
T. Korakis et al. (Eds.): TridentCom 2011, LNICST 90, pp. 193–207, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Storage Deduplication and Management
for Application Testing over a Virtual Network Testbed

Chang-Han Jong1, Pin-Jung Chiang2, Taichuan Lu3, and Cho-Yu Chiang3

1 University of Maryland, College Park, MD
chjong@umd.edu

2 National Taiwan University and Chunghwa Telecommunication Laboratories, Taiwan
brchian@cht.com.tw

3 Telcordia Technologies, Piscataway, NJ
{tedlu,chiang}@research.telcordia.com

Abstract. With the virtual machine technologies, Virtual Ad hoc Network
(VAN) testbed was designed to evaluate functional correctness and
communication performance of Mobile Ad hoc Network (MANET)
applications. When VAN is used for large-scale testing that requires hundreds
of virtual machines, storage redundancy becomes an issue. Although Content
Addressable Storage (CAS) techniques were designed to address the storage
redundancy issue, it incurred online hash computation overhead for every write
access to disk blocks, which affects testing accuracy. We present File-level
Block Sharing (FBS) that achieves the same functionality of CAS while
removing the online computation overhead. By getting file-to-block mappings
through read-only mounting, FBS only needs to handle the blocks belonging to
newly-installed files offline and thus incurs little online overhead. Our
prototype showed no online overhead statistically and low offline overhead.
The prototype was developed and its overhead with respect to block-level
storage deduplication was analyzed under both Ext2/3/4 and NTFS file systems.

Keywords: testbed, MANET, VAN, FBS, deduplication.

1 Introduction

The dynamic nature of Mobile Ad hoc Network (MANET) makes application testing
a grand challenge. Node mobility, intermittent link connectivity and multi-hop
wireless communication interference in MANETs cannot be easily fabricated in a
testbed environment. The other critical requirement for MANET application testing is
that source code modification needs be avoided: testing abstract models of actual
applications loses fidelity while using different versions of software for lab testing
and for field testing causes serious software consistency maintenance issues.

Virtual Ad hoc Network (VAN) testbed [1] was designed to allow unmodified
applications to communicate over a simulated MANET. It was designed to evaluate
functional correctness and communication performance of MANET protocols and
applications. VAN testbed supplies a testing environment in which unmodified

194 C.-H. Jong et al.

applications can send packets over a virtual network realized by high-fidelity
simulation [11]. VAN testbed uses virtual machines to host applications, thereby
simplifying testbed management and reducing hardware requirements.

VAN testbed achieves the goal of requiring neither code change nor special
environment configuration by leveraging host virtualization technologies and VLAN
configuration at the virtual machine monitor layer [1]. For each mobile node under
test, application software can be installed in a dedicated copy of operating system
environment. Although this approach simplifies testing environment setup and
achieves high testing fidelity, it imposes a significant storage requirement when large-
scale testing needs to be performed on a VAN testbed. For example, a typical Linux
installation for application testing takes roughly 10GB of disk space. For a 100 node
testing scenario, it requires 1 TB disk space. Since VAN testbed was conceived to
allow time-shared access by multiple users with different testing scenarios, to support
ten different 100-node testing scenarios, 10 TB of storage space is required. Note that
a significant amount of storage is used by duplicated data, as typically most of the
nodes under test share similar host environment configurations. Therefore, even
though RAID [6] is being used in VAN testbed, considering the cost of RAID, the
storage deduplication issue needs be addressed in order to scale up the testbed.

In light of host virtualization, from a guest operation system’s perspective, storage
deduplication approaches can be classified into two categories: file-level and block-
level. File-level deduplication approaches hinge on identifying files that can be shared
[2]. Approaches in this category include mounting read-only shared folders by Network
File System (NFS) [12][13], using the Copy-on-Write (CoW) technique by Union File
System [7], as well as creating symbolic links for common files. The main issues
associated with file-level storage deduplication approaches are i) it requires human
configuration to identify and take care of the common files; and ii) it lacks flexibility to
deal with ever-changing disk access needs; iii) NFS performance is much slower than
block-level storage[12][14]. Therefore, these approaches are not desirable when the
testing environment needs to be updated from time to time, which is a common practice
during test. In contrast, block-level storage deduplication approaches are typically
agnostic of file systems. Their main advantage is that the deduplication process can be
fully automated without requiring human in the loop. Certain storage virtualization
technologies, such as Logical Volume Manager (LVM), can provide virtual disks to
virtual machines and employ copy-on-write technique to maximize block sharing [6].
When a virtual machine (VM) is started, based on its configuration a duplicate of a
template disk image stored on the block storage device can be instantiated within a
second. The duplicate, namely snapshot, is a virtual disk mapped to the template image
by default and used only to store and serve modified blocks to save block device storage
space. All read access to blocks that have never been modified will be retrieved from the
template disk image on the block storage device.

One limitation of snapshot-based virtual disks is that after the snapshots have been
instantiated, modified blocks with identical contents will not be shared. We name this
problem as post-snapshot block sharing problem. Content Addressable Storage (CAS)
[3][5] was introduced to tackle this problem by computing the hash values for each
block stored in the snapshot and coalescing the blocks that share the same hash
values. However, online hash computation overhead becomes a serious issue for

 Storage Deduplication and Management 195

testing on a VAN testbed, especially when large-scale application testing involves
substantial disk write operations (e.g., logging) from the nodes under test.

In this paper, we present File-Level Block Sharing (FBS) to address the post-
snapshot block sharing problem. One salient feature is that FBS does not incur the run-
time overhead associated with CAS. In a nutshell, FBS checks whether a target block
already has a duplicate in the other snapshots by checking only their blocks belonging to
the file that has the same filename as the target block. FBS achieves storage
deduplication by taking advantage of file-to-block mappings and thus avoid online hash
calculation for each write operation. FBS can be used without modifying guest
operating systems, neither does it require running another utility program inside virtual
machines. As a proof-of-concept exercise, we have implemented a prototype using
VirtualBox [9] for virtual machine environment, Linux 2.6 kernel for the operating
system, LVM for block-level storage device management, and iSCSI protocol [14] for
transferring data between the block storage device and the snapshot virtual disk.

The rest of the paper is organized as follows. Section 2 provides background
information for this research work by briefly introducing related work. Section 3
presents the File-Level Block Sharing approach. Section 4 describes the implementation
prototype. Section 5 provides performance analysis and evaluation of the prototype. We
conclude in Section 6 this paper and point out possible future work.

2 Related Work

In a VAN testbed, test scenarios could consist of hundreds of nodes and durations of
scenarios could range from a few minutes to a couple of days. VAN testbed uses
virtual machines to support its operations. As the hypervisor underlying virtual
machines is Linux-based, LVM was selected to manage logical disk volumes and
mass-storage devices such as RAIDs. The term "volume" refers to a disk drive or a
partition thereof. LVM can be regarded as a thin software layer underneath the
operating system to provide virtual disks and manage hard disks and their partitions.
This layer of abstraction provides ease-of-use in managing actual disk drives,
including creating snapshot virtual disks from a template disk image. Snapshots are
critical for establishing, maintaining, and managing a virtual network testbed
consisting of hundred of nodes.

Even though the snapshot functionality facilitates rapid replication of virtual disks
(a.k.a. logical volumes), nodes on the testbed cannot use virtual disks with identical
contents for many reasons. For example, each node is supposed to have a unique node
name, a unique IP address, a unique MAC address, etc. In addition, during the testing
process applications and OS need to write contents to disks. Moreover, application
testing is an incremental process—typically the needed packages and software
updates take place frequently after setting up a common template image. This is
referred to as post-snapshot block sharing problem, as the many copies of snapshots
will accumulate a considerable amount of identical contents over the course of testing.
For example, we have seen a scenario with roughly 100 nodes having 3G bytes of
almost identical data in each snapshot. Content Addressable Storage (CAS) tackles
this problem in a two-step approach. First, hash values of every block written to the

196 C.-H. Jong et al.

storage are computed and stored. Second, for blocks having the same hash values,
only one copy is kept. Access to the shared blocks will be through indirection. We
discuss two different implementations of the CAS approach below.

IBM’s Duplicate Data Elimination (DDE) [3] was the first CAS implementation
running on IBM’s cluster file system, Storage Tank [8]. Storage Tank is composed of
clients, meta-data servers and Storage Area Network (SAN) devices [15]. Client
computers interact with meta-data servers to lock/unlock files and obtain block
allocations. Client computers can then directly access SAN without any meta-data
servers in the data path. For each block that needs to be modified, client computers
calculate SHA-1 hash values for the block and return them to the meta-data server,
which stores the hash values of the modified blocks. A particular meta-data server is
responsible for coalescing the blocks with identical hash values.

To alleviate the performance issue resulting from using a single meta-data server to
coalesce blocks, VMWare designed and implemented a decentralized storage
deduplication (DeDe) scheme [5] for its VMFS [16]. The aim was to distribute the
workload of detecting duplicate blocks to client computers as VMFS does not use a
central meta-data server. According to [5], online hash computation consumes a lot of
CPU cycles and therefore one CPU core on a blade is dedicated to hash value
computation. No matter whether one CPU core is dedicated for hashing or not, the
testbed is affected by either the degraded accuracy or increased computation cost.

3 File-Level Block Sharing

The goal of File-Level Block Sharing (FBS) is to achieve post-snapshot block sharing
with less online computation overhead. The basic idea is to associate file-level
semantics with blocks on block-level storage devices. Common files across snapshots
for virtual machines are collected and stored in a volume managed by LVM. Access
to these common files will be redirected by the virtual disk drivers to this volume.

3.1 File-Level Semantics in Block-Level Storages

The relation between a file and its blocks is maintained by the file system. When an
application accesses a file through the file system, the file system retrieves the meta-
data of the file to obtain the logical addresses of the disk blocks that belong to the file.
On the other hand, FBS needs to obtain the mappings from blocks to the files owning
the blocks in order to perform block deduplication. To discover the mapping from a
block to the file using the block is difficult because the mapping from a file to its
blocks is indexed by the file system. Although mapping from a block to the file by
snooping and parse all I/O access, the formats of the file-to-blocks meta-data used by
the various file systems are different. Fortunately, when developing a file system,
debugging utilities or libraries are also made available as by-products. They can be
used to read file meta-data in user land. For example, NTFS has libntfs library and
Linux ext2/ext3/ext4 has e2fsprogs utility. FBS uses these tools/libraries to retrieve
file-to-block mappings and thus derive block-to-file mappings.

 Storage Deduplication and Management 197

3.2 Algorithm

By using LVM, a block-level storage device uses one template volume and k copy-
on-write volumes to implement k virtual disks for k virtual machines, respectively.
FBS requires use of an additional common volume to store the blocks shared by the
virtual disks. Typically this is for the VAN testbed to maintain a common volume that
contains all add-on packages needed for testing scenarios after the template volume
has been made.

Fig. 1. FBS state transition diagram of a single block

A virtual disk driver contains a block mapping data structure to map the read/write
access of a virtual disk to template volume, to the per-virtual-disk copy-on-write
volume, and to the common volume. Initially when the snapshot virtual disk is
created, all block accesses are directed to the template volume. If a block is modified,
the access to it will be directed to the copy-on-write volume belonging to the virtual
disk. If this block is to be shared after it has been modified, it will reside in the
common volume. Fig. 1 illustrates the state transition diagram of a single block.

Fig. 2. High-level operational view of FBS algorithm

File
Level

Block
Level

FBS
1. identify files

2. compare files

Log file of installed packages

A file to be shared

The only copy of the shared file which will be kept

Other files

3. coalesce files

copy Common
volume

Write

 T
Write

Share
This block resides in copy-on-write volume This block resides in read-only template volume

W CStart

This block resides in common volume

198 C.-H. Jong et al.

The FBS algorithm is listed below and also illustrated in Fig. 2.

1. Identify files: FBS identifies which files across virtual disks are likely to share the
same contents.

2. Compare files: For each identified file, FBS checks if it is already shared in the
common volume. If so, perform the next step after verifying its content is the same
as the block in the common volume. Otherwise, if two or more identical files have
been compared but without a match in the common volume yet, store a copy of the
file in the common volume. The content verification and the copying action are
performed at the file level.

3. Coalesce blocks: Access to the blocks of shared files will be directed to the blocks
in the common volume.

In the figure we can see that there are three volumes at the file-level. The left two are
the virtual disk volumes and the right one is the common volume. In the first step,
FBS use the package installation log to identify the files which are likely to be shared.
Then FBS compare these files in different volumes. FBS may decide to copy the to-
be-shared files to the common volume. In the final step, FBS checks the file-to-block
mapping for these to-be-shared files and inform the storage to modify the access
mapping. The first two steps are file-based operations. The third step requires updates
to the file-to-blocks mappings in the storage system. Implementation details will be
discussed in the next section

4 Prototype

FBS prototype was developed using the following setting. Multiple Linux host
machines run VirtualBox virtual machine monitor and use iSCSI protocol to access a
volume on a Storage Area Network (SAN) storage device. Host machines share a
global view of the storage volume and use Linux LVM to create virtual disks. The
LVM partitions the volume(s) provided by SAN to multiple small volumes as virtual
disks.

The host operating system underneath the virtual machines is 64bit Ubuntu Linux
Server 10.04 using a custom LVM with our own patch. Operating systems for the
VirtualBox virtual machines are 32bit Ubuntu Linux Server 10.04 that uses ext4 file
system with 4Kbytes block size. LVM was also configured to use 4Kbytes chunk size
for snapshot virtual disks.

4.1 Software Components

FBS uses three software components to implement its algorithm. We implemented
File System Agent and Storage Agent by python/C, while Storage was coded by
modifying the source code of LVM. These three components and their relationships
are shown in Fig. 3.

 Storage Deduplication and Management 199

Fig. 3. Logical View of FBS Software Components

File System Agent (FA) performs the first step of the algorithm to identify files
with identical contents. FA first mounts the virtual disk in read-only mode. Read-only
mounting prevents virtual machines from being shutting down. Then, FA reads the
database of the software package management system that is used by Ubuntu. By the
information stored in the database, FA generates a file list which includes files
installed after the snapshot virtual disks have been made. Since FBS was designed for
the VAN testbed, we are concerned of only the newly installed software that results in
storage redundancy. As a side note, if FBS is used outside of the scope of VAN, FA
can do a complete file system sweep to build a list of all the files modified/created
after the snapshot virtual disks have been made by using find command.

Storage Agent (SA) performs the second step of the algorithm, primarily to
manage the common volume. For each file that could have duplicates, SA checks
whether a duplicate of the file exists in the common volume. The common volume is
formatted in ext4, same as the virtual disks. If a file currently stored in the copy-on-
write volume already has an identical copy in the common volume, SA uses Linux
debugfs utility to retrieve the block allocation of the file and then informs Storage to
modify the mappings to point to the blocks of the shared copy in the common volume.
If a file doesn’t have a copy already stored in the common volume but multiple files
on different virtual disks share the same content, SA copies the file to the common
volume and then informs Storage to modify the mappings.

Storage (ST) manages the virtual disks and performs the last step of the algorithm.
ST provides an ioctl interface, which is used to control the block mappings of the
virtual disks.

Virtual
machine 1

File System
Agent

Storage
Agent

3. Coalesce blocks of
identical files

Virtual
machine 2

Virtual
machine K

Storage

1a.Get
File list

2. Compare
files

1b.Pass
file lists

rp

VMVM Host VM

debug

VM

All 3 LVMs share the same
view of 6 CoW volumes, 1

VM VM

VirtualBox

200 C.-H. Jong et al.

ST

rpm
r

V
Host VM VM6

Ext4
E

SAN network storage accessible by iSCSI protocol

SA
FA

ST: Modified Linux LVM

rpmrpm

VM1 Host VM

iSCSI protocol over
/

debugfs

VM2

Ext4Ext4
Read-

VirtualBox Virtual Machine Manager VirtualBox Virtual Machine Monitor

All 3 LVMs share the same view of 6
COW volumes, 1 template volume,
and 1 common volume.

VirtualBox Virtual Machine Monitor

ST

rpmrpm

VM3 Host VM VM4

Ext4Ext4

VirtualBox Virtual Machine Monitor

Fig. 4. A FBS prototype implementation with six virtual machines

To put everything in context, we explain the system architecture and setup in a
scenario consisting of six virtual machines as shown in Fig. 4. FA and SA reside in
the host VM on the left. The storage components, i.e., the modified LVM, have
instances in every machine and they share the same global view of virtual disks. In
other words, each machine can see all the virtual disks available on the SAN storage.
FA mounts virtual disks in read-only mode so that FA would not affect the 6 virtual
machines (VM1,VM2,…, VM6). FA reads the installation logs of the package
management system and passes the newly installed files list to SA. SA then compares
files and identifies those to be shared and put their copies in the common volume. For
all files sharing a copy in common volume, SA invokes debugfs to get the block
allocation of each file and informs ST to remap the block access from the original
virtual disk to the common volume for the newly shared file. In this 6 virtual machine
example, ST maintains totally eight volumes: one for the template volume, one for the
common volume, and the other six for the copy-on-write volumes.

4.2 FBS vs. CAS

Since FBS was designed to address the storage redundancy issue for a virtual network
testbed rather than for host virtualization in general, it is done differently than most
other block-level storage deduplication approaches in many ways. As an example, we
compare FBS against CAS and show their major differences in Table 1.

 Storage Deduplication and Management 201

Table 1. Comparing CAS and FBS

 CAS FBS
Sharing unit a block in a virtual disk a file in a virtual disk

Non-sharable blocks file system meta- data

file system meta-data;

files which have some identical blocks
but have at least one non-identical
block

Back-end storage Cluster file system LVM

Volumes needed for k
virtual disks

1 template volume +

k copy-on-write volumes

1 template volume + k copy-on-write
volumes + 1 common volume

Major online overhead Hashing of written blocks None

Major offline overhead Coalescing blocks Comparing files with files in common
volume+Coalescing blocks of files

Sharing. Block-level deduplication approach such as CAS uses a block as its sharing
unit. Since FBS associates blocks with the files they belong to, we use file as the
sharing unit. More specifically, FBS considers all blocks pertaining to a file in a
virtual disk image as the sharing unit. In most cases, the files that FBS processes are
much smaller than the files in CAS’ cluster file system because the files in CAS for
virtual machine environment are virtual disk images while the files in FBS are the
files as seen by operating system instances across the testbed. Using file as the sharing
unit also has the drawback that two file are not sharable if they are not completely
identical in all blocks. However, in VAN storage redundancy is mainly consequences
of software installation, we believe using file as the sharing unit best suits our needs.

Storage. Although ST currently is implemented as a block-level storage, ST could be
implemented by a cluster file system as well. We chose LVM mainly because VAN
already used LVM and we did not want to change the storage setting. In addition,
while CAS uses cluster file system to provide virtual disk images, FBS prototype
directly provides virtual disks from SAN. An indicative, but inaccurate way to
calculate storage efficiency is by the total number of volumes used. If using CAS, k
snapshots of a template virtual disk require 1 template volume and k copy-on-write
volumes; FBS needs all the above and an additional common volume. The common
volume provides the benefit that the VAN users can setup a common volume with all
the files to be shared.

Overhead. FBS has lower hashing overhead than CAS. For online overhead, FBS
does not have the online hashing overhead at the block-level as CAS has. On the other
hand, FBS does calculate hashing values when offline at the file-level while CAS
does not. However, the overhead of calculating hash at the file-level is lower than at
the block-level due to the caching/perfecting mechanism and the reduced amortized
overhead. For example, computing MD5 hash by OpenSSL library need to call
MD5_init() for initialization, MD5_Update() for computing for each 512-bit chunk of
data, and MD5_Final() to generate the final hash output [10]. If hashing is computed
on a file, instead of a single block, the overhead of MD5_Init() and MD5_Final() will
be amortized.

202 C.-H. Jong et al.

5 Evaluation

We evaluated both offline and online overhead of FBS, and the associated storage
efficiency of the file systems. The offline overhead is due to the file hashing
operations performed by SA. The online overhead is due to the newly-introduced
table of block mappings of virtual disks. The efficiency of FBS can be affected by the
file size and the layout of file system running above. We will discuss efficiency with
respect to two famous families of file systems, ext2/3/4 and NTFS.

Conceptually, data are sharable but meta-data are not. The meta-data of a file stores
the pointers to the data blocks and other information. Since the layout of the file
system depends on the order of files written to a file system, the pointers to the data
blocks of the same file in different file systems will likely have different values.
Therefore, meta-data is not sharable.

5.1 Offline and Online Overhead

The first set of experiments was to evaluate the offline overhead of FBS, namely, the
time SA took to traverse a file system and compare files via hashing. Based on the
VAN testbed scenario described in the previous section, we set up an evaluation
environment that used 42 VirtualBox virtual machines. The virtual disks for the
virtual machines were snapshots of a template volume that has Ubuntu Linux Server
10.04 installed in it. We installed openoffice.org suite and all depended-on packages
on all virtual disks. The total installed file size was 438MB. Openoffice.org was
chosen for the study simply because of its large size and popularity.

Table 2. FBS offline overhead

 Mean Std dev
Total Processing Time for 42 Virtual Machines 677.09 sec 8.14 sec

Average Processing Time for 1 Virtual Machine 677.09/42=15.

79 sec

N/A

Table 2 shows the time needed for FBS to perform offline processing. To process

all 42 virtual disks FBS spent 677.09 seconds on average of five runs. Since SA
performed the operation in serial, to process one virtual disk would need roughly
15.79 seconds. The average throughput was 27.74 megabytes per second.

The second set of experiments was to evaluate the online overhead of FBS, namely,
the throughput degradation of the storage system. We use Bonnie++ benchmark to
evaluate the reading and writing throughput [4]. Bonnie++ is chosen because it
performs intensive sequential reading and writing blocks to test the block-level storage
performance. According to Fig. 5, we can see that after FBS was introduced, the
average throughput in both sequential read and sequential write is almost the same,
actually even decreased. Though it is possible that FBS increases the cache
performance and therefore FBS has even a slightly better performance. However, after
running the statistical t-test, we found that with or without FBS, the average throughputs

 Storage Deduplication and Management 203

seque
ntial
write
with …

seque
ntial
write
with…

seque
ntial
read

with …

seque
ntial
read

with…

Average
throughput 176.1 169.6 311.7 297.6

0.0
100.0
200.0
300.0
400.0

Th
ro

ug
hp

ut
 in

M

by
te

s/
se

c

Fig. 5. FBS online overhead

in sequential read are the same statistically (P Value=0.92). The average throughputs in
sequential write are also the same statistically (P Value=0.82). In brief, the online
performance of FBS and original LVM are the same in the statistical sense.

5.2 Linux Ext2/3/4 File System

Linux has its native file systems, Ext2, Ext3 and Ext4. They are mostly backward
compatible. Ext3 adds journaling and Ext4 extends the support of large files,
including the Extent feature. If the extent feature is disabled, file meta-data across the
three systems would be identical.

Each file in the file system has an inode entry, possibly composed of a few indirect
blocks along with data blocks. Each inode entry is 128 bytes and contains the pointers
to the data block. When the embedded pointers are not enough, indirect blocks are
allocates to store additional pointers to data blocks. Multiple inodes are squeezed into
one block to save space. For example, 32 inodes can be fit into a 4KBytes block.
Since two identical files residing in different file systems most likely will be assigned
to data blocks in the different logical address, sharing inode or indirect blocks which
contain the pointers to the data blocks are meaningless. On the other hand, due to the
fact that Ext file system family uses a de-coupled approach to put inodes and data
blocks in different areas, data blocks are shareable even if corresponding inodes are
not sharable.

The following list shows an example of the block allocation for /bin/gzip. The file
system contains a good amount of meta-data including file type, block allocation, access
authorization, latest access time, etc. The information we are interested is block
allocation. This file contains totally 15 blocks. In additional to the inode, gzip has 14 data
blocks and one indirect inode block (block #854520). The inode of ext2/3 file systems
has 12 pointers to point to 12 data blocks. If the file size is large than 12 blocks, the file
system will allocate another indirect block to store data block pointers. In this example,
/bin/gzip has more than 12 blocks, so one indirect block (block #854520) is used to store
the 3 remaining data blocks pointers (block #854521~#854522). It is notable that
indirect blocks introduce data block fragmentation. In this case the indirect block is
between block #854519 and block #854521.

204 C.-H. Jong et al.

As Ext2/3 file systems were designed to support large files, multi-level indirect
blocks are used. The first level is called simple indirect blocks and double/triple-
indirect blocks are for the second and third levels. We summarize the formulae for
meta-data sizes for Ext2/3 file system in Table 3. Also, Fig. 6 shows the meta-data
overhead except for extremely large files. The meta-data overhead is quite low (1~2
indirect blocks) when the file size is not larger than 1037 blocks, which is around
4Mbytes. For the packages we installed in the evaluation, we found that much less
than 1% of the files are big files that exceed 1036 blocks.

List 1. Ext2 Meta-data of the file /bin/gzip

Inode: 210540 Type: regular Mode: 0755 Flags: 0x0 Generation: 3290196032

User: 0 Group: 0 Size: 53488

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 120

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x4ad48571 -- Tue Oct 13 09:49:37 2009

atime: 0x4af4e498 -- Fri Nov 6 22:08:08 2009

mtime: 0x473c3258 -- Thu Nov 15 06:49:44 2007

BLOCKS:

(0-11):854508-854519, (IND):854520, (12-13):854521-854522

TOTAL: 15

Table 3. Meta-data Overhead in Ext2/Ext3/Ext4 without Extents

X: # of blocks Meta-data Meta-data type

1~12 blocks 128Bytes Inode and Simple Direct blocks

13~1036 blocks 128Bytes + 4Kbytes Inode, Direct blocks and Simple
Indirect blocks

1037~1049612

blocks

128Bytes + 4Kbytes*(2+Ceiling(X-1036)
/1024)

Inode, Direct blocks, Simple
Indirect blocks, and Double-
indirect blocks

1049613~

1074791436 blocks

128Bytes + 4Kbytes(1026+Ceiling(X-
1049612)/10242+Ceiling(X-
1049612)/1024)

Inode, Direct blocks, Simple
Indirect blocks, Double-indirect
blocks, and Triple-indirect
blocks

0 0 1 1 2

1026 1027

0
500

1000
1500

of

 m
et

ad
at

a
bl

oc
ks

(e
xc

lu
di

ng

in
od

e)

of data blocks

Fig. 6. Ext2/3/4 File system meta-data overhead

 Storage Deduplication and Management 205

The Extent feature is an approach to reducing the file system overhead for large
files. It has been used commonly in the modern file systems. The conventional way to
represent the block allocation of a file is using a list of block addresses. The main
drawback of this approach is that deleting a large file is very time consuming and the
meta-data of large files would require considerable disk space. An extent contains the
logical block address from the beginning of the file, beginning of the data block on
the disk, and the number of consecutive data blocks. If a file contains only one set of
consecutive data blocks, one extent entry would be enough to represent the file
regardless of its size. Table 4 shows the meta-data overhead of Ext 4 file system when
extents are used. An inode has totally 4 extents. Each extent maps a range of logical
address to another range of physical address on the disk. So a very large file (e.g.
DVD image) does not additional meta-data block other than inode if the data blocks
of the file consists of 4 consecutive block sets or less. If a file has more than 4
consecutive block sets, indirect blocks are required and each indirect block can store
up to 340 extents for 4Kbytes block size. To take advantage of extents, some file
systems, like Ext4, use delayed I/O to make allocated blocks consecutive if possible.

Table 4. Meta-data Overhead in Ext4 with Extents

Y: # of consecutive
blocks sets

Meta-data size Meta-data type

4 128Bytes Inode

>4 128Bytes +4K(1+Ceiling(Y-4)/340)) inode, index node, and leaf
nodes

FBS can benefit from file systems supporting extents. If a file occupies

consecutive blocks and can be represented by only one extent, changing the block-
allocation mapping only needs one write operation.

5.3 Windows NTFS File System

Since NTFS is not an open standard, the following description of NTFS is empirical-
based. For a disk volume, NTFS pre-allocate an area named Master File Table (MFT)
to store the metadata. MFT contains 1 KBytes meta-data records and 12.5% of the
volume is reserved for MTF. Each record contains the file information, including
extents. A MFT record may contain the file itself if the file is small enough to fit to
the record, say 700~800 Bytes. This kind of files cannot apply any block-level
deduplication. For a file which cannot be squeezed in a MFT record, the meta-data
size is 1Kbytes for one MFT record if the file has no more than 30 consecutive blocks
sets. If a file has more than 30 consecutive sets of block sets, additional meta-data is
required. Table 5 summaries the meta-data overhead of NTFS file system.

206 C.-H. Jong et al.

Table 5. Meta-data Overhead in NTFS

Z: # of consecutive blocks sets meta-data size Meta-type type

File size<P, P=700~800 0 Embedded

<=30 sets of consecutive blocks 1Kbytes record MFT

>30 sets of consecutive blocks 1Kbytes*(ceiling(Z/30)) MFT

6 Conclusion and Future Work

The File-level Block Sharing (FBS) approach presented in this paper addresses the
post-snapshot block sharing problem associated with reducing storage redundancy for
virtual network testbed environments. Unlike other block-level storage approaches
like CAS, FBS does not perform online hashing computation for every written blocks
and therefore FBS is suitable for use in a virtual network environment such as Virtual
Ad Hoc Network Testbed (VAN). FBS associates file-level semantics with block-
level devices by using the file-to-block mapping obtained by the file system
debugging tools/library. We have implemented a prototype based on Linux
LVM/iSCSI and it shows no performance degradation in the statistical sense with
respect to I/O throughput. On analyzing the ext2/3/4 and NTFS file systems, we
discovered that the space efficiency of FBS was affected by the meta-data layout of
file systems.

To improve offline processing time, we are thinking of implementing a software
installation operation without actually copying the files. It may be achieved by
modifying the package management software to install a software package by
modifying the file system meta-data and directly use FBS to map the corresponding
file access to the common volume.

References

[1] Poylisher, A., Serban, C., Lee, J., Lu, T.-C., Chadha, R., Chiang, C.-Y.J., Orlando, R.,
Jakubowski, K.: A Virtual Ad hoc Network Testbed. International Journal of
Communicaiton Networks and Distributed Systems 5(1/2), 5–24 (2010)

[2] Pfaff, B., Garfinkel, T., Rosenblum, M.: Virtualization Aware File Systems: Getting
Beyond the Limitations of Virtual Disks. In: 3rd Symposium on Networked Systems
Design and Implementation, San Jose, California, pp. 353–366 (2006)

[3] Hong, B., Plantenberg, D., Long, D.D.E., Sivan-Zimet, M.: Duplicate Data Elimination
in a SAN File System. In: 21st IEEE/12th NASA Goddard Symposium on Mass Storage
Systems, Adelphi, Maryland, pp. 101–114 (2004)

[4] Bonnie++ benchmark suite, http://www.coker.com.au/bonnie++/
[5] Clements, A.T., Ahmad, I., Vilayannur, M., Li, J.: Decentralized Deduplication in SAN

Cluster File Systems. In: USENIX Annual Technical Conference, San Diego, California
(2009)

 Storage Deduplication and Management 207

[6] Teigland, D.: Volume Managers in Linux. In: USENIX Annual Technical Conference,
Boston, Massachusetts, pp. 185–198 (2001)

[7] Quigley, D., Sipek, J., Wright, C.P., Zadok, E.: Unionfs: User- and Community-
Oriented Development of a Unification File System. In: Linux Symposium, Ottawa,
Canada, pp. 349–362 (2006)

[8] Menon, J., Pease, D.A., Rees, R., Dulanovich, L., Hillsburg, B.: IBM Storage Tank-A
Heterogeneous Scalable SAN File System. IBM Systems Journal 42(2), 250–267 (2003)

[9] Oracle VirtualBox, http://www.virtualbox.org/
[10] OpenSSL cryptography library, http://www.openssl.org/
[11] Biswas, P.K., Serban, C., Poylisher, A., Lee, J., Mau, S., Chadha, R., Chiang, C.J.: An

Intergrated Testbed for Virtual Ad Hoc Networks. In: 5th International Conference on
Testbeds and Research Infrastructures for the Development of Networks and
Communities Internet, Washington D.C, pp. 1–10 (2009)

[12] Radkov, P., Yin, L., Goyal, P., Sarkar, P., Shenoy, P.: A Performance Comparison of
NFS and iSCSI for IP-Networked Storage. In: 3rd USENIX Conference on File and
Storage Technologies, San Francisco, California (2004)

[13] Geambasu, R., John, J.P.: Study of Virtual Machine Performance over Network File
System. University of Washington Technical Report (2006)

[14] Lu, Y., Du, D.H.C.: Performance Study of iSCSI-Based Storage Subsystems. IEEE
Communications Magazine, 76–82 (2003)

[15] Clark, T.: Storage virtualization: technologies for simplifying data storage and
management. Addison Wesley (2005)

[16] VMWare: VMWare Virtual Machine File System: Technical Overview and Best
Practices. VMWare Technical report, http://www.vmware.com/pdf/vmfs-

best-practices-wp.pdf (retrived on November 30, 2010)

	Storage Deduplication and Management for Application Testing over a Virtual Network Testbed
	Introduction
	Related Work
	File-Level Block Sharing
	File-Level Semantics in Block-Level Storages
	Algorithm

	Prototype
	Software Components
	FBS vs. CAS

	Evaluation
	Offline and Online Overhead
	Linux Ext2/3/4 File System
	Windows NTFS File System

	Conclusion and Future Work
	References

