Resource Description in Large Scale Heterogeneous
Resource Federations

Sebastian Wahlel, Christos Tranorisz, Shane F0x3, and Thomas Magedanz1

! Fraunhofer FOKUS, Germany
{sebastian.wahle, thomas.magedanz}@fokus.fraunhofer.de
? University of Patras, Greece
tranoris@ece.upatras.gr
3 Telecommunications Software & Systems Group, WIT, Ireland
sfox@tssg.org

Abstract. Resource Federations aim at providing access to information and
communication technology (ICT) resources across the boundaries of
administrative domains. This is of interest today as modern societies are
concerned about ICT infrastructure energy consumption and need to improve
the way ICT resources are provisioned and maintained. This paper describes a
concept and prototype implementation for resource federations to overcome
resource and implementation heterogeneity in order to allow easy resource
provisioning and control. This is achieved by defining a Resource Adaptor
Description Language (RADL) that allows Domain Managers and higher layer
orchestration logic to control heterogeneous resources abstracting from
programming languages and implementation paradigms. The prototype has
been evaluated by deploying RADL within the Panlab federation. The paper
summarizes our experiences and outlines the most important results.

Keywords: Resource Adaptor Description Language, RADL, Teagle, Panlab,
Resource Federation, FIRE, Testing, Testbed, Future Internet.

1 Introduction

In resource federations, several organizations commit resources to a resource pool in
order to implement a common service. Therefore, resource federation is a concept to
allow resource sharing beyond the boundaries of administrative and organizational
domains. This mechanism can follow a recursive model. Several research initiatives
worldwide currently address this challenge for a number of reasons:

e Modern societies are concerned about the ICT industry energy consumption.
Sharing and re-using infrastructure and services across organizations is expected to
reduce the overall energy consumption, as well as over provisioning to ensure high
availability of services.

e The pace of network convergence and technology evolution has dramatically
decreased infrastructure lifetime — the time an infrastructure remains at the
technology’s cutting edge — making investments in expensive isolated and
specialized infrastructures more risky than they were already. [1]

T. Korakis et al. (Eds.): TridentCom 2011, LNICST 90, pp. 100-[[15] 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Resource Description in Large Scale Heterogeneous Resource Federations 101

e Large scale ICT and network research experiments carried out using live networks
and production systems require federated infrastructural resources to increase the
scale and realism of experiments [2].

e The above mentioned points apply in particular to complex cross-layer and cross-
technology infrastructures such as Future Internet (FI) research testbeds.

There is no generally accepted definition of FI. In the context of this work, FI can be
defined as a large scale socio-technical system, comprising of Internet-accessible
infrastructure, information and services, coupled with the physical environment and
human behaviour. [3] For FI research testbeds the following applies:

e Federation enables access to additional resources increasing the scale of potential
experiments. [3]

e Federation enables access to resources with unique properties to enrich
experiments. [3]

e Combining resources from different communities promotes the collaboration
between these and the related research groups (e.g. Telco and Internet). [3]

e A collection of testbeds that share or feature similar properties or technologies
might eventually evolve into the backbone of the Future Internet itself.

This has led to numerous research programs in the field of new Internet architectures
as well as suitable experimental platforms to support large scale experiments.
Examples are the NSF programs GENI [4] and FIND [5] as well as the European
FIRE initiative [6], [7]. In Asia similar programs have been launched such as AKARI
[8] in Japan. To support architectural research experiments, several experimental
facility projects have been launched such as TIED [9], PlanetLab [10], ProtoGENI
[11], ORCA [12], and ORBIT [13] on the GENI side. In FIRE, several projects are
contributing to the experimental facility such as Onelab2 [14], Federica [15], and PII
[11,[16],[17]. Joint Asian activities are carried out under the APAN (Asia-Pacific
Advanced Network) [18] initiative, the Asia Future Internet Forum (AsiaFI) [19], as
well as PlanetLab CJK (China, Japan, Korea), which is a joint PlanetLab cooperation
by China, Japan, and Korea [20]. An in-depth discussion and comparison between the
different control framework approaches for experimental facilities has been published
earlier [21].

Most of the initiatives and projects mentioned above are currently designing and
implementing federation mechanisms and procedures with specific use cases and
application areas in mind. Many of the aspects that need to be dealt with in this
context are not new and have been achieved in different applications domains in the
past. For example, computing power federation has been tackled in the Grid domain.
Another example is identity federation, which has been solved for roaming in Telco
networks. [3]

However, federating arbitrary resources across multiple administrative domains and
on multiple federation levels, involves so many technical, operational, and legal issues
that it can be considered a valid research field with many yet unsolved issues. In order
to realize the vision of fully federated information and communication technology
resources that can be used transparently and seamlessly, the following fields have to be

102 S. Wahle et al.

addressed: resource description, resource registration, resource access control, service
level agreements, resource usage policies, resource management, resource life cycle,
operational procedures, legal frameworks, provider/user incentives, business
frameworks, market platforms, etc. [3].

Furthermore, although many of the above listed issues have been addressed and
widely discussed for single domains, additional constraints arise for multi level
federations where administrative domains allow resource usage beyond the first layer
of abstraction. For example, a university might establish a resource federation where
different departments adhere to a centralized resource control/management instance,
resource description model, operational procedures, etc. and commit resources to a
university-wide resource pool. The university might now join a nationwide initiative
(e.g. GENI) where several universities with similar resource control/management
schemes agree to federate. This federation is then essentially a federation of
federations. The next level is still imaginable: a federation of nationwide federations
(e.g. GENI and FIRE agree to federate). This is basically a recursive model that can
be investigated at any meaningful granularity [3].

The paper is structured as follows: section 2 covers our approach to resource
federation in terms of a federation framework and resource modeling/description.
Section 3 introduces the Resource Adaptor Description Language, while section 4
outlines concrete usage examples. Section 5 concludes the paper.

2 Federation Framework and Resource Description

We have developed a Resource Federation Model [1] and an according prototype
implementation [1], [23] that allows sharing resources beyond domain boundaries. As
this has been discussed in previous publications, as cited above, we will only very
briefly summarize this for the convenience of the reader.

An important design criterion was that the resources to be shared should be highly
heterogeneous in nature. Resources that are currently supported range from general-
purpose virtual and physical machines, to Cloud Computing resources, services, and
specialized devices. Via dedicated Resource Adaptors (RA, similar to device drivers)
that plug into Domain Managers (e.g. the Panlab Testbed Manager, PTM [23]),
arbitrary resources can be controlled making it a generic control framework that
strongly supports federation. Experimenters can browse through the resource registry
content and can select, configure, deploy, and access booked resources in order to
execute network and application layer experiments.

Fig. 1 shows this concept of distributed heterogeneous resources that are offered by
distributed testbeds. The resources are described according to a common model. This
allows for sophisticated resource management across the boundaries of organizational
domains. This concept allows us to provide a large pool of federated resources that
can be used in any meaningful combination.

It is planned to federate our resources beyond the Panlab federation with similar
approaches in the United States and Asia. However, this results in a new set of
challenges and requirements, as federating across federations requires all layers to
interoperate. Also, issues like federated identity management, federated resource

Resource Description in Large Scale Heterogeneous Resource Federations 103

control frameworks, domain specific resource and policy descriptions, etc. need to be
overcome. In Panlab, some of these issues have been tackled by agreeing upon and
specifying critical functionality such as resource description and control framework
interfaces. It remains to be seen if sufficient demand for global heterogeneous
resource federations will be observed and if both technical and operational/legal

solutions can be found to address this challenge.

& [—
¢==) | Teagle Framework S NS

Experimenter

11 |) Federation Framework & Model
000000
peeses) 1 T Ottt
Oo'o-o'e0
Testbed Testbed Testbed

Other Federation
Frameworks I:I <:> O
(USA/ASIA)
Heterogeneous resources offered by distributed

administrative/organizational domains

Fig. 1. Overall resource federation framework overview

Fig. 2 shows how resources are controlled inside one Panlab domain. Virtual
groupings of resources can span the border of domains. The central Teagle framework
allows the configuration, orchestration, and reservation of such virtual resource
assemblies relying on a common resource description model and central registry.

Teagle Registry
Domain
Manager
EJ K] EJ
Resource Resource Resource

Administrative Domain / Authority
Fig. 2. Control framework model
Teagle in itself is a rather complex framework and compromises several entities

such as a request processor, an orchestration engine, a resource repository, as well as
a customizable graphical user interface. All this has been described in [23].

104 S. Wahle et al.

In the following, we will focus on the resource registry and resource description
model used in Panlab [17] that allows assembling and managing virtual groupings of
distributed resources. In Panlab, a virtual resource grouping is a specific testbed
requested by a Panlab customer, we call this a VCT (virtual customer testbed).

Given that the federation system needs to deal with a great number of highly
heterogeneous resources, the model used to structure and describe the resources
needed to be extensible. An existing information model was used as the basis to
represent characteristics of the resources and their relationships in a common form
independent of a specific repository implementation. Resources can be modeled as
concrete physical entities such as a physical machine or abstract, logical resources
such as an administrative domain.

The DEN-ng information model [22] that is rooted in the area of network management
and particularly autonomic networking was taken as a starting point for the modeling
work. It allows the description of resources as managed entities, their life cycle, as well
as associated policies to be modeled. In terms of DEN-ng, resource entities provide a
service and have a certain configuration attached that can be defined and altered using the
federation tools that are exposed to the experimenter via Teagle [1].

P
roduct LogicalResource

String commonName
String description

0 v\ / \
Vet Application

ManagementInfo
boolean shared

Q
state icannect\ons user owney’ provider (containsApplicationComponents
*
VctState v ApplicationComponent ManagementApplication
Connection Person Organisation
providesResources
/A [X
ManagementApplicationComponent

Ptm

configurationData

Ve

Resourcelnstance

boolean shared

statefeomem&rourceswc configurationData
ResourcelnstanceState

ResourceSpec ConfigurationBase
Geometry
y/ost EonﬁgurationParameters T \
Cost ConfigParam Configlet Configuration

Fig. 3. Excerpt from the information model, showing the LogicalResource branch

Resources can exist as Physical- or Logical-Resource (see Fig. 3) where resource
providers can define a list of resource instances as specific subtypes based on the model
to represent their federation offerings. The repository implementation has been realized

Resource Description in Large Scale Heterogeneous Resource Federations 105

as a number of applications running as contexts on an application server. Each
application has its own data storage facility and exposes a HTTP-based RESTful
interface with a number of REST (REpresentation State Transfer) resources. The
repository only deals with storage and retrieval of data on behalf of client applications.
Other tasks are carried out by specially designed applications using the repository for
data storage. This allows the set of tools that collectively represent the Teagle framework,
to develop independently of the repository but to rely on a common data model.

The HTTP-based RESTful interface exposed by the implementation allows access
to data via the HTTP standard methods of GET, POST, PUT and DELETE. RESTful
calls on resources are implemented in the form of URL mappings to controller
methods. As an example, the response for the GET request for a VCT (id=20) is listed
below. This shows the configuration for a given VCT containing several resource
instances and lists the connections between the resource instances.

<vct 1d="20">
<shared>false</shared>
<hasConnections>
<connection id="3020"/>
<connection i1d="3021"/>
<connection i1d="3022"/>
</hasConnections>
<commonName>My_VCT</commonName>
<hasBookings/>
<description> My_VCT </description>
<state id="3"/>
<providesResources>
<resourcelInstance id="5169"/>
<resourcelInstance id="5175"/>
<resourcelInstance id="5539"/>
</providesResources>
<user id="5"/>
</vct>

Each resource instance has other data sets defining the configuration for the resource
instance. These data sets are called configlets as shown below.

<resourcelInstance id="5539">
<shared>false</shared>
<resourceSpec id="3188"/>
<commonName>VideoLan-16</commonName>
<configurationData>
<configlet id="7506"/>
<configlet id="7500"/>
<configlet id="7503"/>
<configlet id="7499"/>
</configurationbData>
<description>singleton VideolLan-16</description>
<state 1d="9"/>
<geometry id="694"/>
<availability/>
</resourcelnstance>

106 S. Wahle et al.

Resource instances are derived from resource types. For every resource type there can
be many instances with different configurations that can be part of numerous VCTs.
An example for a resource instance is a specific deployed virtual machine that is of
type virtual machine and can be configured with a certain amount of memory and a
number of central processing units (CPUs). Further details of the Panlab repository,
its information model and implementation can be found in [29]. In the following
section, a Resource Adapter Description Language (RADL) is introduced that shall
help developers implement resource adaptors. It is critical for the Panlab federation to
maintain a rich collection of resources that can be offered in order to attract many
experiments to be run on the federated facility. Therefore, making it easy to offer
resources via Panlab is a main concern. Hence, the development of RADL.

3 Resource Adaptor Description Language

The Resource Adapter Description Language (RADL) is a concrete textual syntax for
describing a Resource Adapter (RA, see section 2) based on an abstract syntax
defined in a meta-model. RADL is an attempt to describe an RA in a way that
decouples it from the underlying implementation code. RADL’s textual syntax aims
to simplify the description of an RA rather than having to write code in Java or other
target languages. We anticipate that one can define an RA in RADL without even
knowing the target language. This description could be also used to publish the RA
definition to the repository for example defining the parameters as part of a
ConfigParam (see Fig. 3).

RADL is useful in cases where there is a need to configure a resource that offers an
API for configuration as illustrated in Fig. 4. The user can configure the resource
through some Configuration Parameters. The RA “wraps” the parameters and together
with the Binding Parameters, the RA can configure the resource. A Binding Parameter
is a variable that is assigned locally by the resource provider, e.g. a local IP address.

@
,n‘ User
Configuration
parameters

‘ Resource Adapter ‘

Binding
parameters

‘ Resource ‘

Fig. 4. A Resource Adaptor configures a resource through an API

The abstract syntax of the language, the RADL meta-model, is defined in Ecore: a
variant of OMG’s MOF [24] that has been defined in the Eclipse Modeling
Framework [25] and is more or less aligned with OMG's Essential MOF (EMOF).

Resource Description in Large Scale Heterogeneous Resource Federations

107

Part of the meta-model is illustrated in Fig. 5, where the Resource Adapter is an

aggregation of

configuration.
E RescurceAdapter
protocol
childParams allowPararms 0.7 confParams 0.1
0.2 " - H Protocol
H SupportedChildTyps H AllowedType H CenfigurationParam
0.5
0.1 URLparams
paramType
paramType
0.1 paramType
0.1
paramType
H ParameterType 0.1
E ruleHTTP H wlessH

some parameters, particularly

Fig. 5. The RADL meta-model as defined in Ecore

the

BindingParam
ConfigurationParam. The class Protocol wraps the concept of the

and
API

0" bindParams

0% cername

0.1

remotelachine

0.1 password

0.1

H ruleXMLRPJ

RPart

H BindingParam

0.1
RPCMethod

Currently, four APIs have been examined: SSH, HTTP, XML-RPC and a Java
class. The ConfigurationParams are passed together with the Binding
Params to the resource to be configured.

Sample.radl

RADL ecore
Meta-model
\

~,
’ ,
/
! l:l A
| | !
/

TR
i
i
i
i
1
1
1
1
1

M AT
/\ RaActivatorjava

y W Ralnstance jova

SompleService jova
Workflow

(xpt files)

L/

. P

SampleAdaptorjava

MAT
& A

Warkflow
[xpt files)

Sample model

Sample xml

20N

Workflow
(xptfiles)

Fig. 6. Practitioner’s view and the artifacts of RADL

—

.

—| install

k4

i install

108 S. Wahle et al.

A practitioner’s view and the artifacts are shown in Fig. 6. The RA practitioner
defines the model of a RA in RADL by means of an editor implemented in Eclipse
that supports the syntax of the language. While the practitioner describes the RA, the
editor instantiates the RA model based on the RADL meta-model. For the definition
of the concrete syntax of the language (and the Ecore model itself from the syntax of
the language), the Textual Modeling Framework of Eclipse is used, specifically the
XText framework [26]. Having defined the concrete syntax of RADL, the XText
framework provides a rich editor with syntax-error detection and context assistance
for the RADL practitioner, as depicted in Fig. 7.

TPassword — ZOminpass:

RExecute{
"mysgl -h " <<"mysglPowernser">> " -u " <<"mysglhost">>
— =n|
" piiz‘;;;?E '= MySQL DB Mame - org.panlab.exampleRAs.mysql.MySQL =
-e
WCRELTE USER * '= MySQL Password - org.panlab.exampleRAs.mysql.MySQL " ceMMySOL Passwordis Mrim
nERANT 2Ll pri|| = MySQL Username - org.panlab.exampleRAs.mysql.MySQL 1321 WITH GRANT CPTION:\""

'= admin_port - org.panlab.exampleRAs.mysql.admin_port

'= adminpass - org.panlab.exampleRAs.mysgl.adminpass |z

Fig. 7. The RADL editor with error detection and context assistance

Support tooling in Eclipse automatically generates the target code (currently Java)
that implements the RA’s model definition through model-to-text transformations.
Such model-to-text transformations are written in xPand [27] template files. The
practitioner initiates a corresponding workflow that triggers the generation of code by
selecting the target Domain Manager (PTM) that should support the RA. There is also
the possibility to post the description directly to the Teagle Repository (see section 2).

An example of the concrete syntax as defined in Xtext is as follows:

ruleSSH returns ruleSSH:
{ruleSSH}'SSH' '{'
'Remote Machine' '='
remoteMachine=[scriptParam|STRING] ';'

'RPort' '=' RPort=[scriptParam|STRING] ';'

'RUsername' '=' username=[scriptParam|STRING] ';'
'RPassword' '=' password:[scriptParam|STRING] '
'RExecute' '{' (commands+=rulSSH_commands)*'}"

"}';

The above Xtext rule describes the way one can define an SSH wrapper command for
a Resource Adapter. In quotation marks we define keywords of the language. More
detailed use cases instantiating this SSH rule for a mysql Resource Adapter and the
Java rule of the Amazon RA example are given in the next section.

4 Use Cases

In this section, two scenarios of offered resources are discussed. The first case
presents the offering of a mySQL database. The second case demonstrates a generic
HTTP POST resource for a target Domain Manager.

Resource Description in Large Scale Heterogeneous Resource Federations 109

4.1 A MySQL Resource Adapter

Assuming that an organization wishes to offer a MySQL Database resource to the
Panlab Federation, the organization must develop an RA and then publish some
configuration parameters for the end-users: MySQL Username, MySQL
Password and MySQL DB Name. The MySQL server is hosted by a Linux server,
located at a machine with private IP 192.168.1.123.

|| org.panlab.exampleRAs.mysgl.radl 57

Resource Adapter "org.panlab.exampleRLs.myscgl"

f// Visible Parameters to VCT user

Configuration Parameters {
String o)
String
String

L Username";

DB Name";

Local Parameters used for resource configuration
Binding Parameters {
String remote ip="192

.168.1.123";

"root":
ass="rootpass";
"localhost":
ruser="root";

String admi
String admi
String mysg
String mysql
String mysqlP

werpass—"mysglrootpass";

On Update {
Execute when all Configuration Parameters are complete = YES;
RAProtocol SS5H {
Remote Machine = remots ip;
RPort = asdmin port;
RUsername = adminusername;
RPassword = adminpass;
RExecute{
"mysgl -h " <<"n
" —-password=" <<'
" -2 \"CRERTE DATABAS! ey e
"CREATE USER '" ' IDENTIFIED BY '™ L Password">> "
"GRANT ALL PRIVILEGES ON *.* . " L Username">> "'@'$' WITH GRANT OPTION:\""

" o-u " <<"mysglhost">>
.

Fig. 8. The RADL of the MySQL resource

Fig. 8 displays the RADL syntax of this MySQL RA. The Configuration
Parameters are the values exposed to the end user and appear on Teagle. The
Binding Parameters are values that are configured by the RA developer:
remote_ip, admin_port, adminusername, adminpass for connecting to
the remote machine. The final parameters mysqglhost, mysglpoweruser and
mysglPowerpass are for connecting to and configuring the MySQL resource.

The actions taken by the RA when it receives an UPDATE command (this is
usually received by a Domain Manager on its generic interface towards the federation
and is passed on to the RA inside a specific domain), is described in the On Update
section. The RA will connect through SSH and will configure the MySQL resource as
needed through some commands executed remotely.

The RADL workflow generates the necessary Java code for the target Domain
Manager. For the Panlab PTM, almost 800 lines of Java code are automatically
generated. For example the remote configuration commands are located at the method:

110 S. Wahle et al.

applyConf_ SSH() {
String cmd = "";
cmd += "mysgl -h ";

cmd += " " + m_configuration.get ("mysglPoweruser") ;
cmd += " -u ";
cmd += " " + m_configuration.get ("mysglhost") ;

For the Fraunhofer FOKUS Domain Manager (another implementation of a PTM) an
equivalent Java code is generated (~350 lines of Java code). A similar
applyConf_SSH method exists also in the Fraunhofer Domain Manager, although
the configuration and binding parameters are handled differently.

= org.panlab.exampleRAs.httpPost.radl 3

Resource Adapter "org.panlab.exampleR4s.httpPost"

Configuration Parameters { // Visible Parameters to VCT user
"Remote Machine"™ ;
"HITP URL";
Enum "2Zuth Method" = "NONE | BASIC | DIGEST":

"huth Username":
"ILuth Pazsword™;
"BCOST Bodv":

On Update {
Execute when all Configuration Parameters are complete = YES;
RAProtocol HTTP {

BemoteMachine = "HEemote Machine":
HttpURL = "" << "HITF URL" >> ;
HttpMethod = POST ;
HttpaAunth {
Method = "Auth Method™;
AnthUsername = "Auth Username" ;
AnthPassword = "Ruth Password":
PostBody = "POST Body":

Fig. 9. The RADL of the Generic HTTP POST Resource

4.2 A Generic HTTP POST Resource Adapter

In the next scenario, an organization wishes to offer a generic HTTP POST resource
to an arbitrary URL. This means that the user simply needs to configure the remote
machine and the HTTP URL where the POST is going to be executed. The user needs
to optionally configure an authentication method (enumeration NONE, BASIC or
DIGEST) with optional username and password. Finally, the user must define the
POST body, for example a XML description. The RADL description for this resource
is presented in Fig. 9. The code for the target Domain Manager can then be generated
automatically.

Resource Description in Large Scale Heterogeneous Resource Federations 111

43 Wrapping a Java Class for an Amazon Machine Instance Resource
Adapter

As discussed earlier, a Resource Adapter wraps the API of a resource and exposes an
interface to the underlying PTM and eventually to the user defining a VCT. With
RADL we created a Resource Adapter for an Amazon’s Machine Instance through the
java EC2 API. This enables us to create Virtual Machines (VM) on the Amazon’s
cloud, configure them, and later on use them in federation scenarios. Although
Amazon provides a plethora of settings for creating a VM, we wanted to provide a
simple set of parameters to the end user. Also, we have developed a java class called
EC2Wrapper, that has some methods for creating VMs on Amazon’s cloud using the
Java EC2 API. The following is the definition of the RA using the RADL syntax.

Resource Adapter "ami_ec2_ra"

Configuration Parameters { // Visible Parameters to VCT
user

String AMI_Id = "ami-2cb05345" description = "An AMI
from Amazon list"

String accessKey; //by amazon account

String secretKey;//by amazon account

String InstanceType = "ml.small" description = "AMI
type";

String AvailabilityZone = "us-east-la" description =
"AMI Region";

String PublicDnsName description = "ReadOnly.

Available after creating VM";

String loginUsername;

String loginPassword;

Integer maxNumberOfInstances= "1";//default is 1 AM
instance

}

On Update {
ProcessOnAllConfigurationParametersComplete = YES;
RAProtocol Java EC2Wrapper (accessKey, secretKey
){//Call the EC2Wrapper class
JExecute createAMInstances(AMI_Id , 1,

maxNumberOfInstances, loginUsername,

InstanceType , AvailabilityZone)

JAssign AvailabilityZone = getPublicDnsName ()
}
}

The configuration parameters exposed to the user are presented in the section of
Configuration Parameters. For example the AMI_Td can be set by the user
to define which type of VM is required. To create VMs, the user is provided with the
parameters accessKey and secretKey. Of particular interest is the
PublicDnsName parameter, which at the end of the creation of the VM image will
contain the assigned public DNS name from Amazon. This is used by other resources
or by the end user to connect.

112 S. Wahle et al.

Another interesting part is the On Update event. For this RA, a Java class is
wrapped, so we define the RAProtocol Java EC2Wrapper, which will wrap
the EC2Wrapper class. This allows one to execute commands by passing user defined
parameters, as shown in the line of JExecute createAMInstances, where
parameters are available by the Configuration Parameters section. It is also possible to
assign values to RA Configuration Parameters with the JAssign command. This
rationale is shown by the last line, where the return value of the method
getPublicDnsName () will be assigned to the AvailabilityZone
parameter.

The result of the RADL environment in Eclipse, is to automatically create almost
1000 lines of java code describing the RA, which can be used immediately for
installation in the PTM without user involvement. The following lines display how
the On Update section of RADL was transformed automatically in java:

private void applyConf_JavaWrapper () {
try {
ec2wrapper = new
EC2Wrapper (m_configuration.get ("accessKey"),
m_configuration.get ("secretKey"));
//JExecute

ec2wrapper.createAMInstances (m_configuration.get ("AMI_Id"
) 4 l 4

Integer.parselnt(m_configuration.get ("maxNumberOfInstance
s")),
m_configuration.get("loginUsername"),
m_configuration.get ("InstanceType"),
m_configuration.get("Availabilityzone")) ;
//JAssignment
m_configuration.put ("AvailabilityZone",
ec2wrapper.getPublicDnsName ()) ;

} catch (Exception el) {
// Auto-generated catch block
el .printStackTrace () ;
}
}

Fig. 10 displays an overview of how the Amazon RA works internally. After the
creation of the RA in Java using the Eclipse RADL environment, the RA can be
downloaded to the PTM of a testbed with other resources. Then it is made available to
the Teagle repository in order to be used by the VCT tool. When a user creates a
VCT, they can choose as many AMIs (Amazon Machine Image) as required and
configure them accordingly.

When the provisioning starts, the AMI RA is instantiated. Internally, the
EC2Wrapper class is instantiated where it starts negotiating with Amazon by utilizing
the EC2 API through Amazon’s web services. This is done by following a sequence
of commands for creating the VM image, keypairs and reserving it.

Resource Description in Large Scale Heterogeneous Resource Federations 113

! Type S Teagle

| Zone :

| loginUsername)
—_— | ’,‘

i loginPassword |

Customer frmermmesenoenoe e ‘
7 T
PTM)
ami_ec2 RA ¢ Amazon

(RA | [RA] ~ > AMI|

createAMI . T .
i 4 v W
{ createKeypair |
Testhed NS reserveAndWait ‘;

Resources L getPublicDNS :

EC2ws
updateRA parameters

SSHLogin (with keypair)

Create Customer Account

Fig. 10. How the Amazon RA works

When complete, there is an option to hand it over to the Panlab customer that owns
the VCT, configured with the requested credentials, if the user didn’t provide their
Amazon credentials. This means that the testbed resource acts as a broker for
Amazon, resulting in additional cost fees introduced by the testbed provider. More
details regarding the Amazon RA can be found at [28].

5 Conclusion and Future Work

RADL is still under continuous development. However, first results are really
encouraging as more people adopt it to develop RAs for the Panlab federation. As a
starting point, it can be used for the RA practitioner by simply creating the code
skeleton of an RA and continue developing in the target language.

More protocols, some workflow logic, and cleanup process on all generic CRUD
(create, read, update, delete) commands that can be received by a Domain Manager
on its federation interface, are under development. The syntax is also under
continuous refactoring as practitioners work with the language. RADL is licensed
under the Apache License, Version 2.0. More details, instructions, and downloads of
RADL are available at http://trac.panlab.net/trac/wiki/RADL.

As the Panlab federation is currently transitioning from research project status to a
production network with an increasing number of federation partners, the number of
Domain Manager and Resource Adaptor implementations is also increasing. Thus,
RADL will play a major role to ensure interoperability between different
implementations and maximize the re-use of existing work, which has always been
our motivation to federate ICT resources in the first place.

114

S. Wahle et al.

Acknowledgments. Parts of this work received funding by the European
Commission’s Sixth Framework Programme under grant agreement no.: 224119. We
would like to thank the Panlab and PII consortia for the good collaboration as well as
Prof. Dr. Paul Miiller (Technische Universitit Kaiserslautern/G-Lab) for the
discussions on federation.

References

(1]

(2]

(3]

(4]
(5]
(6]

(7]

(8]
(9]
[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

Wahle, S., Magedanz, T., Gavras, A.: Conceptual Design and Use Cases for a FIRE
Resource Federation Framework. In: Towards the Future Internet - Emerging Trends
from European Research, pp. 51-62. IOS Press (2010)

Wahle, S., et al.: Emerging testing trends and the panlab enabling infrastructure. IEEE
Communications Magazine 49(3), 167-175 (2011)

Wahle, S., Magedanz, T., Fox, S., Power, E.: Heterogeous resource description and
management in generic resource federation frameworks. In: Proceedings of the 1st
IFIP/IEEE Workshop on Managing Federations and Cooperative Management (May 2011)
(to appear)

National Science Foundation, GENI website, http: //www.geni.net

National Science Foundation, FIND website, http://www.nets-find.net
European Commission, FIRE website,
http://cordis.europa.eu/fp7/ict/fire

Gavras, A., Karila, A., Fdida, S., May, M., Potts, M.: Future internet research and
experimentation: the FIRE initiative. SIGCOMM Comput. Commun. Rev. 37(3), §9-92
(2007)

AKARI project website,
http://akari-project.nict.go.jp/eng/index2.htm

Faber, T., Wroclawski, J., Lahey, K.: A DETER Federation Architecture. In: DETER
Community Workshop on Cyber-Security and Test (2007)

Peterson, L., Roscoe, T.: The Design Principles of PlanetLab. SIGOPS Oper. Syst.
Rev. 40(1), 11-16 (2006)

GENI Project Office, ProtoGENI Control Framework Overview, GENI-SE-CF-PGO-
01.4 (2009)

Chase, J., et al.: Beyond Virtual Data Centers: Toward an Open Resource Control
Architecture. Selected Papers from the International Conference on the Virtual
Computing Initiative. ACM Digital Library (2007)

Ott, M., Seskar, I., Siraccusa, R., Singh, M.: ORBIT testbed software architecture:
supporting experiments as a service. Testbeds and Research Infrastructures for the
Development of Networks and Communities, 136— 145 (2005)

OneLab project website, http: //www.onelab.eu/

Sezgedi, P., Figuerola, S., Campanella, M., Maglaris, V., Cervello-Pastor, C.: With
Evolution for Revolution: Managing FEDERICA for Future Internet Research. IEEE
Communications Magazine 47(7), 34-39 (2009)

Gavras, A., et al.: Control of Resources in Pan-European Testbed Federation. In:
Towards the Future Internet - A European Research Perspective, pp. 67-78. 10S Press
(2009)

Website of Panlab and PII European projects, supported by the European Commission in
its both framework programmes FP6 (2001-2006) and FP7 (2007-2013),
http://www.panlab.net

(18]
[19]
(20]
(21]
(22]

(23]

[24]

[25]

[26]
[27]

(28]

[29]

Resource Description in Large Scale Heterogeneous Resource Federations 115

Asia-Pacific Advanced Network initiative website, http: //www.apan.net

Asia Future Internet Forum website, http://www.asiafi.net

Chen, M., Moon, S., Nakao, A.: Goals and Blueprint for PlanetLab CJK. Presentation at
Conference for Future Internet 2008 PlanetLab BoF, Seoul, Korea, June 19 (2008)
Magedanz, T., Wahle, S.: Control Framework Design for Future Internet Testbeds. e & i
Elektrotechnik und Informationstechnik 126(07/08), 274-279 (2009)

Strassner, J.: Policy-Based Network Management. Morgan Kaufmann Publishers (2003)
ISBN: 1-55860-859-1

Wahle, S., Harjoc, B., Campowsky, K., Magedanz, T., Gavras, A.: Pan-European testbed
and experimental facility federation - architecture refinement and implementation.
International Journal of Communication Networks and Distributed Systems (IJCNDS),
Special Issue on Recent Advances in Testbed Driven Networking Research 5(1/2), 67-87
(2010)

OMG website, Catalog of OMG Modeling and Metadata Specifications,
http://www.omg.org/technology/documents/modeling_spec_catal
og.htm

Eclipse Foundation website,
http://www.eclipse.org/modeling/emf/?project=emf#emf

TMF, XText framework website, http://www.eclipse.org/XText

XPand website, M2T, XPand statically typed tempaler language,
http://www.eclipse.org/modeling/m2t/?project=xpand

ami_ec2: A Resource Adapter for creating Amazon Machine Instances in the Amazon
EC2, http://trac.panlab.net/trac/wiki/AMI_EC2

Power, E., Boudjemil, Z., Fox, S.: Architecture & Implementation of a Testbeds
Repository. In: International Conference on Telecommunications and Multimedia (2010)

	Resource Description in Large Scale Heterogeneous Resource Federations

	Introduction
	Federation Framework and Resource Description
	Resource Adaptor Description Language
	Use Cases
	A MySQL Resource Adapter
	A Generic HTTP POST Resource Adapter
	Wrapping a Java Class for an Amazon Machine Instance Resource Adapter

	Conclusion and Future Work
	References

