
T. Korakis et al. (Eds.): TridentCom 2011, LNICST 90, pp. 172–179, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Scalable Star-Topology Server-Array Based P2P
Overlay Network Testbed

Otso Kassinen, Erkki Harjula, and Mika Ylianttila

MediaTeam Oulu, Computer Science and Engineering Laboratory
P.O.BOX 4500, FIN-90014, University of Oulu, Finland

firstname.lastname,@ee.oulu.fi

Abstract. We describe a scalable server-array based testbed for simulating
various usage scenarios of peer-to-peer (P2P) overlay networks. Each server is
responsible for a subset of the simulated peer processes, managed by the
mechanisms presented herein. The system follows a star topology, where one
master server acts as a point of control for a set of slave servers. We present
both the structure of the system and the activities needed before, during, and
after a simulation run in order to accomplish automated simulations, where each
interesting combination of the variable parameters of the overlay network is
evaluated. The functionality of the control scripts is explained in detail. Among
other things, the system sets up the required start conditions for a P2P overlay
simulation, manages the online-time and the specific P2P activities of each
simulated peer, and facilitates the handling of the generated log files, from
which the result statistics are derived.

Keywords: Network simulation, P2P overlay networks, testbed control logic.

1 Introduction

The tremendous popularity of peer-to-peer (P2P) networking technologies has led to
the need for suitable, efficient testing and simulation tools for different kinds of P2P
networks. Simple and small-scale tests can sometimes be run with ad-hoc setups, but
advanced tests require a more organized approach.

Structured i.e. distributed hash table (DHT) based P2P networking algorithms have
contributed to the scalability of the present-day P2P networks, but at the same time
these advancements have inevitably led to the need for more capable underlying
simulation environments in the design, proof-of-concept, and parameter-tweaking
phases during the development of novel P2P networking systems. Special challenges
in P2P simulations include the appropriate control of peer actions, provision of a
realistic simulation environment, and the observation and analysis of the state of the
distributed system and the results of actions in the network. The most significant issue
in the design and deployment of new P2P networking technologies is scalability,
which is – not surprisingly – also a key motivation in the development of P2P-
oriented network simulation tools, as indicated by the recurring mentions in the
literature [1-3]. Simply the ability to evaluate entirely new P2P protocols or

 Scalable Star-Topology Server-Array Based P2P Overlay Network Testbed 173

algorithms, which might not be feasible with generic simulation tools, is the other
main motivation for the creation of P2P-oriented network simulation systems [2, 4].

Literature on P2P simulations can be roughly divided into two categories. Firstly,
several P2P simulation tools have been proposed [1-4]. Secondly, in addition to
research on the design of entirely new P2P simulator systems, there are a large
number of studies about using an existing simulation system, P2P-oriented or generic,
for conducting a specific kind of P2P-related experiment. Examples of the second
category include: using the explicitly P2P-oriented OverSim simulator for evaluating
various properties of protocols for P2P overlay operation [5]; using the explicitly
P2P-oriented P2PSim simulator for comparing the efficiency of iterative, recursive,
and semirecursive routing schemes [6]; and using the generic NS-2 simulator for
studying the delay distribution that is related to data recovery [7].

In this paper, we describe a simple yet functional P2P overlay network simulation
setup, called Scalable Star-Topology P2P Testbed (SSTPT). This testbed system is
originally intended for, but not restricted to, the simulation of DHT-based P2P
protocols in scenarios, where data resources are published and searched in the
distributed database formed by the P2P overlay network.

The particular technical requirements and the design goals of the testbed were
derived from the simulation objectives explained in [8] and [9], for evaluating the
performance of an experimental P2P protocol with interesting parameter ranges in the
presence of churn and other varying network conditions. The simulated environment
had to provide neutral starting conditions for the simulations (for example, making
sure that a sufficient number of peers are online before starting the actual activities in
a simulation), manage the flow of the actual simulations according to the selected
peer behavior rules, handle the situations after simulations with any required clean-up
activities, store the result logs for later analysis, and provide a bootstrap service for
new peers.

As for experiment-related terminology, we use the terms treatment and trial as
defined in [10], when referring to different conceptual parts of simulation
experiments. A treatment is a combination of settings of variables. In our system,
variables are the variable parameters of simulations, and their settings are values from
the ranges explained in [8] and [9]. A trial is a collection of treatments. In our system,
a trial is formed by the treatments which are conducted in series one after another
until the set of interesting combinations of variable settings has been exhausted.

The structure of the paper is as follows. In section 2, the system structure is
outlined. In section 3, the operation of the testbed system in different phases of the
simulations, sub-dividing the conduction of one complete trial into logical steps, is
explained. In section 4, the results are briefly discussed.

2 System Structure

The physical setup of the system is straightforward. There are S slave units (SU) and
one master unit (MU), which are usually dedicated server machines. The machines
are arranged in a star topology. The N simulated peers of an overlay network are
allocated to the SUs. Because of the desired symmetrical nature of testbed load

174 O. Kassinen, E. Harjula, and M. Ylianttila

division, it is beneficial if every SU has identical components and configuration,
including identical operating system installations. In practice, this uniformity
requirement of the SUs is typically fulfilled by employing an organization’s server
arrays, which typically consist of a large number of similar rack or blade server
machines acquired in a mass purchase.

The SUs are connected to each other using a high-speed Ethernet switch, which
also connects them to the Internet and to the MU. Because the network connections
between the SUs are critical for the fluent operation of large-scale, high-activity P2P
simulations, this kind of setup is good, providing small SU-to-SU network latencies
and largely isolating the non-simulation-related network traffic from the testbed.

The physical setup of the main components of the testbed is illustrated in Fig. 1. As
an important addition to the system, the simulations can also employ mobile devices,
allowing for simulation setups where measurements can be performed using actual
mobile devices that participate in a large P2P overlay using, for example, a cellular
Internet connection [9]. These mobile peers are, however, not directly part of the
SSTPT system built specifically for simulations in a laboratory setting.

Linux-based open-source software infrastructure for the servers is easy to obtain
and install, provides excellent facilities for control scripting including inter-process
communication (IPC) and data analysis tools, and is usually well supported by the
staff in any technical organization.

Fig. 1. Master and slave units with S = 8

The functionality of the testbed is largely realized using Bash shell scripts, which
control all aspects of a simulation. In Table 1, an overview of the scripts and their
deployment on the different machines is provided. The operation of the scripts during
different phases of a trial is described in detail in section 3.

Table 1. Overview of the functionality and deployment of the simulation control scripts

Script name Functionality Deployment

Master Control Controls all other scripts MU
Slave Reconfigure Installs updated scripts to all SUs MU
Central Catalog Manages dynamic global control data MU
Slave Control Controls actions within one SU SU
Peer Control Controls the actions of one peer SU
Distr. Engine Generates online/offline time values

following a given distribution function
SU

 Scalable Star-Topology Server-Array Based P2P Overlay Network Testbed 175

3 SSTPT in Operation: Conducting a Trial

A state diagram providing a high-level picture about the conduction of a trial with
SSTPT is shown in Fig. 2. The activities are explained in more detail in the following
sub-sections.

Fig. 2. High-level state diagram of a trial

3.1 Pre-trial Actions

The MU and SU machines are up and running and do not contain any unwanted
processes consuming the computing resources required for the testbed operation. The
P2P protocol software (the peer implementation to be run as several concurrent
instances) has been installed on all machines. The basic preconditions, such as a user
account capable of running the relevant applications and being authorized to use a
sufficient amount of resources such as disk space, have been prepared on the
machines. The clocks of the servers have been synchronized to have a clock
difference of at most a few seconds; the Network Time Protocol (NTP) system
provides accurate enough synchronization.

On the MU, the human operating the simulation experiment sets the Master Control
script to contain the correct parameters in two categories: 1) the ranges of the actual
variable parameters (and any required constant parameters), which constitute the basis
for different treatments and are most interesting from the viewpoint of the experiment’s
outcome, and 2) the supporting parameters which affect the flow of the treatment or trial
as a whole and typically have constant settings during an entire trial. The category (2)
includes at least the pre-treatment wait time tpre-wait [minutes], the treatment duration
ttreatment [minutes], and the post-treatment wait time tpost-wait [minutes].

The Slave Reconfigure script is run to propagate an instance of the Slave Control,
Peer Control, and Distr. Engine scripts with any needed trial-specific modifications to
each SU. The modifications to the content of Slave Control are made at a single
location, i.e. on the MU, and Slave Reconfigure makes sure that each SU contains the
same version. The transfer of any files (such as updated scripts or generated logs)
between the MU and SUs is done with the scp application; however, the direct control

176 O. Kassinen, E. Harjula, and M. Ylianttila

channel between the MU and each SU is realized using a socket connection from the
Bash scripts with help of the nc network scripting tool. The MU knows the IP
addresses or DNS names of the SUs.

While all simulated peers are intended to be run on the SUs or possibly on separate
mobile devices, the bootstrap service – which is a specialized peer instance – for the
peers is installed on the MU. It should be noted that while the actions on the server-
array based peer instances are controlled with scripts, the actions of the optional
mobile peers must be either manually controlled (including, for example, the manual
startup of the peer process on the mobile device) or scripted with methods that are
outside of the scope of this paper.

3.2 Pre-treatment Actions

The Slave Control scripts on each SU are initiated and they start waiting for operation
instructions from the MU. When every SU contains one running instance of the Slave
Control script, the Master Control script on the MU (looping through the desired
parameter combinations) starts preparations for the new treatment.

The Master Control script resets the bootstrap service and the database of the
Central Catalog on the MU, thus these entities’ state from any previous treatments
does not affect the new treatment. Based on the known ttreatment, Master Control
calculates the starting timestamp Tstart (MM:SS).

Then, the MU prepares and passes an execution ticket (ET) to each SU over the
control channel. The ET is a brief message – a string of whitespace-separated values –
containing all the information a SU needs for accomplishing its responsibilities in
cooperation with the other SUs during one treatment. This information is provided in
the form of values for specific Bash script variables in Slave Control.

The ET for a SU contains, among other things, the number of peers that this
specific SU is responsible for. If there is known asymmetry in the capabilities of the
SUs, the configuration of the MU must take this into account and divide the
responsibilities (how many peers are allocated for a given SU) according to that.

3.3 In-treatment Actions

When a Slave Control script has received the ET, it prepares the starting state of the
P2P overlay network nodes that it is responsible for. This may, for example, involve
bringing online exactly half of the peers and let them already exchange some routing
information in order to achieve a neutral starting state for the overlay simulation.
When the clock of each SU, approximately at the same moment, reaches the
timestamp Tstart, the Slave Control scripts start the actual simulation, which lasts until
the clock reaches the timestamp Tstart + ttreatment. Slave Control brings each new peer
online by instantiating the Peer Control script. Slave Control manages the unique peer
IDs and their transport protocol ports on the localhost in order to prevent conflicts
between different instances of Peer Control. Slave Control also provides crucial
pieces of information such as the bootstrap service IP address and port and the
number of publishable resources per peer; all of these parameters originate, of course,
from the ET passed from the Master Control.

 Scalable Star-Topology Server-Array Based P2P Overlay Network Testbed 177

During its lifetime, a peer will publish and lookup data resources, and do other
specified actions. The actions of a peer are defined by the Peer Control script, which
received its parameters from the Slave Control script. The Peer Control script loops,
in steps of one second, through a loop where counters for different P2P action types
are incremented upon every iteration. When the counters reach a value that was
specified for the given P2P action type (for example, resource lookup once every 30
seconds), the P2P action is invoked: Peer Control issues the corresponding command
to its P2P software instance, which then carries out the specified action. The Peer
Control script uses named pipes (identified by the peer instance’s peer ID or its Unix
process ID in the SU) for passing the commands to its corresponding P2P protocol
software instance.

The Central Catalog exists, because often there is need for storing some centralized
information that is not known by the P2P software under test but is needed by the
simulation framework itself. In [8] and [9], the Central Catalog was used for
remembering, which resource IDs (DHT keys of data resources) were currently in
use, so that the Slave Control was able to issue resource lookup requests for which the
“not found” response indicated a real failure of the overlay to locate the resource and
not a situation where the searched resource simply was non-existent. The Central
Catalog is accessed over a HTTP interface, which allows the actions for resetting the
database of the Central Catalog and inserting, querying, or removing a key-value pair
(for whatever usage the simulation control requires this service).

If the online/offline times of a peer are required to follow a specific statistical
distribution, the Distr. Engine is used for generating a value that serves as the duration
of the next online (or offline) time period of the given peer. If, for example, the
desired distribution is the exponential distribution, a value t following that distribution
can be created from a random real number r (0 < r < 1) and the expected mean value
λ-1 as follows:

t = -λ-1·ln(r) (1)

At the end of a treatment, the Slave Control script kills all currently running Peer
Control instances and their P2P software instances, and begins the post-treatment wait
time tpost-wait in order to allow for possibly slow operations (such as log copying or any
process clean-up actions).

3.4 Post-treatment Actions

When the protocol activity has stopped, the log files are compressed using BZIP2 and
transferred to a log repository on the disk of the MU for centralized storage and, later,
analysis. The name of the compressed file is created from the used parameter values,
thus it is easy to see which logs correspond to a specific treatment. In another possible
approach, the log messages are transferred already in real-time during the run to the
MU or another storage site, but obviously this can skew the results as the network
connection, used also for the P2P protocol messaging, may become a bottleneck and
also lost messages can be a problem.

178 O. Kassinen, E. Harjula, and M. Ylianttila

3.5 Post-trial Actions

The logs on the MU are decompressed and analyzed with suitable tools. The analysis
is facilitated if the logs are in an easily parseable form and, for example, each line
contains the complete information about one observable action and is easily linkable
to interrelated actions (such as the initiation of the lookup of a resource and the
eventual finding of that resource).

The observation of the simulation results is based on the premise that the outcome
of a treatment is determined by examining the log files or similar data entities that
were generated during the simulation. This, of course, requires the P2P protocol
software under test to have a logging facility and the log entries must be accurate
enough to determine what operations were run and what were their end results or
intermediate results, such as the re-routing hops of messages between several peers of
the DHT overlay.

4 Discussion

The feasibility of SSTPT has been demonstrated by two medium-sized overlay
network simulations, which have been conducted with it. In [8], the performance of
an experimental P2P protocol was evaluated. The variable parameters in the trial were
the overlay size (N = 200 and N = 2000), the churn rate (i.e. the online and offline
times of the peers) and the frequency of resource lookup requests. In addition to the
variable parameters, several constant parameters were used: some of them were
assigned in the ET, and some were set during compilation time in the P2P protocol
software. The log files of the trial were parsed using grep-based scripts, which
counted the occurrences of specific types of log lines in the files, thus making it
possible to determine values for performance metrics such as lookup request success
ratio. In [9], the overlay contained also mobile peers. The aim was to measure the
battery life of the mobile devices in P2P usage. The variable parameters in the trial
were a subset of the variable parameters used in [8].

The SSTPT system is a simple-to-configure, rather flexible tool for examining the
operation of P2P overlay network protocols. Future work on SSTPT may include
creating more refined control functions for the actions of the peers; these can, for
example, be based on more realistic modeling of the behavior of P2P network users.

Acknowledgments. The authors thank Jari Korhonen for his valuable contribution in
the design and implementation of the testbed system.

References

1. Binzenhofer, A., Hossfeld, T., Kunzmann, G., Eger, K.: Efficient Simulation of Large-
Scale P2P Networks: Compact Data Structures. In: 15th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, pp. 467–474 (2007)

 Scalable Star-Topology Server-Array Based P2P Overlay Network Testbed 179

2. Dinh, T.T.A., Theodoropoulos, G., Minson, R.: Evaluating Large Scale Distributed
Simulation of P2P Networks. In: 12th IEEE/ACM International Symposium on Distributed
Simulation and Real-Time Applications, pp. 51–58 (2008)

3. Dinh, T.T.A., Lees, M., Theodoropoulos, G., Minson, R.: Large Scale Distributed
Simulation of P2P Networks. In: 16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, pp. 499–507 (2008)

4. Shi, G., Long, Y., Gong, H., Wan, C., Yu, C., Yang, X., Zhang, H.: A High Scalability
P2P Simulation Framework with Measured Realistic Network Layer Support. In: IEEE
International Performance, Computing and Communications Conference, pp. 311–318
(2008)

5. Munoz-Gea, J.P., Malgosa-Sanahuja, J., Manzanares-Lopez, P., Sanchez-Aarnoutse, J.C.,
Martinez-Rojo, A.M.: Simulation of a P2P Application Using OverSim. In: First
International Conference on Advances in Future Internet, pp. 53–60 (2009)

6. Cheng, Y., Wen, X., Sun, Y.: Simulation and Analysis of Routing Schemes in Structured
P2P System. In: ISECS International Colloquium on Computing, Communication, Control,
and Management, pp. 524–527 (2008)

7. Dandoush, A., Alouf, S., Nain, P.: Simulation Analysis of Download and Recovery
Processes in P2P Storage Systems. In: 21st International Teletraffic Congress, pp. 1–8
(2009)

8. Kassinen, O., Harjula, E., Ylianttila, M.: Analysis of Messaging Load in a P2PP Overlay
Network under Churn. In: IEEE Global Telecommunications Conference, pp. 1–5 (2010)

9. Kassinen, O., Harjula, E., Korhonen, J., Ylianttila, M.: Battery Life of Mobile Peers with
UMTS and WLAN in a Kademlia-based P2P Overlay. In: 20th Personal, Indoor and
Mobile Radio Communications Symposium, pp. 1–4 (2009)

10. Bock, P.: Getting It Right: R&D Methods for Science and Engineering. Academic Press,
London (2001)

	Scalable Star-Topology Server-Array Based P2P Overlay Network Testbed

	Introduction
	System Structure
	SSTPT in Operation: Conducting a Trial
	Pre-trial Actions
	Pre-treatment Actions
	In-treatment Actions
	Post-treatment Actions
	Post-trial Actions

	Discussion
	References

