
StarBED and SpringOS Architectures

and Their Performance

Toshiyuki Miyachi1,3, Takeshi Nakagawa2, Ken-ichi Chinen3,1,
Shinsuke Miwa1,3, and Yoichi Shinoda3,1

1 National Institute of Information and Communications Technology
Asahidai 2-12, Nomi, Ishikawa, Japan
2 Fujitsu Hokuriku Systems Limited

Masuizumi 3-4-30, Kanazawa, Ishikawa, Japan
3 Japan Advanced Institute of Science and Technology

Asahidai 1-1, Nomi, Ishikawa, Japan
miyachi@nict.go.jp

Abstract. StarBED is a network testbed begun in 2002 focused on run-
ning actual program code for software and hardware implementations.
As hardware technologies develops, its facilities such as PCs and network
equipments have been updated and we additionally developed SpringOS,
a software support suite consisting of numerous program modules. The
performance of StarBED and SpringOS increases as their equipments are
upgraded and architecture is changed in terms of software and hardware.
This paper gives an overview of the current StarBED architecture and
SpringOS functions and then shows the results of performance evaluation
as of October 2010.

1 Introduction

StarBED[1] is a large-scale general purpose network testbed and the SpringOS
software suites supports experiments that take place on it. We have updated
nodes and network equipments on StarBED and developed SpringOS, making
it suitable for many types of experiments and raising the scale of experiment.
StarBED now has about 1000 PC nodes only for network experiments and net-
work equipments that connects PCs in order to build experimental networks and
a management network.

To produce experimental contents and their schedules, it is important for
users to know the fundamental performance of network testbed and supporting
software. The performance of StarBED and SpringOS is changing during these
update processes, so we periodically measure the performance of major functions.
These values are also important for comprehending effects of hardware/software
updates. The architecture of StarBED and SpringOS here is as of October 2010,
and we provide measurement results.

T. Korakis et al. (Eds.): TridentCom 2011, LNICST 90, pp. 43–58, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

44 T. Miyachi et al.

Table 1. Node Specifications

A B C D E F G1 G2 H

Model
NEC Proside HP

Express5800 AmazeBlast ProLiant
110Rc-1 120Ra-1 110Rc-1 110Rg-1 neo920 DL320 G5p

CPU
Pentium3 Pentium4 Opteron Xeon
1GHz 3.2GHz 2GHz X3350

Memory 512MB 8GB 8GB 4GB 8GB

Disk
IDE SCSI IDE SATA

unavailable
SATA

30GB 36GB 30GB 80GB ∗ 2 160GB

Experimental NIC
FE 0 1 4 1 4 0 0 0 0
GbE 1 0 0 0 0 4 1 1 2

Management NIC
FE 1 1 1 1 1 0 0 0 0
GbE 0 0 0 0 0 1 1 1 1

Node no. 208 64 32 144 64 168 100 50 240

Introduced in 2002 2006 2007 2009

2 StarBED Architecture

StarBED, located in Ishikawa prefecture Japan, is funded by the National Insti-
tute of Information and Communications Technology(NICT). It is non-
distributed type network testbed and all PC nodes described in this paper are
at a single site.

First, we detail the StarBED physical topology.

2.1 Node Specifications

StarBED contains a total of 1070 PC nodes with differing specifications due to
response to user requests and the timing of introduction. There are now nine
node groups labeled A to H, with group G divided into G1 and G21. The nodes
have at least two network interface controllers (NICs), with one connected to
the management network and the others connected to experimental networks.
Table 1 shows the node specifications.

2.2 StarBED Topology

There are eight powerful network switches on the experimental networks, and
users can build their network topology by configuring the VLAN on these switches
without changing physical connections. The management network is usually con-
figured statically, and users acquire a static IP address if they configure exper-
imental nodes to use the DHCP protocol. This feature, which provides stable

1 The nodes in group G were actually introduced by the Japan Advanced Institute of
Science and Technology (JAIST) for its experiments, but when JAIST is not using
them other researchers may use them.

StarBED and SpringOS Architectures and Their Performance 45

Global
Network

Experimental Network Management Network

Life Network
(Wired

and
WIreless)

WIDE

JGN2plus

Experimental Node
Group A

Experimental Node
Group B

Experimental Node
Group D

Experimental Node
Group E

Experimental Node
Group F

Experimental Node
Group G1, G2

Experimental Node
Group H

Experimental Node
Group C

Internet
fw1

Servers for
Mangement

100Mbps
1Gbps
10Gbps

exsw6

exsw8

exsw7

exsw4

exsw3

exsw2

exsw1

mgsw1

mgsw2

mgsw3

mgsw4

mggw1

Fig. 1. Physical topology of StarBED

Table 2. Experimental Switches

Name exsw1 exsw2 exsw3 exsw4 exsw6 exsw7 exsw8

Cisco Cisco Foundry Foundry Foundry Foundry Foundry
Model Catalyst Catalyst BigIron BigIron BigIron BigIron BigIron

6509 6509 MG8 RX16 RX16 RX16 RX32

Exp. port number 144 256 400 150 0 168 984

access to experimental nodes, enables flexible construction of an experimen-
tal topology and configuration of PC nodes when the topology creation is still
progress.

Figure 1 shows the physical topology of StarBED. The experimental network
is drawn on the left side and the right side shows the management network.

The experimental network basically provides L2 topology. When users need
routers to build their L3 topology, they should configure PC nodes as routers or
bring their physical routers and connect them to the StarBED topology. There is
only one experimental NIC for each group in Figure 1, but each node may in fact
have more NICs, which is indicated in Table 1. In order to provide connections
into other sites or introduce actual traffic into the experimental environment,
two external lines are available via WIDE Internet[2] and JGN2plus[3]. Table 2
shows the models of experimental switches and number of ports connected to
experimental nodes.

46 T. Miyachi et al.

Table 3. Management Switches

Name mgsw1 mgsw2 mgsw3 mgsw4 mggw1

Models

D-Link D-Link D-Link
Foundry

D-Link DGS3427 × 2 DGS3427 × 1 DGS3427 × 1
NetIron

DGS3427 DGS3450 × 10 DGS3450 × 10 DGS3450 × 10
MLX-4

(Stacked) (Stacked) (Stacked)

The management network also has simple architecture but some switches are
composed of several physical switches by utilizing stacking technology. Table
3 gives models of the management switches. Mgsw2, mgsw3 and mgsw4 are
shown as a virtual single switch to mitigate management costs. There are sev-
eral management servers in this network including DHCP servers, DNS servers,
and servers for SpringOS. A firewall controls the access policies to/from the ex-
perimental networks, the management network, the life network for user’s daily
activities and the Internet. Through this firewall, StarBED environments for
experiments are usually isolated from any other network for security purposes.

3 SpringOS Overview

SpringOS is a software suite for supporting network experiments primarily on
StarBED2. Each of its component plays a role. SpringOS mainly supports fol-
lowing processes:

– Node and VLAN resource management
– Node power state control
– OS and application software installation
– (L2) Topology configuration
– Scenario execution

SpringOS configures and controls PC nodes, switches andmanagement servers via
the management network. Therefore its modules should be arranged on the man-
agement network in Figure 1. The behavior of SpringOS is detailed in Figure 2,
and in the following we explain its main functions.

3.1 Node and VLAN Resource Management

The base function of SpringOS is management of experimental resources. The
Experimental Resource Manager (ERM), which manages resource status, searches
resources in its database and when it finds those that match a user’s request,
it allocates them and locks them so that they will not be allocated to other re-
quests. These resources include experimental nodes and VLAN numbers which
are needed to setup L2 topology.

2 There are several examples in which it is introduced into a small physical testbed.

StarBED and SpringOS Architectures and Their Performance 47

Management
Node

Management
Switch

Experimental
Nodes

Experimental Network

Experimental Switch

OS Installation
Scenario Driving

Power Management
etc.

VLAN
Configuration

Management Network

Configuration

Input

Fig. 2. SpringOS behavior

StarBED and SpringOS adopt two steps of resource allocation. The first step is
to reserve StarBED facilities and the second step is to assign physical resources to
logical resources, which are defined by users in the types of configuration files for
SpringOS. The use of SpringOS is not mandated for users to conduct experiments
other than the functions that support user mediation, which lets users use their
original supporting software or that for other testbeds. Therefore we employ two
steps of resource allocation. In the first step, users acquire resources with which
they can perform any operation, such as OS reinstallation and setting up their
own management environment. In the second step, using SpringOS to manage
their experiments lets them allocate their logical topology definition onto the
physical resources reserved in the first step only when users need this operation.

3.2 Node Power State Control

SpringOS enables remote power management using the existing technologies
of WoL, IPMI, iLO, SNMP and executing UNIX commands on experimental
nodes. The Power Manager (PWMG) daemon module await requests from users
to control the nodes’ power status. When it receives a request and the ERM
confirms the user’s ownership of specified nodes, it publishs messages to control
the node statuses.

3.3 OS and Application Software Installation

SpringOS distributes a template disk image created from a template node into
multiple experimental nodes in the OS and application software installation.
Experimenters should install the OS and configure it as a template. The pickup
command acquires a binary image of a partition or entire HDD and places it
onto a file server. Then the wipeout command writes it to multiple nodes. This
enables software installation, except different configurations for each node. The
differences for each node may be installed on a part of a scenario execution or
generated by the nodes themselves based on its management IP address acquired
by a DHCP client.

48 T. Miyachi et al.

rm 192.168.254.254 1234 1: IP address and port of ERM

rmuser starbeduser 2: username for ERM

rmpasswd starbedpassword 3: password for ERM

rmproject evaluation-10 4: project name for ERM

sm 192.168.254.254 1240 5: IP address and port of SWMG

activate a001 f001-168:0 6: activate ports

deactivate f001-168:1 7: deactivate ports

leavevlan 235 f001-168:1 8: delete ports from a VLAN

joinvlan 234 a001:0 9: add ports to VLAN

joinvlan 235 f001-168:0 10: add ports to VLAN

Fig. 3. Sample configuration of bswc.pl

When pickup or wipeout is used, a small diskless OS boots up on target nodes
where a small client program is working. For an executed pickup, the client
program reads the node’s partition data or the entire HDD data and uploads it
to a file server. For wipeout, it downloads a specified disk image and writes it
into a specified partition or the entire HDD.

3.4 Topology Configuration

Experimental topology should be built by utilizing VLAN technology in StarBED.
Users should acquire VLAN IDs from the ERM and request that the Switch Man-
ager (SWMG) to configure the VLANs. This request includes VLAN IDs and
port numbers of experimental nodes. When the SWMG receives the request, it
asks the ERM for ownership of the resources and configures the experimental
switches if the ERM confirms user ownership. A small client program, bswc.pl,
for the SWMG is provided as a part of SpringOS and it communicates with the
SWMG to build the L2 topology according to a user-written configuration file.

The bswc.pl command needs a simple configuration file as in Figure 3. Dashed
lines and comments are added for explanation and must not be written into actual
configurations. The first five lines are needed to access ERM and SWMG. The
ERM will check ownership of the switch ports described in the following lines by
using this user information. Lines 6 to 10 are actual configurations of switch ports.
The SWMG recognizes a target switch port using an experimental node name and
the node’s port number that is connected to the switch port. In the configuration,
a001 means the first node of group A and f168 means the 168th node of group F.
Continuous nodes are defined as f001-168 and the number that follows the colon
“:” is the port number registered in the ERM database. activate and deactivate
affect the indicated switch port, joinvlan and leavevlan indicate adding/deleting
switch ports to/from a VLAN specified by the VLAN ID.

As mentioned, there are several experimental switches and users may desig-
nate configuration of VLANs distributed to multiple switches. The SWMG cal-
culates the Inter Switch Link (ISL) configuration and configures these VLANs
and switch ports.

StarBED and SpringOS Architectures and Their Performance 49

3.5 Scenario Execution

Users should install the kuroyuri slave (slave) on experimental nodes when using
a function for scenario driving. Basically, the SpringOS scenario looks like a
UNIX command list, and the slave executes the scenario on an experimental
node based on the scenario description sent from the kuroyuri master (master).

When slaves need to be synchronized, they send a message to the master.
The master awaits messages from all slaves needing synchronization and upon
receiving them sends another message to each slave to trigger the following
scenario.

This function is also used for node setting and measuring node status. It
enables users to execute any UNIX command on experimental nodes, so with
this function users can configure the OS such as network configurations and
upload log files including node or software status onto management servers.

The kuroyuri master can execute the overall steps of an experiment; acquiring
experimental resources, writing a disk image into the allocated nodes, construct-
ing experimental topology, and conducting the scenario. Meanwhile, each step
can be executed by utilizing SpringOS client programs such as wipeout and
bswc.pl, and the user can choose functions that satisfy their request for each
situation.

When experimenters want to insert link characteristics such as delay and
jitter between experimental nodes, they can use existing link emulator such as
dummynet[4] on the experimental nodes. Especially for wireless link emulation
on the wired network of StarBED, QOMET can help experimenters to build
their environment[5].

The fundamental functions and architecture of SpringOS are described in
another paper[1].

4 Evaluation Methods

We used the following functions to measure the performances of SpringOS on
StarBED:

– OS and application software installation
– Topology configuration
– Scenario execution

To conduct experiments, these functions are important and basic on any network
testbed and it takes a relatively long time to complete these roles.

This section shows the methods of performance evaluation for each function.

4.1 OS and Application Software Installation

As mentioned, SpringOS takes two steps for deploying the OS and application
software onto experimental nodes: 1) create a disk image from a template node,
then 2) distribute it to target experimental nodes.

50 T. Miyachi et al.

In order to measure the time needed for these steps, we made a 20G parti-
tion on the group A, F and H nodes, and installed Fedora 13. We chose these
groups because the group specifications of A, B, D and E are the same without
experimental NICs, groups G1 and G2 have no HDD and group C has recently
been used as management nodes. The OS is installed with the installer’s default
settings and we installed the kuroyuri slave for evaluating the driving scenario
using these images. To compile the kuroyuri slave, we also installed gcc, zlib-
devel, ncurses-devel, flex and bison.

The creation time and deployment time of the disk image may be influenced
by the disk image size in terms of network traffic. SpringOS (pickup) normally
uses the zlib library to compress the disk image before sending it to a file server.
And the HDD status may interfere with the compression rate, so we tried to use
the zerofree[6] command to fill the HDD sectors not used with “NULL”.

Measurement A1. For measuring the time need to create template disk images
using the pickup command, we executed the command with/without zerofree ex-
ecution targeting the partition. Note the time should include the time uploading
the disk image to a file server.

Measurement A2. To measure the required time to write the template disk
image using wipeout, we distributed the disk image made by Measurement A1
with zerofree targeting for several sets of nodes: 1, 4, 16, 64, 128, and the maxi-
mum number of each group.

Measurement A3. To measure the writing rates of wipeout, we distributed
three types of disk image made by Measurement A1 into a single node: one was
compressed and zerofree was not executed, another was compressed and zerofree
was executed, and the other was not compressed and zerofree was executed. The
measured times show writing rates per 10 seconds.

Measurement A4. In order to observe the writing rates when wipeout target-
ing multiple nodes. We distributed the same disk images as in Measurement A3
to 128 nodes of group H.

4.2 Topology Configuration

To evaluate the necessary time to configure VLANs on the experimental switches,
we executed bswc.pl to send a request to the SWMG. We created VLANs and
added switch ports to them. The initial state of the experimental switch con-
figuration was cleaned manually and there was no VLAN that was used for our
evaluations.

We changed the parameters of configuring switch ports and VLANs as follows:

Measurement B1. For measuring the time needed to create one VLAN with
multiple switch ports, we created one VLAN and added switch port to it and
measured the time needed. The number of switch ports was changed to 1, 4, 16,
64 and 128 on group A.

StarBED and SpringOS Architectures and Their Performance 51

nodeclass clclass {

method "thru"

scenario {

send "setupdone" 1: send message to master

recv val 2: wait message from master

callw "/bin/ping" "-c" "5" val 3: execute ping

send "done" 4: send message to master

}

}

nodeset client class clclass num 16 ... 5: node instance creation

Fig. 4. Scenario for slave

scenario {

sync {

multimsgmatch client "setupdone" .. 1: wait msg from all clients

}

multisend client "172.16.4.1" 2: send target host of ping

sync {

multimsgmatch client "done" 3: wait msg from all clients

}

}

Fig. 5. Scenario for master

Measurement B2. To observe the required time to create VLANs that have
only one switch port, we measured these time and and the number of VLAN-
switch port pairs changes to 1, 4, 16, 64 and 128 on group A.

Measurement B3. As shown in Figure 1, group F node connections are
divided among exsw7 and exsw8. We created a single VLAN and added switch
ports to it on group F using SWMG ISL configuration.

4.3 Scenario Execution

To clarify the granularity of a scenario execution, we performed a simple exper-
iment. Parts of this scenario are described in Figures 4 and 5. Figure 4 shows
the scenario for slaves on experimental nodes. When the node’s configuration is
finished and the slave is woken up, the master sends a scenario description for
each slave. The slaves execute the scenario as they receive it. In this scenario,
the client will first send a “setupdone” message to the master. It then waits for
a message from its master. The message from master will be kept in a variable
“val”. In this case, the slave assumes that the message includes a ping target IP
address and sends an ICMP request to the target. After finishing the command,
it sends a “done” message.

52 T. Miyachi et al.

Table 4. Experimental Servers for the Evaluation

Name Management Server FTP Server

Model HP ProLiant DL 360 G5 HP ProLiant DL 380 G5

CPU Xeon E5405 Xeon E5405

Memory 2GB 16 GB

OS Solaris 10 Solaris 10

Table 5. Measurement A1 - Creation time and size of disk image

without zerofree with zerofree Image size
Group Creation Time Size Creation Time Size Ratio

[sec] [GB] [sec] [GB] [%]

A 6821 9.1 3551 0.760 8.35

F 3569 6.3 2687 0.875 13.89

H 2875 2.4 2539 0.870 36.25

Figure 5 shows the scenario description for the master. For the start of this
scenario, it waits for a “setupdone” messages from each of the clients for verifying
their status and then sends the IP address of the ping target to each node. It
then waits for messages from all nodes to confirm whether the scenarios on the
experimental nodes are finished.

Measurement C. For conducting the scenario on 1, 4, 16, 64, 128 and 150
nodes we measured the elapsed time to finish the scenario.

5 Evaluation Results

In these experimental environments server nodes were connected with mgsw1 as
in Figure 1 and the specifications are shown in Table 4. SpringOS management
modules such as ERM, SWMG, pickup, wipeout and kuroyuri master were op-
erated on the Management Server. The FTP server was used as storage for disk
images, so pickup uploads the disk image to the server and wipeout distributes
it to experimental nodes.

5.1 OS and Application Software Installation

This section shows the results of the software installation.

Measurement A1. Table 5 indicates the result of Measurement A1. When
the zerofree command was executed, the disk image size was reduced to one-
third that of when it was not executed. FastEthernet is the management NIC
of group A nodes and that of other groups is GigabitEthernet, which causes the

StarBED and SpringOS Architectures and Their Performance 53

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 50 100 150 200 250

tim
e[

se
c]

nodes

Group A
Group F
Group H

Fig. 6. Measurement A2 - Elapsed time to distribute disk images

gap in creation times. The image size ratio of the group A node is higher than for
other groups, which may be caused by the size of the group A non-zerofreed disk
image. The non-zerofreed HDD status should differ depending on the previous
usage of the HDD, and there may be a larger amount of garbage in group A’s
disk than for other nodes. Group A’s disk size is not so large and experimenters
may use almost all parts of the HDD for their experiments, which causes a great
deal of garbage, and this may be why the non-zerofreed compressed disk image
is larget than that of other groups. The compression ratio of group H shows the
worst value in the cases, but, the size of the zerofreed disk image is still one-third
of non-zerofreed disk image, which shows that zerofree greatly impacts the disk
image compression rate.

Measurement A2. Figure 6 designates the results of Measurement A2. The
graphs appear to linearly increase as target nodes rise. However, tendencies in
all graphs in the parts with under 16 nodes are gentle, so any bottleneck that
existed was over 16 nodes. The node performance of group A and other nodes
differ widely but the graphs tendencies are not so different, so this seems to be
due to the FTP server-side problem, including NIC’s capacity or the HDD read
speed.

In the case of 128-node installation, the elapsed time was 1,777 seconds for
group A nodes, 1,482 seconds for group F and 1,554 seconds for group H. Group
H’s performance was generally higher than group F, but some experimenters on
StarBED have expressed that the group H disk performance is worse than group
F. This worser performance of group H is demonstrated by these measurements.

Measurement A3. Figures 7, 8 and 9 show the results of Measurement A3. The
graphs indicate the impact of compression and zerofree. Note that the graphs
in Figures 7, 8, 9 and 10 are plotted every ten seconds without points because
there are too many plot points to see the graph tendencies in detail.

In Figure 7, the tendencies of the default and zerofree graphs change after
3 GB of writing, in which actual Linux OS files exist, which means that the
remaining parts of the disk image must be efficiently cleaned by zerofree. The

54 T. Miyachi et al.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800

si
ze

[G
B

]

time[sec]

default
zerofree

uncompress

Fig. 7. Measurement A3 - Transition of
writing rate (Group A, one node)

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400 450

si
ze

[G
B

]

time[sec]

default
zerofree

uncompress

Fig. 8. Measurement A3 - Transition of
writing rate (Group F, one node)

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400 450

si
ze

[G
B

]

time[sec]

default
zerofree

uncompress

Fig. 9. Measurement A3 - Transition of writing rate (Group H, one node)

writing rate of the zerofreed one is the fastest, followed by the default that is
non-zerofreed and compressed and the uncompressed is the slowest. This trend
is likely caused by FastEthernet capacity.

Trends in Figures 8 and 9 are different from these in 7. The default shows the
lowest performance, and the zerofree and uncompressed show similar tendencies.
This is because the CPU resources to decompress the disk image were insufficient
in comparison with the network bandwidth. The gaps of group H lines show little
high performance than group F since CPU performance is higher than in group
F. The group H graphs in Figure 8 and 9 are similar, which is caused by a
bottleneck for group H on the FTP server; such as from the HDD read speed or
NIC performance.

Measurement A4. Figure 10 illustrates the writing amount per 10 seconds.
We selected one of 128 nodes to show the value. The graphs of other nodes for
this experiment show the same tendency.

The zerofreed and uncompressed disk images are shown to be efficient as
the number of target nodes increased due to bottlenecked network resources.

StarBED and SpringOS Architectures and Their Performance 55

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000 25000

si
ze

[G
B

]

time[sec]

default
zerofree

uncompress

Fig. 10. Measurement A4 - Transition of writing rate (Group H, selected one node)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

tim
e[

se
c]

swports

VLAN Conf. (1 VLAN)
VLAN Conf. (Multiple VLANs)

Fig. 11. Measurement B1 and B2 -
VLAN configuration time (Group A)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600

tim
e[

se
c]

swports

VLAN Setup with ISL
VLAN Setup without ISL

Fig. 12. Measurement B3 - VLAN con-
figuration time (Group F, one VLAN)

The installation using zerofree finished in 863.9 seconds, the default was 2,355
seconds and umcompressed was 22,784.6 seconds.

5.2 Topology Configuration

The section explains the results of topology configurations.

Measurement B1 and B2. Figure 11 shows the results of Measurements B1
and B2. The values include the communication time between ERM and SWMG.
This graphs clarifies that making many VLANs requires much more time than
many switch ports in a single VLAN. The value in Figure 11 for configuring a
single VLAN with 128 ports is 146.4 seconds and the time for 128 VLAN-port
pares requires 390.1 seconds.

Measurement B3. Figure 12 illustrates the elapsed time for creating a single
VLAN with multiple members. In this scenario for ISL evaluation, the first switch

56 T. Miyachi et al.

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140 160

tim
e[

m
se

c]

nodes

Fig. 13. Measurement C - Scenario driving (Group F)

(exsw8) has 384 ports for group F nodes and for greater configuration it should
also configure another switch (exsw7). The gap in the figure is 244.5 seconds.

5.3 Scenario Execution

This section presents the results of scenario execution.

Measurement C. Figure 13 describes the results of Measurement C. The mea-
sured values show the total execution time of the scenario. The average time of
ICMP RTT is 4,030 ms when we manually execute a ping command with the
same options. Therefore we can see the management cost of SpringOS is quite
low for this scale of experiment. But the value increases linearly so when the ex-
perimenter need to control a large number of nodes, it may influence experiments
depending on their properties or purpose.

6 Discussion and Future Work

We evaluated SpringOS performance on StarBED in three fields: software instal-
lation, L2 topology configuration and scenario conducting. StarBED’s PC nodes
have been updated but node groups A-E have not been updated other than re-
placing the ATM NIC of group A nodes with GbE. These low-performance nodes
are still effective as client nodes for experiments, but in terms of experimental
environment construction, a great deal of time was needed for configuration for
these nodes.

For software installation, we found that zerofree is effective in trimming the
required time for creation and distribution of the disk image and storage spaces.
The installation time per node in Measurement A2 is 13.9 seconds for group A,
11.6 seconds for group F and 12.1 seconds for group H. Considering the setup
of each node including OS installation and manual software configuration, these
numbers are quite low.

StarBED and SpringOS Architectures and Their Performance 57

For VLAN configuration, creating 128 VLANs that have a single port took
146.4 seconds, or 1.14 seconds per port. Configuring VLAN-port pairs in Mea-
surement B2 took 390.1 seconds for 128 pairs or 3.04 seconds for a single pair.
These times are not so high but the tendency shows a tendency toward linear
increase and setting up several thousands of switch ports may take a long time.

Measurement C clarifies that SpringOS has high granularity for controlling
experimental nodes. The values increased by 500 ms for 150 nodes, compared to
the value for a single node.

In these experiments we found many points that can be discussed for the
future architecture of StarBED and SpringOS. Currently, SpringOS does not
adopt multicasting for software installation or scenario driving. In network
usage, multicasting is expected to be effective. Moreover, network boot tech-
nologies should curb installation time for some experiment types. However, the
current SpringOS requires a maximum time of 13.9 seconds per node for group
A, for which performance is lowest. This value is small enough for each node
and we have to consider the impact of multicast and network boot on software
installation. It is, however, important for users to select their preferred booting
methods. Alongside developing SpringOS and introducing new technologies that
can reduce resources involved in software installation, we should consider more
facilitating greater usage of booting methods.

The results of disk image distribution for the group F and H nodes indicate a
shortage of file server-side performance. In these experiments, we used a single
FTP server, designated in Table 4. The file server which is provided to users
for keeping their disk images and experimental data should have greater perfor-
mance. We will reinforce servers, particulary in the aspects of HDD read speed
and network capacity. This can be resolved by introducing a high-performance
storage server or load-balancing system using several file servers.

In addition, the current SWMG needed several minutes to create complex
topology requiring many VLAN and ISL configurations. The tendencies of the
two graphs in Figure 12 show the same trend without ISL configuration, even
when SWMG must configure two switches. Thus, there are some burdens by
ISL configuration because the graph tendency with ISL configuration for 385 or
more ports is different from with 384 or fewer ports. To decrease these added
costs caused by ISL configuration, we will revise the configuration algorithms
and publish command generation for each vendor’s switch.

7 Conclusion

We conducted performance evaluation of SpringOS on StarBED. The results
provide a yardstick for StarBED and SpringOS users to plan their experiments.

When we conducted evaluation in the same way in 2006, wipeout took 22,807
seconds for 200 nodes of group A using a 4 GB partition with the default set-
tings. Now that management servers and switches were replaced, SpringOS was
updated and the physical topology of StarBED was revised, the value with ze-
rofree is only 2,380 seconds. Switch configuration also required much more time.

58 T. Miyachi et al.

The results now show higher performance of StarBED and SpringOS for con-
ducting experiments. As exhibited by, for instance, the roughly tenfold decrease
in the required time for wipeout, we have proof that our update efforts for both
software and hardware make StarBED and SpringOS have raised the level of
performance. But the values also indicate areas in need of revision in future
development.

The experiments for evaluating StarBED and SpringOS performance are not
enough now to know actual bottlenecks and to seek efficient way to improve our
architectures. In order to acquire these knowledge we should perform experi-
ments with changing some elements in the experiments such as server configu-
rations and physical topology. The StarBED nodes and physical topology will
be updated in the spring of 2011, so we’ll conduct more accurate experiments to
clarify relations between architectures and performances after the update.

References

1. Miyachi, T., Chinen, K.-I., Shinoda, Y.: StarBED and SpringOS: Large-scale Gen-
eral Purpose Network Testbed and Supporting Software. In: International Confer-
ence on Performance Evaluation Methodlogies and Tools, Valuetools 2006 (October
2006)

2. WIDE PROJECT Home Page, http://www.wide.ad.jp/
3. JGN2plus Official Web Site,

http://www.jgn.nict.go.jp/jgn2plus/english/index.html

4. Rizzo, L.: Dummynet: a simple approach to the evaluation of network protocols.
ACM Computer Communication Review 27(1), 31–41 (1997)

5. Beuran, R., Nguyen, L.T., Miyachi, T., Nakata, J., Chinen, K.-I., Tan, Y., Shinoda,
Y.: QOMB: A Wireless Network Emulation Testbed. In: IEEE Global Communica-
tions Conference, GLOBECOM 2009 (2009)

6. Yorston, R.: Keeping filesystem images sparse,
http://intgat.tigress.co.uk/rmy/uml/index.html

http://www.wide.ad.jp/
http://www.jgn.nict.go.jp/jgn2plus/english/index.html
http://intgat.tigress.co.uk/rmy/uml/index.html

	StarBED and SpringOS Architectures and Their Performance
	Introduction
	StarBED Architecture
	Node Specifications
	StarBED Topology

	 SpringOS Overview
	Node and VLAN Resource Management
	Node Power State Control
	OS and Application Software Installation
	Topology Configuration
	Scenario Execution

	Evaluation Methods
	OS and Application Software Installation
	Topology Configuration
	Scenario Execution

	Evaluation Results
	OS and Application Software Installation
	Topology Configuration
	Scenario Execution

	Discussion and Future Work
	Conclusion
	References

