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Abstract. The capability to detect anomalous states in a network is im-
portant for both the smooth operation of the network and the security
of the network. Modern networks are often heterogeneous. This raises
a new challenge for anomaly detection, as there may be a wide variety
of anomalous activities across the heterogeneous components of a net-
work. We often seek a detection system that not only performs accurate
anomaly detection but also provides mechanisms for human expert to
understand the decision making process inside the system. In this paper,
we investigate the application of sparse Bayesian methods for anomaly
detection in such scenario. By taking advantage of the sparse Bayesian
framework’s capability to conduct automatic relevance discovery, we con-
struct a detection system whose decision making is mostly based on a
few representative examples from the training set. This provides hu-
man interpretability as expert can analyze the representative examples
to understand the detection mechanism. Our experiment results show
the potential of this approach.
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1 Introduction

In a complex system, it is crucial to monitor the system activities for the nor-
mal operation of the system. Techniques that can identify anomalous state in
a system have been the subject of many researches [7,1,11,3]. Machine learning
methods are a particularly promising approach to the problem. However, in this
case, it is often not enough to just classify a system event or activity to be normal
or abnormal. We also want to know why the event is abnormal. And when there
are many different types of abnormal events, we want to know what the types
are. This is important because detecting the anomaly is just a start. To deal
with the problem, e.g., to recover from the abnormal state or to fight against
security breach, one need to know more.

Many off-the-shelf machine learning methods lack the capability to explain the
decision made by the methods. For example, given a particular trained neural
network for anomaly detection, it is not easy to derive a human-understandable
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model on how the neural network judges some event to be normal and the others
to be abnormal. On the other hand, in many cases, the detection problem can
be complex. There may be many different types of anomalies. And we may need
to combine many features of an event to specify the anomaly. In these scenarios,
human analysis is often needed to explain the anomalous event and identify the
type of the anomaly. However, automated data analysis program can still help.
In particular, we can use automated programs to select a few “representative”
cases and present them to the human experts. The expert then analyze the
“representative” cases and build models for the (different types of) anomalies. In
this way, automated analysis facilitates human analysis by reducing the amount
of cases that the experts need to look through.

In this paper, we propose a sparse Bayes framework for anomaly detection.
Given a set of normal and abnormal examples, we build a classifier that detects
future anomalies. The classification is based on a very small set of examples
and these examples can be viewed as the “representative” cases of the abnormal
activities. By analyzing this small set of examples, a human expert may identify
the mechanism that causes the anomaly.

One way to build a small set of “representative” cases from a collection is
to perform clustering. Clustering groups the data into clusters and the cluster
centers can serve as the “representative” cases. However, several factors make
clustering less applicable in our scenario: 1) We may not know how many number
of clusters exist in our collection of events. 2) In many cases, the “center” of
a cluster is not well-defined when the attributes describing the event involves
nominal attributes. For example, if a cluster contains some events that involves
TCP as the connection protocol and some other involves UDP. There is no
center that “averages” over the two protocols. 3) We seek “representative” cases
that not only represent the data in the collection, but also can help in making
the distinction between the abnormal and the normal. i.e., The “representative”
cases should play an important role in the classification of the events.

In the sparse Bayes framework, the search for the representative cases (events)
is performed while the classifier for anomaly detection is being constructed.
The representative cases (events) are also the ones that are important for the
classification. In fact, to classify an unknown event, one only needs to compare
the event to the representative events and the result of such comparison decides
whether the unknown event is normal or abnormal. When the representative
events can lead to accurate classification, they represent well the data in the
collection of examples.

We test our sparse Bayes framework for anomaly detection using the KDD
intrusion detection dataset. Experiment results show that a classifier constructed
following the sparse Bayes framework gives accurate classification between the
normal and the abnormal events. The performance of the classifier is at the same
level as that of a classifier based on support vector machine. Our classification
framework also generates a very small set of representative cases, which human
expert can analyze to understand the anomaly or determine the types of the
anomaly.
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The rest of the paper is organized as follows: In Section 2, we discuss related
work. In Section 3, we give a detailed description of our sparse Bayesian frame-
work for anomaly detection. In Section 4, we present and discuss our experiment
results. We conclude the paper in Section 5.

2 Related Work

Anomaly detection has been the subject of many researches. There are excellent
surveys on the problem, the approaches considered and the applications. We
refer to [7,1,11,3] for comprehensive elaboration on the topic. Intrusion detec-
tion is a major application area of anomaly detection and many systems have
been proposed, for example, [13,12,2]. Statistical models and machine learning
methods are heavily employed in anomaly and intrusion detection systems.

For example, one popular approach in intrusion detection is to use rule-based
systems. A set of rules specifying abnormal events (intrusions) is extracted and
new intrusion events are identified by matching them to these rules. The rules
can be extracted either manually, or through data mining or machine learning
techniques. Decision trees [10] and fuzzy logic [5] have been used for intrusions
detection. Rule learning algorithms such as RIPPER have also been tested for
such purpose [14]. The advantage of these techniques is that the rules they use
to make decisions can be easily interpreted by humans. Pure machine learning
techniques such as neural networks [8] and support vector machines [4] are also
employed in intrusion and anomaly detection.

Sparse Bayesian learning is a learning technique developed by Tipping [15,6].
The goal of this framework is to construct a parsimonious model that can give
good prediction. The framework achieves this by select features using an auto-
matic relevance detection technique. A classifier constructed in this framework
is called a relevance vector machine. The relevance vector machine has been
applied to help dynamically tracking faces in video sequences [16].

3 Sparse Bayesian Framework for Anomaly Detection

We specify a network event as a vector of attributes. Some are numerical and the
others are nominal. We have a collection of N examples of normal and abnormal
events, which we denote as {xi, ti}N , where xi = {x1

i , x
2
i , . . . , x

k
i } is the vector of

k attributes describing the i-th example event. And ti is the class label (normal
or abnormal) of the event.

Our goal is to construct a classifier to classify future unknown events. Nor-
mally, the classification would be based on a function of attributes. For example,
one may learn a function in the form of

∑
j wjx

j + b and classifies the unknown
event x by the sign of the function values. Our framework takes a different ap-
proach. The classification function is based on the similarity measure between
the unknown event and the events in the training collection. Our approach bears
some similarity to the nearest-neighbor classification. However, instead of com-
pare the unknown event to the nearest neighbors, we compare it to a small set of
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examples that are selected according to a statistical process that automatically
discovers the relevance between the events.

3.1 Similarity Based on Normalized Features

The first step in our sparse Bayesian framework is to calculate similarity between
network events. Given two network event xi and xj , we measure the similarity
between the two event by the “extended” dot product of the two corresponding
feature vectors. i.e., S(xi, xj) =

∑
k xk

i ◦xk
j . We call it the “extended” dot product

because some features are nominal and the others are numerical. For a numerical
feature (xk

i and xk
j ), xk

i ◦ xk
j is the product of xk

i and xk
j . When the feature is

nominal, we define

xk
i ◦ xk

j =

{
1 if xk

i = xk
j ;

0 otherwise;
(1)

One problem in calculating similarity in such fashion is that the result may be
dominated by one or a few features that has very large values compare to the
other features. (In fact, this is a common problem for similarity calculation, not
just for our extended dot product.) To deal with this situation, we normalize the
features before performing the extended dot product. Clearly, only the numerical
features require normalization. Consider the vector of values for the k-th feature
k = {xk

1 , xk
2 , . . . , xk

N}. We view that the values follow a normal distribution. We
then transform each value xk

i to be

φ(xk
i ) =

xk
i − μk

σk
. (2)

where μk = 1
N

∑
i xk

i is the mean of the values for the k-th feature and σk is the
standard deviation of the values. Once the feature values are normalized, the
similarity calculation is done with the transformed values. Let O be the set of
nominal features and U be the set of numerical features, we have

S(i, j) =
∑

k∈U

φ(xk
i )φ(xk

j ) +
∑

k∈O

xk
i ◦ xk

j . (3)

3.2 Sparse Bayesian Classification

We follow a logistic regression model to define the probability of an event being
normal or abnormal. Given the similarity measure S and a network event x, let
t be the type (“normal” and “abnormal”) of the event, we define the probability
of the event being normal or abnormal to be

p(t = “abnormal”|x, w) =
1

1 + exp(
∑

i wiS(x, xi) + w0)

and

p(t = “normal”|x, w) = 1−p(t= “normal”|x, w)=
exp(

∑
i wiS(x, xi) + w0)

1 + exp(
∑

i wiS(x, xi) + w0)
.
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w = {w0, w1, . . . , wN} is a vector of parameters for the probability model. In a
general logistic regression model, the probability is defined as a function of fea-
tures, i.e., it involves a quantity in the form of

∑
k ŵkxk. Our model differs from

the standard logistic regression in that the probability is defined as a function of
training instances. Therefore, each wi, i �= 0 corresponds to an instance (event)
in the training set (rather than a feature as is in a standard logistic regression
model). If we encode the “abnormal” case as t = 1 and the “normal” case as
t = 0, we have the following likelihood of the event given the parameter vector:

p(t|x,w) =

(
1

1 + exp(
∑

i wiS(x, xi) + w0)

)t (

1− 1

1 + exp(
∑

i wiS(x, xi) + w0)

)(1−t)

(4)

Let y(x) = 1
1+exp(

∑
i wiS(x,xi)+w0)

, the likelihood can be simplified as y(x)t(1 −
y(x))(1−t).

One may estimate the parameters using a maximum likelihood approach. In
Bayesian framework, rather than selecting a particular vector of values for w,
we often model the parameter vector as a random variable draw from a prior
distribution p(w). Note that in many cases, as is in this paper, it is not necessarily
to use a distribution that matches exactly the actual prior distribution of the
problem. We often treat the model prior as a way to encode our bias in choosing
the model parameters.

Following the sparse Bayesian framework of [15], we consider a particular
prior distribution for w. We model that the i-th parameter wi is draw from
a normal distribution with zero mean and variance ai, i.e., p(wi) ∼ N(0, ai).
The distribution for the whole parameter vector w is a multivariate normal
distribution with zero mean and a covariance matrix A, i.e.,

p(w|A) = N(w|0, A). (5)

where 0 is a (N +1)-dimensional all zero vector and A is a diagonal matrix with
the diagonal Aii = ai.

The normal and abnormal probability of a new network event x now can be
calculated as

p(t|x, ttrain, Xtrain, A) =
∫

p(t|x, w)p(w|ttrain, Xtrain, A)dw (6)

with p(t|x, w) defined by Eq. 4 and p(w|ttrain, Xtrain, A) being the posterior dis-
tribution of w given the prior distribution p(w|A) and the set of training example
{ti, xi}N . (ttrain = {t1, t2, . . . , tN}t is the N -dimensional vector of class labels
for the training examples. Xtrain = {Strain,1} is constructed by appending an
N -dimensional all ones column vector to the right of the similarity matrix Strain

of the training examples.) The probability of the new network event being nor-
mal or abnormal is determined by both the prior distribution (specified by A)
and the training data.



80 J. Zhang and R. Kannan

3.3 Parameter Estimation

We follow the approach in [15] to estimate the parameters ai. We give here a
brief introduction to the parameter estimation process. Detailed description can
be found in [15]. We first consider the posterior distribution of w, supposing that
the values in A is given. Following the Bayes rule, we can write the posterior
distribution as

p(w|ttrain, Xtrain, A) =
p(ttrain|Xtrain, w)p(w|A)

p(ttrain|Xtrain, A)
.

Instead of considering the exact posterior distribution, we apply Laplace approx-
imation to the distribution, i.e., we construct a normal distribution centered at
the mode of the posterior distribution and use the normal distribution to ap-
proximate the posterior distribution.

The mode of the posterior distribution can be found by maximizing the log
probability of the distribution:

ln p(w|ttrain, Xtrain, A)
= ln p(ttrain|Xtrain, w)p(w|A) − ln p(ttrain|Xtrain, A)

=
N∑

i=1

{ti ln yi + (1 − ti) ln(1 − yi)} − 1
2
wtAw + C

where yi = y(xi) = 1
1+exp(

∑
j wjS(xi,xj)+w0) and C is some quantity not depen-

dent on w.
Suppose A is known. The log probability is a function of w. To find the w

that maximize the log probability, we set the gradient of the log probability to
zero, i.e.,

� ln p(w|ttrain, Xtrain, A) = Xt
train(ttrain − y) − Aw = 0

where y = {y1, y2, . . . , yN}t. This is a system of N nonlinear equations. One
can obtain the solution (roots) of the equations numerically using Newton-
Raphson iterative method, which leads to a type of iterative reweighted least
square (IRLS) problem. In particular, the Hessan of the log likelihood is � �
ln p(w|ttrain, Xtrain, A) = −(Xt

trainBXtrain + A) where B is a diagonal matrix
with Bii = yi(1 − yi). The update rule for the Newton-Raphson method would
then be:

wnew = wold − (Xt
trainBXtrain + A)−1(Xt

train(y − ttrain) + Awmathrmold)

with y evaluated using wold in each step.
Once we obtain w∗ ≈ argmaxw ln p(w|ttrain, Xtrain, A), we approximate

p(w|ttrain, Xtrain, A) by a normal distribution N(w∗, (Xt
trainB∗Xtrain + A)−1),

where B∗ is B with y evaluated using w∗.
The above steps assume that we know the values of ai in A. The parameters

ai can be estimated following an empirical Bayes approach. That is, we set A to
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be A = arg maxA

∫
p(ttrain|Xtrain, w)p(w|A)dw where p(ttrain|Xtrain, w) follows

Eq. 4 and p(w|A) follows Eq. 5. Unfortunately, there is no close-form solution
to this integration. We again apply Laplace approximation. Note that the w∗

that maximize the function f(w) = p(ttrain|Xtrain, w)p(w|A) is exactly the w∗

we obtain in the approximation of the posterior distribution. With this, the
probability of the training examples can be written as:

p(ttrain|Xtrain, A)

=
∫

p(ttrain|Xtrain, w)p(w|A)dw

≈ p(ttrain|Xtrain, w∗)p(w∗|A)(2π)(N+1)/2|Σ∗|1/2.

When we know w∗ (and Σ∗), we can obtain A by maximizing the above proba-
bility. Set the derivative of this probability to zero, one can obtain the update
rule for the parameters ai as:

a
(new)
i =

1 − a
(old)
i Σ∗

ii

(w∗
i )2

(7)

Combining all the above, we have that, given an initial set of values of ai, we
can estimate w∗. With the values of w∗, we can then obtain an updated estimate
of ai. One can repeat this estimation process until a good estimate of the ai is
obtained. The algorithm for parameter estimation is summarized in Algorithm 1.

Input : A set of N examples {xi, ti}; Convergence criteria δa, δw and M
Output: The parameters {ai}Ni=1

Process the training examples to obtain the similarity matrix.
S(i, j)←∑

k∈U φ(xik)φ(xjk) +
∑

k∈O xik ◦ xjk, where φ and ◦ are defined in
Eq. 1 and Eq. 2 respectively. O is the set of nominal attributes and U is the set
of numerical attributes.

X ← {S, 1} ;

while max(ai) < M and change of ai larger than δa do
w← 0;
while change of wi large than δw do

yi ← 1
1+exp(

∑
j �=i wjS(xi,xj)+w0)

;

B ← diag(y), diag(y) constructs a diagonal matrix whose diagonal is y;
w ← w − (XtBX + A)−1(Xt(y − t) + Aw);

end
Σ ← (XtBX + A)−1;
ai ← 1−aiΣii

(wi)
2 , where Σii is the i-th element on the diagonal of the matrix Σ;

end

Algorithm 1. Parameter Estimate
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3.4 Simplified Classification

In a full Bayesian framework, the probability of a new network event being nor-
mal or abnormal is calculated using Eq. 6. Since there is no close-form solution
to the integration, one either employs numerical methods or applies an approxi-
mation (e.g., the one we used for parameter estimation). This will either increase
computational cost or produce less accurate result.

To classify new network events (after we have obtained the values for ai),
instead of following Eq. 6, we can calculate the probability following Eq. 4 us-
ing a w∗ = arg maxw p(w|ttrain, Xtrain, A). This is similar to making prediction
by a MAP (maximum a posterior) approach. We now show that if the poste-
rior distribution of w is approximated using a Normal distribution, classifying
new network events following the Bayesian approach and the MAP approach
generates the same result.

Theorem 1. Assume that the posterior distribution p(w|ttrain, Xtrain, A) is ap-
proximated by a normal distribution N(w∗, Σ∗). Classification using pMAP(t) =
p(t|x, w∗) = y(x)t(1 − y(x))(1−t) and pBayes(t) = p(t|x, ttrain, Xtrain, A) =∫

p(t|x, w)p(w|ttrain, Xtrain, A)dw ≈ ∫
p(t|x, w)N(w|w∗ , Σ∗)dw yields the same

result.

Proof. Consider classification using pBayes(t). We say a network event x is ab-
normal if pBayes(1) > pBayes(0) and normal otherwise. We calculate

∫

p(1|x, w)N(w|w∗ , Σ∗)dw −
∫

p(0|x, w)N(w|w∗, Σ∗)dw

=
∫

[p(1|x, w) − p(0|x, w)]N(w|w∗ , Σ∗)dw

=
∫

[
2

1 + exp(−u)
− 1]N(u|μ, σ)du

In the last step, we set u = wtx. For a fixed x, because w follows a normal
distribution N(w∗, Σ∗), u = wtx also follows a normal distribution with the
mean μ = w∗tx.

Let f(u) = 2
1+exp(−u) −1. Note that f(u) is symmetric with respect to the ori-

gin, i.e., f(−u) = −f(u) and f(0) = 0. Also, f(u) is a monotonically increasing
function. The classification depends on

∫
f(u)N(u|μ, σ)du. Let x0 be an event

such that μ(x0) = w∗tx0 > 0. For every u0 = μ(x0) − ε, there is u′
0 = μ(x0) + ε,

such that p(u0) = p(u′
0) and |f(u0)| < |f(u′

0)| where | · | denotes the absolute
value. Therefore,

∫
f(u)N(u|μ(x0), σ)du >> 0 and the event x0 will be classified

as abnormal using pBayes. When using pMAP, classification depends on f(u) with
u = w∗tx. Because w∗tx0 > 0, f(w∗tx0) > 0. Therefore, x0 will be classified as
abnormal too. The same argument holds for an event x0 such that w∗tx0 ≤ 0.
In this case, both methods will classify the event as normal. �	
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4 Experiments

We test our framework using the KDD Cup anomaly detection dataset [9]. The
dataset is the most widely used data set for evaluation in anomaly detection
research. It is based on the data captured in DARPA98 IDS evaluation program.
The dataset is a collection of connection vectors. Each vector has 41 features and
is labeled either as normal or an attack. The dataset we use is a subsample of
the original KDD Cup dataset called the 10-percent KDD Cup dataset. There
are 22 attack types in the 10-percent subset.

We first conduct experiments to test the detection performance of our frame-
work and compare it to that of an SVM-based detection system. We then analyze
the representative instances selected by our framework.

4.1 Detection Performance

From the 10-percent KDD Cup dataset, we randomly sample a subset of normal
and attack instances as training examples. From the remaining of the instances,
we then randomly sample another subset to use as test data. We train a SVM-
based classifier and a sparse Bayes classifier using the training examples. The
performance of the classifiers are then tested on the test data. For each exper-
iment condition, we repeat the experiment 20 times. Each data point reported
in the figures is the average of the results from the 20 repetitions.

We measure the performance of the classifiers using the standard F-score.
There are only two classes in our data: normal and attack. If a classifier label
a true attack as attack, we count it as a true positive. Otherwise if it labels
a true attack as normal, we count the case as a false negative. Similarly, we
have true negative (label a normal instance as normal) and false positive (label
a normal instance as attack). We denote by TP the number of true positives,
FN the number of false negatives, TN true negatives and FP false positive.
The precision of a classification is define as TP/(TP + FP ) and the recall as
TP/(TP+FN). The harmonic mean of the precision and the recall is the F-score
of the classification performance, i.e., 2 ·precision×recall

precision+recall . If a classifier gives perfect
classification, the F-score should take the value 1 and the worst classification
will give an F-score zero.

Fig. 1 shows the performance of the SVM-based classifier and the sparse Bayes
classifier when given different numbers of training examples. 4 experiments are
conducted using training set of different sizes. In experiment 1, the collection of
training examples contain 9 normal connection vectors and 11 attack vectors. In
experiment 2, 19 normal and 23 attack vectors. Experiment 3, 48 normal and
59 attacks and experiment 4, 97 normal and 118 attacks. The result shows that
for both classifiers, the performance becomes better if more training examples
are used. Overall, the SVM-based classifier and the sparse Bayes classifier have
similar level of performance.

In the above experiment, attack instances of all types are grouped into one
collection. (We omitted some attack types in the original data set that only
have few instances.) The training and the testing instances for the attack class



84 J. Zhang and R. Kannan

1 2 3 4
0.85

0.9

0.95

1

Experiments

F
−

S
co

re

 

 

Sparse Bayes
SVM

Fig. 1. Detection Performance Given Training Set of Different Size

are sampled from this collection. Intuitively, one may think that the detection
task would be more difficult when there are many different types of attacks.
The classifier need to recognize many types rather than dealing with one type
of attack (anomaly). The number of attack types in the dataset then reflects,
to some extent, the complexity of the detection task. To test the performance
of the two classifiers on tasks of different complexity, we constructed datasets
in which the attack class contains limited types of attacks. We then conducted
experiments using these datasets.

Fig. 2 plots the results of the experiments. In experiment 1, the attack data
only contain one type of attacks (portsweep). In experiment 2, the data con-
tain two types of attacks (portsweep, satan). In the experiment 3, 4 types of
attacks are used (portsweep, satan, ipsweep and warezclient). The results show
that both classifiers perform slightly but not significantly better when the task
is less complex (involving less types of attacks). The results again show that
the performance of the two classifiers are comparable across detection tasks of
different complexity.

4.2 The Representative Instances

As discussed before, our goal of applying sparse Bayes framework to anomaly
detection is not simply to construct a detection system. We also want the system
to help human analysis of the anomaly. In particular, we use the sparse Bayes
framework to identify a small set of representative anomaly cases such that
by examining this small set, human expert can gain better understanding of
the anomalous activities and better understanding of the subtypes inside the
abnormal class, if there is any.

We constructed a collection of normal and attack vectors in which the attack
class contains 4 types of attacks (portsweep, satan, warezclient and ipsweep).
We then train a sparse Bayes classifier from the collection. Recall that the prob-
ability of an unknown vector x belonging to normal or abnormal (attack) class
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Fig. 2. Detection Performance with Different Number of Attack Types in Training Set

is essentially determined by
∑

i∈TraingSet wiS(x, xi). Therefore, the training ex-
amples xi whose corresponding weight wi has a large magnitude decides the
outcome of the classification. We thus view these examples as representative
instances. Fig. 3 plot the w vector obtained after training. The dash-doted ver-
tical lines on the figure separates different classes. For example, the first section
(from instance 1 to instance 97) contains the weights for the training instances
in the normal class. The second section contains the weights for the attacks of
the type portsweep. (third section, satan; 4th section, warezclient and the last
section ipsweep.) The plot shows that, except for the normal class, most wi has
a value zero or close to zero. There are only few wi that has large magnitude.
The corresponding instances are the representative instances.

We select a few representative instances and plot the similarity measure S be-
tween the representative instances and the other instances in the training data.
Fig. 4 shows the similarity matrix. Each row of the similarity matrix corresponds
to an instance in the training data and each column corresponds to a representa-
tive instance. The (i, j)-entry of the matrix is the similarity measure between the
i-th training example and the j-th representative instance. We plot the matrix
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Fig. 3. Weight of the Training Instances
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Fig. 4. Similarity between the Representative Instances and the Other Training Ex-
amples

using grayscale, with dark indicating high similarity and white low similarity.
We observe that the similarity matrix divides into several blocks. Columns 1-19
correspond to the representative instances from the normal class and they have
the strongest similarity to the normal examples (row 1-78). The representative
instances for the second class (portsweep) lie on column 20-25. Again they have
the strongest similarity to the training examples in the portsweep class (row
79-166). In general (except the last group) the representative instances have the
highest similarity to the instances in the group to which they belong.

5 Conclusion

We investigate the application of sparse Bayes classification in anomaly detection
where there are multiple types of anomalies. Our goal is to construct a detection
system that not only identifies anomaly but also facilitates human analysis of
the anomalous activities. It does so by selecting a small set of instances that are
important for making the detection. These instances can be viewed as represen-
tative instances for the anomalies. By analyzing the representative instances, an
expert may determine the type and the mechanism of the anomaly. When an
unknown event is detected as anomaly due to its connection to a representative
instance, corresponding response can be applied to deal with the new anomaly.
We conduct experiments to test our framework. The results show that the sys-
tem based on our framework has similar detection performance comparing to
an SVM-based detection system. Furthermore, a few representative instances
can be identified by our framework that can be potentially helpful for expert
analysis.
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