
Empirical Evaluation of Streamed Online

Gaming over WiMAX

Esa Piri, Matti Hirvonen, and Jukka-Pekka Laulajainen

VTT Technical Research Centre of Finland
Kaitoväylä 1, FI-90571, Oulu, Finland

firstname.lastname@vtt.fi

Abstract. Online gaming is one of the main Internet services hold-
ing potential for a significant growth. Currently, much attention is paid
on studying how high-quality 3D games with varying resource demands
can be played over the Internet streamed real-time from a remote game
server. This enables end-users to play high-quality games without need
for having very powerful game machines as most of the processing is
performed already in the game server. This type of gaming is sensitive
to network conditions, especially, to end-to-end delays of both uplink
and downlink. In this study, we evaluate the quality of streamed online
gaming over fixed WiMAX through empirical evidence. We evaluate the
gaming quality with various background traffic loads and types in sce-
narios where a WiMAX link is employed as a backhaul connection. In
addition, we assess the importance of various WiMAX QoS scheduling
schemes to keep the gaming experience high despite the congestion in
the serving base station. We find that the quality of streamed gaming is
very sensitive to delays and already the characteristic transmission laten-
cies of WiMAX are near the edge of a smooth gaming experience. With
heavy traffic loads, inflicting high delays, the gaming experience faces a
radical degradation, which can be clearly mitigated by using scheduling
schemes privileging the game traffic.

Keywords: online gaming, game streaming, WiMAX, IEEE 802.16,
measurements, QoS.

1 Introduction

Online gaming rapidly became a popular Internet service since the Internet started
to become general. With a rough division, there are two types of online gaming:
multiplayer mode where players play with peer-players a game installed on their
own machines; and player plays a streamed game from a remote gaming server.
Moreover, a hybrid version of the precedings is possible. The second option is so
far used with relatively simple games, usually played using a web browser and not
requiring any installation on end-users’ game machines. Games demanding much
resources still typically require some sort of installation on the end-user’s machine.
However, the current research on online gaming is much directed to enable this
type of gaming also with more resource-demanding games.

T. Korakis et al. (Eds.): TridentCom 2011, LNICST 90, pp. 255–270, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



256 E. Piri, M. Hirvonen, and J.-P. Laulajainen

Overall, gaming is purely an on-demand service, which with the latest games
require lots of resources such as disk space and processing power from the end-
user’s game machine when installed on them. When a game is streamed from
a remote game server to a player’s game machine in real-time, it allows mov-
ing the disk space and most of the processing from the player’s machine to the
remote game server. In addition, other benefits are, for example, easier imple-
mentation of pay-per-use mechanism and independence of the gaming machine,
that is, player can continue playing the same game with other machine than the
one it was started with. For the server side, cloud computing brings several at-
tractive features to improve its scalability. It efficiently allows dynamic resource
reservation and establishment for individual players and games.

The capability and characteristics of the players’ network connections become
more significant with streamed gaming in order to sustain the gaming experience
of end-users as high as the game was played purely on the local machine only. In
this study, we empirically measure the quality-of-service (QoS) of online gaming
from the remote game server over a fixed WiMAX testbed based on the IEEE
802.16d standard [1]. Our measurement scenarios relate to cases where the wire-
less broadband link is used as a backhaul connection to the Internet. Typical
cases are femtocell and connecting of rural areas where wired connections, such
as fiber, are too expensive to be deployed. We also expand this scenario with
a competing link scenario, where two subscriber stations (SSs) compete for the
shared resources of a base station (BS).

The game traffic is bi-directional, where player’s commands travel in the up-
link (UL) and the game data (graphics commands and sound) in the downlink
(DL). Moreover, one TCP control flow to both directions is active. As the game
traffic generally employs TCP, also TCP acknowledgment messages employ both
uplink and downlink. Overall, the game performance is sensitive to delays and
jitters of the network traffic. Moreover, the delay that counts with the game traf-
fic and TCP in overall is the round-trip delay. Thus, both uplink and downlink
must perform well with respect to the transmission latencies for a good gaming
experience. When approaching the maximum capacity of a WiMAX link, the
transmission latencies tend to increase significantly. Thus, in addition to a Best
Effort (BE) scheduling scheme, we also evaluate different WiMAX-specific QoS
service class schemes to keep the game traffic quality (both uplink and downlink)
high despite heavy background traffic.

The rest of this study is organized as follows. Section 2 relates our study
to previously published results. Our testbed, streamed online gaming, and the
measurement setup adopted in our study are introduced in Section 3. Then,
Section 4 presents our measurement results. Finally, Section 5 concludes this
paper.

2 Related Work

Plenty of studies have been carried out to investigate the effect of network delay
to the performance of online games, such as [2,3,4]. However, most of them are



Empirical Evaluation of Streamed Online Gaming over WiMAX 257

measuring game performance in multiplayer scenarios, where the actual game is
installed on the player’s gamemachine. This type of gaming is much more insensi-
tive to delays than the type we are using. For example, delays of 500 milliseconds
(ms) considered as acceptable with many games in [2] is far from tolerable with
any streamed game. Jurgelionis et al. [5] have evaluated the streaming of games
similar to the ones we are using over wireless LAN (WLAN), but the usual up-
link and downlink latencies in uncongested WLAN are constantly clearly below
10 ms, which is not the case with fixed WiMAX.

To the best of our knowledge, this is the first empirical evaluation of this
type of online gaming over WiMAX. Wang et al. have experimented World of
Warcraft gaming over mobile WiMAX [6]. Although the physical layer of mobile
WiMAX differs from fixed WiMAX, they use mobility scenarios, and the gaming
type is different (network is used for multiplaying), they noted that WiMAX
can provide acceptable performance for online multiplaying most of the time.
However, they also remark that BE scheduling is not adequately suitable for the
game traffic when the serving BS is stressed also by other traffic flows. They
recommend using Real-time Polling Service (rtPS) type of QoS service class to
prioritize delay-sensitive game traffic, which is evaluated in our experiments.

Wodarz et al. [7] have measured QoS of a fixed WiMAX with time division
duplex (TDD) duplexing scheme. They observed uplink to suffer from significant
latency growth with the BE QoS scheduling when the link capacity was reached.
However, by using service-specific QoS schemes, such as rtPS, they perceived
the uplink latency of the prioritized traffic to stay below 10 ms although the
link was congested. Downlink latencies remained around 10 ms independently of
the traffic load. We also observe similar results. With frequency division duplex
(FDD), which is the case in our measurements, Pentikousis et al. [8] have ob-
served that the latencies of downlink grow sharper than those of uplink when the
link capacity is reached, constantly staying below 100 ms in uplink. Although
we keep the modulation fixed and signal strength strong, J. De Bruyne et al. [9]
have measured the effect of Carrier to Interference-plus-Noise Ratio (CINR) to
the latencies in FDD fixed WiMAX using low bitrate traffic flows. In addition
to an observation that the latency is the lower the higher the CINR value is,
they also found higher latencies and significantly bigger latency variation in the
uplink than downlink. Nevertheless, we do not observe much variation in jitters
between uplink and downlink with the same CINR values (∼28 dB). Also in
[10], the jitters in uplink and downlink were minor with moderate traffic loads,
however, with strong signal strength. Measurements of [9] are conducted using
half-duplex FDD whereas we use full-duplex FDD, which was the case also in
[8] and [10].

3 Methodology

Our experimental testbed, located at VTT’s Converging Networks Laboratory, is
illustrated in Figure 1. It comprises an Airspan MicroMAX-SoC BS operating in
the 3.5 GHz frequency band, two Airspan SSs connected to the BS, and several



258 E. Piri, M. Hirvonen, and J.-P. Laulajainen

PC machines symmetrically connected to the BS and the SSs sides with Giga-
bit Ethernet. The WiMAX equipment is WiMAX Forum certified. The traffic
generator machines act as background traffic sources and sinks while the game
client and server stream game traffic between them. The system clocks of the
game client and game server are synchronized using Global Positioning System
(GPS) in order to enable accurate one-way end-to-end delay measurements. Ta-
ble 1 lists the main parameters of the WiMAX testbed used in our experiments.
The measurements were conducted in a laboratory environment with relatively
stable and strong signal conditions and short line-of-sight distances. Automatic
Repeat-reQuest (ARQ) is not enabled in our measurements.

Fig. 1. Schematic of the WiMAX testbed

3.1 Streamed Online Gaming

Network games can be categorized into two groups: multiplayer games using
network connection to play together with other players and fully network based
games that execute on a distant server and use network connection to stream
the game content to the client (Gaming on Demand). The first solution is based
on running the game software on the local end device setting high requirements
for the computing and processing power of the device. Devices used for playing
these games are typically specific video game consoles (e.g. Microsoft Xbox 360,
Nintendo Wii, Sony PlayStation 3) or high-end PCs. The latter group targets on
decreasing the end device requirements by moving majority of game processing to
a separate game server. This way high quality games can be played with cheap
low-end devices such as set-top-boxes or mobile devices, or the functionality
could be even built in a TV set. Our study focuses on Gaming on Demand
solutions based on remote execution and the traditional multiplayer networked
games are left out of scope for the rest of the paper.

The most common way to implement a Gaming on Demand system is to
use video streaming technology for transmitting the game output to the user.
There are several commercial systems based on video streaming, e.g. OnLive,
StreamMyGame, Playcast, G-cluster, and Gaikai. All these run the game ap-
plication, render the game graphics, and encode them as a video stream at the



Empirical Evaluation of Streamed Online Gaming over WiMAX 259

Table 1. Testbed parameters

BS: Airspan MicroMAX-SoC

Frequency band 3.5 GHz
Channel bandwidth 3.5 MHz
PHY IEEE 802.16d, FFT 256, OFDM FDD
Tx power 1.0 dBm

SS1: Airspan ProST

Modulation (UL and DL) 64 QAM FEC: 3/4
Avg. SNR 33 dB
Distance from BS 10 m

SS2: Airspan EasyST

Modulation (UL and DL) 64 QAM FEC: 3/4
Avg. SNR 32 dB
Distance from BS 5 m

server and stream that to the client, which only needs to present the video
on the screen, capture the user commands and send them back to the game
server. The downside of using video streaming is that the requirements for the
server-side computing power and the network bandwidth need of a video stream
with high-definition resolution are very high. In this paper, we concentrate on
an alternative method being developed in a European research project called
Games@Large [11].

In Games@Large, a new 3D streaming technology is used instead of video
streaming. Unlike in the video streaming based solutions the game graphics are
not rendered on the server, but the DirectX or OpenGL commands used for
building the graphics are captured and transferred to the client device using
a specific pre-rendering streaming protocol. Client device receives this stream,
and feeds the graphics commands to the local graphics processing unit for ren-
dering the image to the client display. This method results to an optimal game
quality since no lossy compression is involved and the latency of video encod-
ing/decoding is omitted. On the other hand, the client device needs to have a
graphics processor capable of rendering the game graphics. This, however, is not
a critical limitation since more and more set-top-boxes and mobile devices are
equipped with OpenGL ES 2.0 supported by the Games@Large system.

The profile of network traffic in Games@Large system depends heavily on
the game being streamed. As the rendering of the graphics happens at the end-
device, the screen resolution does not have any effect on the network traffic,
but the traffic profile is determined by the game contents and user’s position in
the game. The data being transmitted includes basic graphics commands and
matrix and buffer data that typically are small in size. Depending on the game,
the amount of commands needed to render a single frame ranges from some tens



260 E. Piri, M. Hirvonen, and J.-P. Laulajainen

to several hundreds and the amount of data to be transmitted is typically in the
range of tens of kilobytes per frame.

We used two games in our measurements: Turtix (Figure 2) and Race Cars:
Extreme Rally (Figure 3). First one is a platform game while the latter is a
racing game. Both of them require low response times from the game to be able
to control the play with high precision.

Fig. 2. Turtix Fig. 3. Race Cars: Extreme Rally

3.2 Traffic Generation and Analysis

We measured the QoS of the gaming in terms of end-to-end delay, jitter, game
frame rate, and also subjective playability. Because the game traffic uses TCP,
packet loss is not of our major interest but its impact on delays is. The traffic
parameters of the game traffic were measured using QoSMeT [12] tool. It allowed
us to measure the traffic from multiple points, from the game server and the
game client. Multi-point measurements require control messaging between the
QoSMeT tools. Although the control traffic amount is negligible compared to
the game traffic, we used a separate Ethernet link for the control messaging in
order to avoid it to interfere with the game traffic in the wireless link. In addition
to QoSMeT, we also followed the frame rate of the games.

The gaming quality was measured by employing two types of background
traffic with different loads. In order to progressively fill the link capacity, we in-
jected background traffic into the wireless link. We synthetically emulated VoIP
traffic and peer-to-peer (P2P) file downloading. As a VoIP codec, we opted to
use ITU-T G.729.1 [13], which is an extension to the narrowband codec ITU-T
G.729 [14] providing scalable wideband speech and audio compression. G.729.1
utilizes layered coding, meaning only the core layer is needed for a successful
decoding and extension layers improve the quality only at the expense of bitrate
grow. Twelve possible bitrates of G.729.1 range from 8kb/s to 32 kb/s. How-
ever, we kept the codec operation mode fixed, with four-layer coding producing
application-layer bitrate of 16 kb/s (throughput 32 kb/s). The packet size in-
cluding RTP/UDP/IP protocol headers and with the employed operation mode
is 80 bytes. The VoIP traffic was generated with a traffic generator implemented



Empirical Evaluation of Streamed Online Gaming over WiMAX 261

in Perl. It adapts the inter-packet interval errors incurred by the inaccuracy of
the sleep() function due to lack of real-time operating system in our measure-
ments. As studied in [15], software traffic generators often fail to generate traffic
defined. The main reasons are lack of processing resources and the inaccuracy
of operating system’s process scheduler for select() and sleep() calls commonly
used in the intervals of sequential packets. With the employed traffic generator,
the inaccuracy of the VoIP traffic in our measurements was at maximum 1%
with the heaviest load (235 parallel VoIP flows).

TCP traffic emulating P2P was generated by using Jugi’s Traffic Generator
(JTG) [16]. Traffic was sent with full rate and with the maximum transfer unit
(MTU) of 1500 bytes. In order to inject several TCP streams into the link, we
used shell scripts to progressively add new JTG processes. Like the game traffic
also background traffic was measured with the QoSMeT tool, however, only from
the traffic sink sides.

We capitalized on the feature of a service flow prioritization of the WiMAX
BS in the downlink illustrated in Figure 4. Incoming IP packets are classified
and assigned to different service flows with different priorities. Packets can be
classified based on their source and destination MAC addresses, source and des-
tination IP addresses, and source and destination UDP and TCP port numbers.
In the prioritization measurements, we defined two downlink service flows where
the game traffic was stamped as higher priority. The packet scheduler is fair
and not all resources are ever given to the higher priority traffic. Service flow
definitions are SS-specific and different rules can be assigned to different SSs.

Fig. 4. Service flow classification and scheduling

We opted to evaluate the Real-time Polling Service (rtPS) scheduling ser-
vice to ensure the required bandwidth of the game traffic in the uplink, that
is, user commands and TCP acknowledgments for the graphics commands. The
rtPS supports real-time service flows with variable packet sizes and packet in-
tervals to meet the flows’ real-time bandwidth needs. Service flow is allowed to
request uplink bandwidth at regular intervals. Although rtPS is optimal for
higher bitrate real-time traffic flows, such as video streaming, it is suitable
also for ensuring variable bitrate streams of small bitrates. Unsolicited Grant



262 E. Piri, M. Hirvonen, and J.-P. Laulajainen

Service (UGS) is designed for constant bitrate traffic, such as VoIP without
voice suppression, which makes it less appropriate scheduling service for this
usage.

Table 2 lists the QoS parameters for the rtPS service flows. We did not set
strict thresholds for the parameters. The obligatory parameters for the rtPS are
Minimum Reserved Traffic rate, Maximum Sustained Traffic rate, and Maximum
Latency [1]. However, we defined a larger set of parameters.

Table 2. Real-time Polling Service parameters

Parameter Value

Maximum Sustained Rate 500 kb/s
Maximum Traffic Burst 100 kB
Minimum Reserved Rate 150 kb/s
Minimum Tolerable Rate 100 kb/s
Tolerated Jitter 10 ms
Maximum Latency 30 ms
Scheduling Poll Period 30 ms

4 Results

We used both TCP and UDP traffic as background traffic to emulate P2P and
VoIP traffic, respectively. The number of flows was progressively, every 30 s,
increased in order to reach the link capacity and also to exceed it. Full rate
TCP flow number is started with one flow and increased by 50 flows (1, 50,
100, etc.) until 450 flows is met. In the downlink measurements, the VoIP flow
number ranged from 190 to 235, in steps of five flows. In the uplink, the VoIP
flow amount is started with 105 and incremented up to 150 flows, also using
steps of five flows. Although VoIP call always comprises a bi-directional traffic
flow, in this study we separately quantify the effect of the downlink and uplink
on the game quality.

In the experiments, we played two different games and the results are assessed
with respect to the quality of the game traffic, which is best shown as game frame
rate adapted by the game server. Each measurement run lasted 300 seconds and
was repeated two times. The average value of the repetitions is shown.

Before we conducted the measurements with the game traffic, we quantified
the maximum uplink and downlink capacities for the link between SS1 and BS
using UDP traffic with the MTU of 1500 bytes. The attained throughputs of the
baseline measurements were 8.560 Mb/s and 11.280 Mb/s with negligible losses
(<0.1%) for the uplink and downlink, respectively.

4.1 WiMAX Link as a Backhaul

In this scenario, only SS1 is employed and all traffic goes through one WiMAX
link. Figure 5 illustrates the game frame rate for Turtix game. By playing the



Empirical Evaluation of Streamed Online Gaming over WiMAX 263

game over an empty link with the BE scheduling, the frame rate stays on a
relatively stable level averaging 17 frames per second (fps). This frame rate
corresponds to an average bitrate of 1.3 Mb/s. The playability significantly de-
grades when background traffic is injected into the link. With TCP, the frame
rate slumps to the level near zero fps already with one full rate flow, which
means the game is totally unplayable. With VoIP, the game stays playable until
the downlink capacity is clearly exceeded with 205 parallel VoIP flows at the
point of 90 s. With that number of VoIP flows, the loss rate of VoIP traffic soars
to 4%. From 205 VoIP flows on, the VoIP loss rate increases by approximately
2% with the each flow amount increment. The spikes in the frame rates with the
BE scheduling and VoIP background traffic are caused by the VoIP traffic gen-
erator, which before adding VoIP flows pauses the traffic generation for 0.2 s in
order to send the results with the current number of VoIP flows to the sink over
an uncongested link. On the other hand, although the breaks in the background
traffic are that short, the results indicate that the game adaptation logic rapidly
recovers the frame rate to a higher level.

By giving higher priority to the game traffic, the game sustains playable de-
spite the amount of background traffic. With TCP, the average frame rate is
only 1.4 fps lower than that with the plain game. With VoIP, the average frame
rate drops by 3.8 fps compared to the game over the empty link, by being on
the edge of smooth playability. On average, TCP and VoIP background traffic
lower the downlink bitrate of the higher priority game traffic by 100 kb/s and
230 kb/s, respectively.

When the prioritization was enabled, nearly eight times more background IP
packets were successfully transmitted over the link with the VoIP background
traffic than with TCP.Without prioritization, the difference between the received
background traffic packets of VoIP and TCP was 15% smaller. This implies the
fairness of the scheduling algorithm. It gave proportionally more resources to the
VoIP traffic consisting of large number of small IP packets than to the TCP traffic
of less packets. This is also one explanation to the lower frame rate of the game
with VoIP. Another is the performance decline of the wireless link with large
amount of small packets introduced below. We also conducted measurements to
gauge the fairness of the downlink scheduling algorithm with two traffic flows
(TCP and UDP with MTU of 1500 bytes) of different priorities. With full rate
TCP, 5% of the bandwidth was given to the lower priority flow. By sending UDP
flows, we observed that 9% of the total downlink capacity was given to the lower
priority flow.

The significantly smaller packet size and the lower inter-packet interval with
VoIP compared to the TCP, packets of length 1500 bytes, substantially decreases
the link capacity, as observed, for example, in [8]. In our measurements, the
downlink capacity abated to 9 Mb/s (240-270 s) at maximum with 230 parallel
VoIP flows and the game traffic of 300 kb/s when all traffic was equally treated.
Interestingly, the downlink capacity increased by 0.3 Mb/s with the VoIP back-
ground traffic when the prioritization was enabled. Moreover, the VoIP packet
loss rate with 230 VoIP flows was 1.4% with prioritization enabled while a loss



264 E. Piri, M. Hirvonen, and J.-P. Laulajainen

rate of 1.7% was perceived already with 215 VoIP flows without prioritization.
With TCP, similar behavior was not observed.

Although the frame rate slightly drops from the plain game case, the standard
deviation of the frame rates is 0.3 fps and 0.4 fps lower with prioritized TCP
and VoIP background traffic than with the plain game, respectively.

Fig. 5. Turtix frame rates with downlink background traffic

Figure 6 presents the achieved frame rates for the Race Cars game with the
same measurement cases as with Turtix. The observed behavior with different
traffic loads and scheduling schemes is similar to Turtix. However, with plain
Race Cars, the game throughput is on average 300 kb/s lower than with Turtix
(1.3 Mb/s), which leads to 15% lower frame rate. This implies stricter demands
for the delays. Due to the lower throughput, Race Cars stays playable 50 s longer
than Turtix with the VoIP background traffic, slumping with 210 VoIP flows at
the point of 140 s.

Although the games are playable with frame rates above 10 fps, as threshold
for smooth gaming we observed approximately 13 fps, we also experimented the
same games over a short Gigabit Ethernet connection. The frame rates ranged
between 120-150 and 90-100 most of the time with Turtix and Race Cars, respec-
tively. The throughputs with these frame rates varied approximately between
5-9 Mb/s. Throughputs of that order of magnitude can be attained also with
WiMAX. However, the end-to-end delays have a clear impact on the achieved
game frame rate.

Figure 7 shows the one-way delays of Turtix in the downlink. With plain
game, the delays average 13.6 ms. When TCP traffic is injected into the link,
the delays rapidly face 1 s threshold. For example, in the point of 5 s, about 5500
TCP background traffic packets were already transmitted over the link whereas
only 360 game traffic packets were received by the game client so far. As the
link capacity left after the game traffic is ten-fold compared to the game bitrate,
the proportion of the number of background traffic packets trying to fill the link
is substantially bigger than the game traffic packets and eventually diminishes
the game traffic flow due to increasing delays and frame rate adaptation in the



Empirical Evaluation of Streamed Online Gaming over WiMAX 265

game server. With VoIP, the delays start to heavily increase after injecting 205
VoIP flows into the link by saturating to 400 ms. Jitters stay on average on 2
ms level with the standard deviation of 0.5 ms with all the background traffic
cases, except TCP with the BE scheduling.

Fig. 6. Race Cars frame rates with downlink background traffic

Fig. 7. Turtix one-way downlink delays with downlink background traffic

By prioritizing traffic, the downlink delays of Turtix remain at approximately
23 ms and 29 ms with the VoIP and TCP background traffic, respectively, regard-
less of the background load. However, already the small delay increase affects
the smoothness of gaming and the frame rate as indicated above. Interestingly,
although we observe higher delays with the TCP background traffic, the frame
rate stayed at higher level than with the VoIP traffic. Thus, the lower frame rate
with the VoIP traffic must be due to the capacity decrease attributed to the
small packet sizes of VoIP flows.

In the uplink, we noticed interesting behavior in delays, shown in Figure 8.
While the plain Turtix game traffic constantly yields on average 34 ms delays
in the uplink, by injecting background traffic into the uplink we managed to
decrease the one-way delays down to 15 ms when staying below the link ca-
pacity. With VoIP background traffic, the delays stay on a 20 ms lower level



266 E. Piri, M. Hirvonen, and J.-P. Laulajainen

Fig. 8. Turtix one-way uplink delays with uplink background traffic

than with plain game until the capacity is exceeded with 135 VoIP flows (from
180 s on). SS needs to request bandwidth from BS before it is granted to send
data. It seems that SS can faster request the bandwidth when a larger number
of packets/data needs to be transmitted and this way lower the access laten-
cies. Another explanation could be that BS more easily grants bandwidth when
throughput is in orders of megabits. As in the downlink, full rate TCP degrades
the game by rapidly raising the delays to an untolerable level, 300 ms, until the
game crashed. By ensuring uplink capacity to the game traffic (user controls
and TCP acknowledges for graphics) with the rtPS scheduling, we managed to
keep the uplink delays constantly at 10 ms. Nevertheless, as found also in [7],
rtPS needs trigger traffic, other than rtPS traffic, to meet the defined real-time
restrictions in the link. By sending solely the game traffic with the rtPS support,
the game lagged and the uplink delays were around 35-40 ms although 30 ms
was defined as tolerable.

The lower uplink delays result in notably better frame rates, as can be seen
from Figure 9. The low delays in the uplink were also subjectively experienced
as faster response to the controls and smoother graphics updates. With the

Fig. 9. Turtix frame rates with uplink background traffic



Empirical Evaluation of Streamed Online Gaming over WiMAX 267

TCP background traffic, the average frame rate is 2.5 fps higher than with plain
Turtix. Clearly the best results are attained with UDP background traffic and
rtPS when the average frame rate exceeds 24 fps, which is 42% higher than with
plain Turtix.

4.2 Competing Links

In addition to the backhaul link, in this scenario BS serves also SS2. The game
traffic stresses the link between SS1 and BS and the link between SS2 and BS is
employed by the background traffic. For the traffic of both SSs, the BE scheduling
scheme is used. Figure 10 illustrates game frame rates for different measurement
cases. For clarity, only the results of Turtix without background traffic are shown
in the figure. Although clearly the best results with respect to the frame rates
are attained with plain games, the background traffic cases do not degrade the
playing experience but both games remain playable although the background
traffic is progressively increased, also above the BS downlink capacity. As in the
one-link scenario, the frame rates of Turtix are higher than the ones attained
with Race Cars. With TCP and VoIP background traffic we perceive on average
14 and 13 fps frame rates in Turtix, respectively. The frame rates with Race
Cars are 11 fps with the both cases. Although frame rate variation can be seen
in Figure 10, the standard deviation of frame rate is around 1 fps with all the
cases. Noteworthy is that the frame rate is not constant although link conditions
remain similar but varies depending on the user’s activity and graphic updates.
However, we played same game levels and attempted to keep the playing activity
as similar as possible between the measurement runs.

The observed differences in the downlink delays with different background
traffic are observed minor. With Turtix, the average delay of 24 ms is achieved
with both the TCP and VoIP background traffic. With Race Cars and TCP
background traffic, the delays average 25 ms while with the VoIP background
traffic an average delay of 4 ms lower than that with TCP is experienced. Thus,
due to the lower throughput with Race Cars, the competing link sustains 10
VoIP flows more (215 flows between 150-180 s) with a loss rate of 1% than when
Turtix is played. As there is no significant difference in the downlink delays, Race
Cars is again detected as more demanding in terms of delays. No background
traffic is sent to the uplink and, thus, the uplink delays are of same magnitude
in all cases.

The TCP background traffic attains a cumulative throughput of 9.1 Mb/s
and 9.3 Mb/s with Turtix and Race Cars, respectively. At the same time, Turtix
game achieves a mean throughput of 1 Mb/s and Race Cars 790 kb/s. VoIP
with loss rate of 1% translates into cumulative throughput of 7.5 Mb/s with
both games saturating to approximately 7.7 Mb/s with higher loss rates. Game
traffic throughputs with the VoIP background traffic are close to the ones with
the TCP traffic.

Overall, the resource sharing among multiple SSs of same priority seems to
be fair and it satisfies the bandwidth requirements of the game traffic despite
the substantially heavier load in the competing link. However, the results of the



268 E. Piri, M. Hirvonen, and J.-P. Laulajainen

scheduling schemes employed in the measurements presented in Section 4.1 are
valid also to this scenario and the traffic prioritization can be exploited to better
keep the game frame rate high in spite of traffic load in the BS.

Fig. 10. Turtix frame rates with competing links

5 Conclusion

WiMAX can easily support the bitrates required by streamed online games, but
already the characteristic transmission latencies of the fixed WiMAX technology
can occasionally lower the gaming experience compared to the wired and WLAN
technologies. However, the played games remained playable until the edge of the
maximum link capacity, before the congestion started to increase transmission
delays, when parallel VoIP flows were injected as background traffic into the up-
link and downlink. This is due to the game adaptation mechanism at the game
server, which adjusts the game frame rate according to the player’s network con-
ditions. Anyway, when the link capacity was exceeded, the playability slumped.
Already one full rate TCP flow degraded the playing experience in both uplink
and downlink. We attested the clear need for a packet scheduling favoring the
traffic of real-time service, which the online game evidently is. In the downlink,
we simply raised the priority of the game traffic, which allowed us to play the
game despite the background traffic load in the downlink. In the uplink, rtPS
scheduling ensuring bandwidth for the user commands was detected as impor-
tant way to improve the playability. In fact, we noticed that the uplink delay is
the main factor in achieving a smooth playing experience, as it commonly yields
higher delays than the downlink with the BE scheduling and moderate traffic
loads.

To lower the transmission latencies of the WiMAX link is important also due
to the fact that we did not consider delays caused by the Internet in our mea-
surements. However, IEEE 802.16’s Task Group m is working on an amendment
IEEE 802.16m [17], which will introduce an improved air interface capable of
supporting higher data rates and lower link latencies, at maximum 10 ms in
both the downlink and uplink, than the one currently specified in the IEEE



Empirical Evaluation of Streamed Online Gaming over WiMAX 269

802.16 standards, indeed, making WiMAX a more suitable technology for the
streamed online gaming. It aims to fulfil the requirements of the International
Mobile Telecommunications (IMT) -Advanced systems [18], specified by the In-
ternational Telecommunication Unions Radiocommunication Sector (ITU-R).

Acknowledgment. This work was carried out within the framework of IST
FP6 Games@Large project, which is partially funded by European Commission,
and as part of the Future Internet program of TIVIT (Finnish Strategic Centre
for Science, Technology and Innovation in the field of ICT) funded by TEKES.

References

1. IEEE 802.16 WG. IEEE Standard for Local and Metropolitan Area Networks -
Part 16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE Std.
802.16-2004 (October 2004)

2. Claypool, M., Claypool, K.: Latency and Player Actions in Online Games. Com-
munications of the ACM 49(11), 40–45 (2006)

3. Dick, M., Wellnitz, O., Wolf, L.: Analysis of Factors Affecting Players’ Performance
and Perception in Multiplayer Games. In: Proc. of 4th ACM SIGCOMM Workshop
on Network and System Support for Games (NetGames), pp. 1–7. ACM, New York
(2005)

4. Henderson, T., Bhatti, S.: Networked games: a QoS-sensitive application for QoS-
insensitive users? In: Proc. of the ACM SIGCOMM Workshop on Revisiting IP
QoS (RIPQoS), pp. 141–147. ACM, New York (2003)

5. Jurgelionis, A., Bellotti, F., De Gloria, A., Laulajainen, J.-P., Fechteler, P., Eisert,
P., David, H.: Testing Cross-Platform Streaming of Video Games over Wired and
Wireless LANs, pp. 1053–1058 (April 2010)

6. Wang, X., Kim, H., Vasilakos, A.V., Kwon, T., Choi, Y., Choi, S., Jang, H.: Mea-
surement and Analysis of World of Warcraft in Mobile WiMAX Networks. In: Proc.
of 8th Annual Workshop on Network and Systems Support for Games (NetGames),
pp. 1–6 (November 2009)

7. Wodarz, M., Taisie, J.P., Schmidt, T.C.: QoS Performance Study of One Way
Link Characteristics in an IEEE 802.16d TDD System. In: Proc. of 6th Advanced
International Conference on Telecommunications (AICT), pp. 241–246 (May 2010)

8. Pentikousis, K., Piri, E., Pinola, J., Fitzek, F., Nissilä, T., Harjula, I.: Empirical
Evaluation of VoIP Aggregation over a Fixed WiMAX Testbed. In: Proc. of 4th
International Conference on Testbeds and Research Infrastructures for the Devel-
opment of Networks & Communities (TRIDENTCOM), Article No. 19, Innsbruck,
Austria (March 2008)

9. De Bruyne, J., Joseph, W., Verloock, L., Martens, L.: Measurements and Eval-
uation of the Network Performance of a Fixed WiMAX System in a Suburban
Environment. In: Proc. of IEEE International Symposium on Wireless Communi-
cation Systems (ISWCS), Reykjavik, Iceland, pp. 98–102 (October 2008)

10. Piri, E., Pinola, J., Fitzek, F., Pentikousis, K.: ROHC and Aggregated VoIP over
Fixed WiMAX: An Empirical Evaluation. In: Proc. of 13th IEEE Symposium
on Computers and Communications (ISCC), Marrakech, Morocco, pp. 1141–1146
(July 2008)

11. Games@Large project. Website, http://www.gamesatlarge.eu/

http://www.gamesatlarge.eu/


270 E. Piri, M. Hirvonen, and J.-P. Laulajainen

12. Prokkola, J., Hanski, M., Jurvansuu, M., Immonen, M.: Measuring WCDMA and
HSDPA Delay Characteristics with QoSMeT. In: Proc. of IEEE International Con-
ference on Communications (ICC), pp. 492–498 (June 2007)

13. ITU-T. G.729 Based Embedded Variable Bit-rate Coder: An 8-32 kbit/s Scalable
Wideband Coder Bitstream Interoperable with G.729. ITU-T Recommendation
G.729.1 (2006)

14. ITU-T. Coding of Speech at 8 kbit/s Using Conjugate-structure Algebraic-code-
excited Linear Prediction (CS-ACELP). ITU-T Recommendation G.729 (1996)

15. Botta, A., Dainotti, A., Pescapé, A.: Do You Trust Your Software-based Traffic
Generator? IEEE Communications Magazine 48(9), 158–165 (2010)

16. Manner, J.: Jugi’s Traffic Generator,
http://www.netlab.tkk.fi/~jmanner/jtg.html

17. IEEE 802.16 WG. IEEE 802.16m System Description Document [Draft], Work in
Progress. IEEE 802.16m-09/003r3 (June 2010)

18. ITU-R. Requirements Related to Technical Performance for IMT-Advanced Radio
Interface(s). ITU-R Report M.2134 (2008)

http://www.netlab.tkk.fi/~jmanner/jtg.html

	Empirical Evaluation of Streamed Online Gaming over WiMAX
	Introduction
	Related Work
	Methodology
	Streamed Online Gaming
	Traffic Generation and Analysis

	Results
	WiMAX Link as a Backhaul
	Competing Links

	Conclusion
	References




