, 13 men and 7 women. Participants were stu-
dents, faculty, and staff at our university. A computer application that randomly
presented Stroop Color-word interference tests and mental arithmetic problems
was provided as stressor. The Stroop test has been widely utilized as a psy-
chological or cognitive stressor to introduce emotional response and autonomic
reactivity [28]. Because participants would answer so many questions during
the study, we added a variant of the Stroop test to prevent habituation, where
participants were asked to select either color-name or font-color. The mental
arithmetic is based on the Montreal Imaging Stress Task (MIST), consisting of
two levels of difficulty under time pressure [7]. The mental arithmetic will adapt
to participants’ level or adjust the time limit in order to maintain an appropriate
level of stress. The participants completed the mental tasks by interacting with
a 19-inche touch-screen. Examples of two mental tasks are shown in Figure 3.
When the participant provided an answer before the end of time limit, the feed-
back “correct” or “wrong” was displayed. The interface also shows the elapsed
time and the participant’s accuracy rate.

Participants were confronted with mental stress in each of three different
conditions: sitting, standing, or walking. Each condition consisted of a baseline
measurement with no stressor, measurement during the mental tasks, and a
recovery segment:

1. Baseline segment (10 minutes): Listen to meditation music (in seated, stand-
ing, or walking position).

2. Mental task segment (10 minutes): Complete Stroop test and mental arith-
metic under time pressure while seated, standing, or walking.

3. Recovery segment (10 minutes): Sit in a chair with closed eyes and listen to
meditation music

All participants completed three conditions in random order. For the baseline
and mental task segments, the participant had to complete the physical activity
simultaneously. For example, when the participant was in the mental task seg-
ment of walking session, the participant was required to walk on the treadmill at
3 mi/hr and complete the mental task using the touch screen at the same time.

4.3 Data Collection

We collected sensor data from each participant for three physical activity condi-
tions. The data were separated into six datasets. Hence, for each participant, we
collected six data sets shown in Figure 4. The dataset for each segment contains
19200 GSR samples and 60000 ECG and accelerometer samples.The dataset for
all 20 participants, including the six segments, is around 45 Megabytes.
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(a) Stroop Test User Interface (b) Mental Arithmetics User Interface

Fig. 3. Screenshots of the stressor application

(a) Sitting condition

(b) Standing condition

(c) Walking condition

Fig. 4. Experimental conditions

5 Data Analysis

5.1 Feature Extraction

For each participant’s 60 minutes of data, we segment each channel of data into a
60-second window to obtain the data windows ω1, ω2, ..., ω60. We denote Fi as the
feature vector extracted from the data window ωi and Fi(j) is the jth feature in
the feature vector Fi. We create a set of feature vectors F for each participant’s
data set. Each segment in the experiment protocol has 10 feature vectors (e.g.
F1 − F10 for SitBase, F11 − F20 for SitStress,..., F51 − F60 for WalkStress).

We chose a 60-second window for two reasons. First, the HRV features that
we used in this study can distinguish between stressed and baseline segments
using 60-second windows [23]. Second, the 60-second feature window reduces the
impact of misclassified R-peaks by averaging HRV features within the window.
All feature extraction algorithms are implemented in MATLAB. To eliminate
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the artifacts caused by variations in electrode contact and physical motion, we
applied both moving average and band-pass filtering techniques. For R-peak
detection, we mainly adapted a derivative method [19] with modifications.

HRV analysis: HRV analysis methods can be categorized into time domain
and spectral domain analysis. Time domain analysis is calculated directly from
RR-intervals over the feature window. Examples of time domain features include
mean value of the RR-interval (mean RR), standard deviation of the RR-interval
(Std RR), mean value of the HR (mean HR), standard deviation of the HR (Std
HR), RMSSD, and pNN50. Moreover, in the spectral domain methods, a power
spectrum density (PSD) estimate is calculated for the RR interval series. Fre-
quently used spectral measures are the very low frequency (VLF, 00.04 Hz), low
frequency band (LF) and high frequency band (HF), and the ratio LF/HF. These
spectral domain features are often interpreted as a measure of sympathovagal
balance (autonomic state influence by the sympathetic and parasympathetic
nervous system). We first calculated six time-domain features of HRV including
mean RR, Std RR, mean HR, Std HR, RMSSD, and pNN50. Then, we applied a
Fast Fourier Transform (FFT) to convert the time-domain RR-interval sequence

(a) RR interval data of a subject

(b) Skin conductance of a subject

Fig. 5. RR interval and GSR data in six experiemental segments
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to the power spectrum. The frequency components are used to calculate three
spectral-domain features of HRV for each window: LF, HF, and LF/HF ratio.

GSR analysis: Due to the startle response (the physiological response of body
to a sudden stimulus), the resistance of the skin can vary. The GSR can measure
these subtle differences [29]. All GSR signals were filtered with a 256-point low-
pass filter with 3Hz cutoff frequency to reduce noise. We calculated three GSR
features: the total number of the startle responses in the segment, the sum of the
response magnitude, and the sum of the response duration. These three features
characterize the startle response, and Healey and Picard demonstrated their
reliability [10]. Two additional features, mean and standard deviation of skin
conductance level, are calculated over the feature window. Figure 5 shows the
R-R interval and skin conductance recordings of a subject over six experimental
segments.

Accelerometer analysis: Olguin and Pentland’s work indicated that an ac-
celerometer placed on hip significantly helped classify activities such as sitting,
running, crawling, and lying down [18]. Therefore, we placed one accelerometer
on the waist belt close to the hip in order to maximize the difference of signal
among sitting, standing, and walking activities. For each of the three axial di-
mensions, we calculated twelve features: mean value, standard deviation, energy,
and correlation of each two axes. Table 1 lists the features derived from the ECG,
GSR, and accelerometer data.

Table 1. Feature Vectors

Sensor Features

f 1-f 9 ECG Mean RR, Std RR, Mean HR, Std HR
RMSSD, pNN50, LF, HF, LF/HF ratio

f 10-f 14 GSR Mean SCL, Std SCL,
Total magnitude, Duration,
and Number of startle responses

f 15-f 26 Accel Mean of X, Y and Z axis
Standard deviation of X, Y, and Z axis
Energy of X, Y, and Z axis
Correlation coefficient of XY, YZ, and ZX

5.2 Feature Normalization

Skin conductivity and heart rate signals are dependent on each individual’s initial
physiological level. Even when the GSR or HR baseline level is measured from
the same individual, these signals are likely day-dependent due to variations in
physiology caused by diet or sleep, variations in mental state affected by mood,
or variations in the sensor’s connectivity with skin [20]. Hence, to eliminate the
intra-individual factor, we applied Equation 1 to each feature in feature vector set
F . Since we conducted a short recording interval (one hour) for each participant,
day-to-day variation caused by mood fluctuations is not considered in this study.
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F (j)norm =
F (j)− Zmin(j)

Zmax(j)− Zmin(j)
,where

Zmin(j) = min{Fi(j)}, ∀i ∈ |F |
Zmax(j) = max{Fi(j)}, ∀i ∈ |F | (1)

Equation 1 describes the normalization process for each feature. The first step
is to subtract the minimum value from each feature such that the feature with
minimum value becomes 0. Then, the feature values are divided by the overall
range in six segments to make all the features lie between 0 to 1. The normalized
feature values are fed to the classifiers described in the next section.

6 Stress Classification

We used the WEKA machine learning engine to train classifiers using various
learning methods, including the J48 Decision Tree, Bayes Net, and support vec-
tor machine (SVM) for stress inference [9]. We divided the training data into
two different sets in order to evaluate how activity information may influence
the results of stress inference. One set of training data only includes the ECG-
and GSR-related features while the second set also includes the accelerometer
information. We also evaluated classification performance for between-subjects
datasets and within-subject datasets.

6.1 Decision Tree

Decision Tree is a commonly used machine learning technique that uses a divide-
and-conquer approach to classify testing data. During the learning stage, the
tree structure is constructed. The tree structure has internal nodes and leaves.
Internal nodes represent the test conditions while the leaves represent the clas-
sification results. We used a J48 Decision Tree for mental stress classification.
Again, since we are interested in observing how the accelerometer information
affects the accuracy of mental stress classification, we separated the training
data into two sets. One dataset includes features extracted from accelerometer,
ECG, and GSR recordings. The other dataset only consists of ECG and GSR
features. When the Decision Tree is being constructed, the most informative
feature (with a higher information gain) will be used near the root. Therefore,
we are interested in observing the constructed decision tree structure to see if
the accelerometer information is used in the test conditions and provides higher
information gain.

6.2 Bayesian Network

We are also interested in using a Bayesian network structure to model the prob-
abilistic relationships among physical and mental stress. Figure 6 shows two
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(a) Bayesian network with activity
information

(b) Bayesian network
without activity informa-
tion

Fig. 6. Variable S represents a binary stress state and variable P represents the
three physical activities. Variables A, E, and G are the accelerometer, ECG, and GSR
features, respectively.

Bayesian network structures with and without considering the activity informa-
tion to predict the existence of mental stress.

By comparing the inference results of the models in Figure 6a and in Figure 6b,
we can investigate the effects of activity information in a mobile stress detection
scenario.

In Figure 6a, S ∈ {baseline, stressed} represents a binary stress state, and
P ∈ {sitting, standing, walking} represents the three physical activities. A, E,
and G are the subsets of features defined in Table 1. A = (a1,...,a12) is a 12-
feature vector corresponding to the accelerometer measure. E = (e1,...,e9) is a
9-feature vector related to the HRV parameters. G = (g1,...,g5) represents a set
of 5 GSR-related features. Equation 2 shows the joint probability distribution
encoded by the Bayesian network structure shown in Figure 6a. The Bayesian
network structure shown in Figure 6b only uses physiological signals from ECG
and GSR to infer the probability of the mental stress state.

P (S, P,A,E,G) =

P (S) · P (P ) · P (A|P ) · P (E|P, S) · P (G|P, S) (2)

We ran the K-Means clustering algorithm with the Euclidean distance metric
on accelerometer data to automatically label variable P. Because we have three
types of activities (sitting, standing, and walking), we set K = 3. Figure 7a
shows an example of accelerometer raw data we collected from the experiment.
Figure 7b shows the class of activity derived from Figure 7a using the K-Means
algorithm.

The probability distribution of S conditioned on the three observed variables
(A = a, E = e, and G = g) can be obtained by marginalizing the activity variable
P as shown in Equation 3.
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(a) Accelerometer data from one subject (red:x-axis, green:y-axis, and
blue:z-axis)

(b) Activity classes derived from accelerometer data using the
K-means algorithm

Fig. 7. Accelerometer data of a subject during three activities and the activity class
derived by the K-Means algorithm

P (S|A = a,E = e,G = g) =

|p|∑

i=0

P (S, P = pi|A = a,E = e,G = g) (3)

The binary class of the stress state is estimated by maximizing the posterior
probability in Equation 4.

sestimated = argmax
S

|p|∑

i=0

P (S, P = pi|A = a,E = e,G = g) (4)

An evaluation of cross validation for these two Bayesian networks is presented
in Section 7.
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6.3 Support Vector Machine

Support Vector Machine (SVM) is a classifier that performs classification by con-
structing a high-dimensional hyper-plane [4]. The constructed high-dimensional
hyper-plane is optimized to separate the testing data into two classes. SVM also
allows different types of kernel functions to transform testing data points into
a higher dimensional space and make the transformed data easier to be classi-
fied. Since SVM has recently become a popular machine learning technique for
classification, we are interested in investigating its performance with our testing
dataset.

7 Experimental Results

In this section, we present the results from two experiments and a comparison
of ECG and GSR feature efficacy. First, to investigate how a combination of
features affect stress classification accuracy, we design four feature combinations
from the measured accelerometer, ECG, and GSR data. Second, we test if the
classifiers generalize across subjects by training our classifier on subset of subject
data and testing our classifier on the remainder. Finally, we analyze the ECG
and GSR features in six conditions across 20 participants.

7.1 Cross Validation with Different Feature Combinations

The first type of feature combination includes data measured from the accelerom-
eter, ECG, and GSR. In each of the other three types of feature combinations,
one feature is excluded. For each of the three classifiers described in Section 6,
we evaluated its classification accuracy using these four types of feature combi-
nations. Figure 8 plots the results of using 10-fold cross validation. For all of the
three types of classifiers, excluding data recorded from the accelerometers de-
grades in the classification accuracy. The experimental results provide evidence
to support our hypothesis that accelerometer data help the classification accu-
racy in a mobile stress detection scenario; physiological signals are both affected
by physical activities and mental stress levels.

Furthermore, since heart rate is highly affected by the intensity of physical ac-
tivities in our experiment, the classification results are even better for Bayesian
network and SVM classifiers without including ECG features compared to the
all-feature combination. Unlike ECG, the GSR features are good indicators to
identify the presence of mental stress. When GSR features are excluded, the
accuracy of each classifier decreases compared to the all-feature combination.
We also found that the best classification accuracy (92.4%) is obtained from
using the decision tree classifier with the all-feature combination. Moreover, the
structure of the decision tree uses the energy of the x-axis from the accelerome-
ter data as the root test condition. Several accelerometer features are also used
as test conditions close to the root of the tree. It proves that activity information
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provides higher information gain in the decision tree learning stage. Table 2
shows more detail of the cross validation results on 1200 samples. The grey cells
highlight correctly recognized instances (true-positives).

Fig. 8. Accuracy of the three classifiers using different feature combinations

Table 2. Confusion matrix for the combination of three classifiers and different feature
combinations

7.2 Between-subjects Experiment

We randomly selected a subset of our twenty subjects and used their data to
train our classifier. The, we tested the classifier on the remainder. For a given
between-subjects classification setting, we repeated 10 times and calculated the
average accuracy. To observe the effect on the size of the subset data, we changed
the number of subjects in the training data set from 3, 6, ...to 18. The results
shown in Figure 9 demonstrate that the SVM classifier outperforms the other
two classifiers for between-subjects classification.
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Fig. 9. Classification accuracy between subjects with the three classifiers

7.3 Comparison of HRV and GSR Parameters

Table 3 compares HRV features for the six experimental segments: (SitBase, Sit-
Stress, StandBase, StandStress, WalkBase, and WalkStress). Each HRV param-
eter is calculated by the average value across 20 participants for each segment.
The mean RR interval decreases in all of the three mental task segments while
the mean HR increases. The trend of mean RR and HR proves their efficacy
in distinguishing mental stress across the three physical activities. The pNN50
feature also has a tendency to decrease from the baseline to the mental task seg-
ment. In the walking condition, pNN50 significantly decreases compared to the
lower-intensity activities (sitting and standing). The standard deviation of RR
is relatively high in walking condition and decreases the percentage of heartbeat
intervals with difference in successive heartbeat intervals greater than 50 ms.

The last three rows in Table 3 are three spectral-domain parameters. The LF
component is an indicator for both sympathetic modulations and cardiac vagal
activity. It slightly increases from the baseline during all three activities. The
HF component is considered to reflect parasympathetic modulations. There is
a large increase in the HF component when the participants are walking. The
imbalance of increase on LF and HF causes the LH ratio (LF / HF), a widely
adapted index of sympathetic modulations, to decreases from sitting to walking.
The HF increases during exercise has also been noted by other researchers [21].

From our analysis of all HRV parameters, we found that mean HR and RR
are the most reliable features to recognize mental stress across three physical
activities. The standard deviation of RR and HR did not demonstrate a coherent
relation to the baseline and stressed segments. Spectral-domain parameters are
sensitive to the physical activity conditions. Hence, this explains why excluding
HRV features even increases in accuracy compared to the all-feature combination
as shown in Figure 8.

Table 4 lists five GSR parameters for each segment. For each startle response,
we can indicate its duration and magnitude. The total duration was calculated
by accumulating the total elapsed time of the responses in the window. The total
magnitude was measured by summing up the difference of the onset and the peak
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Table 3. Comparison of HRV parameters in six conditions

HRV Sit Sit Stand Stand Walk Walk
Parameters Base Stress Base Stress Base Stress

∗Mean RR (ms) 887.59 814 752.07 722.43 586.03 562.94

Std RR (ms) 70.88 85.39 82.44 68.35 92.47 98.94

∗Mean HR (bmp) 69.53 75.59 82.84 85.66 107.09 110.79

Std HR (bmp) 5.54 7.56 8.00 9.50 18.98 16.21

∗pNN50 (%) 19.54 15.69 12.09 11.38 4.49 4.23

LF (%) 7.04 8.45 7.49 7.77 9.43 9.45

HF (%) 6.25 6.51 6.33 6.73 13.95 15.64

LH Ratio 1.34 1.51 1.45 1.48 0.67 0.71

of each startle response in window. The number of response occurrences over the
one minute window was also recorded. Total duration, total magnitude, total
occurrence of the responses, and mean GSR level illustrate an obvious increase
from baseline to stressed segment. However, the standard deviation does not
provide significant change between conditions.

8 Discussion and Conclusion

Previous mental stress studies were conducted in the laboratory with seden-
tary subjects. However, the controlled setting in a laboratory is not suitable for
mobile mental stress monitoring because physical activity affects the measured
physiological signals. The main goal of this study was to determine whether ac-
tivity information can compensate for the interactive effects of mental stress and
physical activity, which affect the accuracy of mental stress detection. Therefore,
we conducted a user study in which participants completed baseline and mental
task segments across three physical activities (sitting, standing, and walking).

This paper presented a multimodal approach to model the mental stress ac-
tivation affected by physical activities using accelerometers, ECG, and GSR
sensors. Our analysis showed that accelerometer data is necessary to improve
mental stress detection in a mobile environment. We also noticed that the De-
cision Tree classifier has the best performance in our experiments using 10-fold
cross validation. Decision Tree is recognized as one of the classification methods
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Table 4. Comparison of GSR parameters in six conditions

GSR Sit Sit Stand Stand Walk Walk
Parameters Base Stress Base Stress Base Stress

∗Total duration(second) 3.17 14.30 4.16 13.15 13.72 16.32

∗Total magnitude(µSiemens) 0.79 2.04 0.75 3.32 1.69 1.97

∗Total occurrence 1.09 6.58 3.13 6.37 5.63 7.47

∗Mean GSR(µSiemens) 4.69 4.83 6.19 6.97 6.42 7.22

Std GSR(µSiemens) 0.62 0.53 0.62 0.71 0.63 0.52

with low computational complexity [14]. Therefore, the performance along with
the low complexity of the Decision Tree classifier makes it a practical design
choice for stress detection on mobile devices.

Furthermore, we also compared how physical activities and mental stress af-
fect HRV and GSR parameters. We found that the GSR features are relatively
independent of the three activities, even when participants were walking at a
3mi/hr. The between-subjects experiment demonstrated that we need to use up
to 90% of subjects’ data to achieve the classification accuracy of around 80%.
It indicates that physiological signals tend to be user-dependent; hence, mental
stress monitoring applications should also rely on personalized data in the train-
ing stage. We plan to further investigate the user-dependent attribute with more
participants in the future. This study was limited to three specific activities and
a relatively short recording time. The next step is to design a mobile platform
enabling participants to wear sensors on a daily basis.

Our activity-aware scheme for mental stress detection can facilitate the devel-
opment of many affective mobile applications using physiological signals (e.g.,
stress management, affective tutoring, and emotion-aware human computer in-
terfaces). Including activity recognition techniques to interpret users’ emotional
states helps produce more feasible wearable sensors in everyday life.
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