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Abstract. Wireless ad-hoc and sensor networks play a vital role in an
ever-growing number of applications ranging from environmental moni-
toring over vehicular communication to home automation. Security and
privacy issues pose a big challenge for the widespread adoption of these
networks, especially in the automotive domain. The two most essential
security services needed to maintain the proper functioning of a wireless
network are authentication and key establishment; both can be realized
with Elliptic Curve Cryptography (ECC). In this paper, we introduce
an efficient ECC implementation for resource-restricted devices such as
sensor nodes. Our implementation uses a 160-bit Optimal Prime Field
(OPF) over which a Gallant-Lambert-Vanstone (GLV) curve with good
cryptographic properties can be defined. The combination of optimized
field arithmetic with fast group arithmetic (thanks to an efficiently com-
putable endomorphism) allows us to perform a scalar multiplication in
about 5.5 · 106 clock cycles on an 8-bit ATmega128 processor, which is
significantly faster than all previously-reported ECC implementations
based on a 160-bit prime field.

Keywords: Ad-hoc network, elliptic curve cryptography, performance
evaluation, arithmetic in finite fields, endomorphism.

1 Introduction

The term “smart dust” refers to miniature computing devices with sensing and
wireless networking capabilities [26]. Current-generation micro-sensors, such as
the Crossbow MICA2DOT mote [4], have a volume of a few cubic-centimeters
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including battery. However, it can be expected that progress in miniaturization
will reduce the size of motes significantly over the next couple of years. These
tiny devices can form a Wireless Sensor Network (WSN) and undertake certain
tasks such as battlefield surveillance or the monitoring of weather and/or road
conditions for a traffic-control system [1]. Kristofer Pister, who first coined the
term “smart dust,” forecasted in the mid-90s that “in 2010 MEMS sensors will
be everywhere and sensing virtually everything” [18]. Today, much of Pister’s
vision from some 15 years ago has become reality; we may think of miniature
sensor nodes used for environmental surveillance, home automation, or medical
monitoring [1]. Widespread deployment of sensors for intelligent transportation
systems is expected in the near future, e.g. WSNs to monitor traffic conditions
and report these conditions to smart vehicles.

In October 1999, the Federal Communications Commission (FCC) allocated
a 75 MHz band in the 5.9 GHz frequency range for exclusive use by automotive
applications and intelligent transportation systems [5]. Dedicated Short Range
Communications (DSRC) is a suite of protocols and standards for wireless net-
working within this 75 MHz band [2]. The main purpose of DSRC is to enable
short-range communication among vehicles and between vehicles and roadside
infrastructure (e.g. traffic condition sensors) with the goal of increasing safety
on roads and improving traffic flow [13]. Higher-level protocols operating above
DSRC (or IEEE 802.11p) are specified in the IEEE standard 1609 [24]. Typical
fields of application of DSRC (resp. WAVE) include safety measures (e.g. road
condition warning, collision avoidance), traffic management (e.g. variable speed
limits, intelligent traffic lights), driver assistance (e.g. parking aids, cruise con-
trol), and electronic payment (e.g. toll collection, parking fees). Several of these
applications pose significant challenges to security and privacy, as was pointed
out in [12,15,19]. To address these issues, the IEEE 1609.2 standard contains
a number of measures to ensure the confidentiality, integrity, and authenticity
of messages exchanged over DSRC. The public-key cryptosystems specified in
IEEE 1609.2 are based on Elliptic Curve Cryptography (ECC) [10] to achieve
a balance between efficiency and security. More precisely, IEEE 1609.2 defines
ECIES for asymmetric encryption and ECDSA as signature primitive [15].

In this paper, we introduce an optimized ECC implementation for wireless
ad-hoc and sensor networks. Our implementation uses an Optimal Prime Field
(OPF) as underlying algebraic structure to facilitate fast modular reduction on
different platforms [7]. Furthermore, we take advantage of a Gallant-Lambert-
Vanstone (GLV) elliptic curve with an efficiently computable endomorphism to
accelerate the scalar multiplication [6]. The focus of our implementation lay on
high performance, low memory footprint, and low register usage. We evaluated
the performance of our ECC software on a Crossbow Micaz mote featuring an
8-bit ATmega128 processor clocked at 7.37 MHz. The combination of fast field
arithmetic with fast curve arithmetic allowed us to perform a full scalar multi-
plication over a 160-bit OPF in roughly 5.5 · 106 clock cycles, which represents
a new speed record for 160-bit ECC on 8-bit processors. Our ECC software can
be easily ported to other platforms and achieves excellent performance also on
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processors with few general-purpose registers as we do not rely on the hybrid
multiplication technique [9]. The results we present in this paper demonstrate
that strong public-key cryptography is feasible for resource-constrained devices
such as sensor nodes.

2 Elliptic Curve Cryptography

In this section (which is largely based on our previous work [16]), we introduce
the basic concepts of ECC with a focus on implementation aspects. In short, an
elliptic curve E over a prime field Fp can be formally defined as the set of all
tuples (x, y) ∈ Fp × Fp satisfying a Weierstraß equation of the form

y2 = x3 + ax + b with a, b ∈ Fp (1)

These tuples are called points with x and y referred to as coordinates. The set
of points together with a special point O (the so-called point at infinity) allows
one to form a commutative group with O being the identity element. The group
operation is the addition of points, which can be performed through arithmetic
operations (addition, subtraction, multiplication, squaring, and inversion) in the
underlying field Fp according to well-defined formulae (see e.g. [10]). Adding a
point P = (x, y) to itself is referred to as point doubling and can also be done
through a well-defined sequence of operations in Fp. In general, point doubling
requires fewer field operations than the addition of two points.

The order of an elliptic curve group E(Fp) is the number of Fp-rational points
on the curve E, plus one for the point at infinity. It is well known from Hasse’s
theorem that #E(Fp) has the following bounds:

p + 1 − 2
√

p ≤ #E(Fp) ≤ p + 1 + 2
√

p (2)

For cryptographic applications, #E(Fp) should have a large prime factor; in the
ideal case it is a prime. Before ECIES encryption (or any other elliptic curve
scheme) can be carried out, the involved parties have to agree upon a common
set of so-called domain parameters, which specify the finite field Fp, the elliptic
curve E (i.e. the coefficients a, b ∈ Fp defining E according to Equation (1)), a
base point P ∈ E(Fp) generating a cyclic subgroup of large order, the order n
of this subgroup, and the co-factor h = #E(Fp)/n. Consequently, elliptic curve
domain parameters over Fp are simply a sextuple D = (p, a, b, P, n, h) [10]. In
elliptic curve cryptography, a private key is an integer k chosen randomly from
the interval [1, n − 1]. The corresponding public key is the point Q = k · P on
the curve. Given k and P , the point Q = k · P can be obtained by means of an
operation called scalar multiplication [10]. Numerous algorithms for scalar mul-
tiplication have been proposed; the simplest way to compute k ·P is to perform
a sequence of point additions and doublings, similar to the square-and-multiply
algorithm for modular exponentiation.

While a scalar multiplication of the form Q = k · P can be calculated quite
efficiently, the inverse operation, i.e. finding k when P and Q are given, is a hard
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mathematical problem known as the Elliptic Curve Discrete Logarithm Problem
(ECDLP). To date, the best algorithm known for solving the ECDLP requires
fully exponential time if the domain parameters were chosen with care [10]. In
contrast, the best algorithm for solving the Discrete Logarithm Problem (DLP)
in Z

∗
p or the Integer Factorization Problem (IFP) has a sub-exponential running

time. As a consequence, elliptic curve cryptosystems can use much shorter keys
compared to their “classical” counterparts based on the DLP or IFP. A common
rule of thumb states that a properly designed 160-bit ECC scheme is about as
secure as 1024-bit RSA.

2.1 Scalar Multiplication

The computationally expensive part of virtually all elliptic curve cryptosystems
is scalar multiplication, an operation of the form k ·P where k is an integer and
P is a point on the curve. A scalar multiplication can be performed by means
of repeated point additions and point doublings, both of which, in turn, involve
a sequence of arithmetic operations (i.e. addition, multiplication, squaring, and
inversion) in the underlying finite field. Inversion is by far the most expensive
operation in prime fields [10]. However, it is possible to add points on an elliptic
curve without the need to perform costly inversions, e.g. by representing the
points in projective coordinates [10]. In Section 2 we described the conventional
(i.e. affine) coordinate system in which a point P is associated with an x and a
y coordinate, i.e. a tuple (x, y) ∈ Fp × Fp. By contrast, in projective coordinate
systems, a point is represented by a triplet (X, Y, Z), which corresponds to the
affine coordinates (X/Zu, Y/Zv) when Z �= 0 (u and v depend on the specific
coordinate system chosen). For example, the projective point P = (X, Y, Z) in
Jacobian coordinates corresponds to the affine point P = (X/Z2, Y/Z3). It is
also possible to add two points when one is given in projective coordinates and
the other in affine coordinates [10]. In fact, such mixed coordinates often lead to
very efficient point addition formulae. For example, adding a point in Jacobian
coordinates to an affine point requires eight multiplications and three squarings
in Fp (but no inversion). Doubling a point given in Jacobian coordinates takes
four multiplications and four squarings.

The double-and-add algorithm performs a scalar multiplication via repeated
point additions and doublings, analogous to the multiply-and-square algorithm
for modular exponentiation. It uses the binary expansion of the integer k and
computes k ·P as follows: For each bit ki of k, the current intermediate result is
doubled, and the base point P is added if bit ki = 1 (no addition is performed
when ki = 0). Given an l-bit scalar k, the double-and-add algorithm executes
exactly l point doublings, whereas the number of point additions depends on
the Hamming weight of k. In the average case l/2 additions are carried out; the
worst-case number of additions is l. The conventional double-and-add method
can be easily improved by using a signed-digit representation of k. One option is
the non-adjacent form (NAF), which reduces the number of additions (of either
P or −P ) to l/3 in the average case and l/2 in the worst case [10]. However, the
number of point doublings remains the same.
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2.2 Arithmetic in Prime Fields

As mentioned before, the execution time of a scalar multiplication depends on
the efficiency of the arithmetic in the underlying finite field. The elements of a
prime field Fp are the integers 0, 1, . . . , p − 1, and the arithmetic operations are
addition and multiplication modulo p. In ECC, primes of a length of between
160 and 512 bits are typically used. Consequently, the field elements can not be
directly processed, but must be represented by arrays of single-precision words
(e.g. arrays of unsigned n-bit integers when working on an n-bit processor). In
our case, i.e. 160-bit ECC on an 8-bit processor, each field element is stored in
an array of 20 bytes. Arithmetic in Fp is similar to that in Z

∗
p as needed for the

implementation of RSA and other “classical” public-key schemes. Therefore, all
algorithms for modular arithmetic in Z

∗
p are directly applicable to Fp as well

(e.g. Montgomery reduction [14]). However, it is possible and common practice
to use special primes in ECC for which optimized modular reduction methods
exist; a typical example are generalized-Mersenne (GM) primes [10].

There are two basic algorithms for multi-precision multiplication: one is the
operand-scanning method (also called row-wise multiplication) and the other is
the product-scanning method (column-wise multiplication) [9,10]. Both require
the same number of single-precision multiplications (i.e. mul instructions on an
ATmega128), namely 400 in our case of 160-bit operands, but they differ in the
number of memory accesses and single-precision additions. We first describe the
original operand and product scanning methods, which operate on 8-bit words
(i.e. bytes) when implemented on an ATmega processor. Then, we sketch the
hybrid multiplication method of Gura et al [9], which combines the advantages
of operand scanning and product scanning to reduce the total number of load
instructions. The operand-scanning method has a nested-loop structure with a
relatively simple inner loop. Each iteration executes an operation of the form
a · b + c + d with a, b, c, d denoting 8-bit words (i.e. bytes). On an ATmega this
operation requires one mul instruction to produce the partial product a · b, and
a total of four add (resp. adc) instructions to add the two bytes c and d to the
16-bit quantity a · b. Furthermore, two load (ld) instructions and a store (st)
are executed in each iteration. On the other hand, the product-scanning method
performs a multiply-accumulate operation in its inner loop, i.e. two bytes are
multiplied and the 16-bit partial product is added to a cumulative sum held in
three registers. The product-scanning method also executes two ld instructions
per iteration, but no store.

The execution time of the conventional product-scanning technique can be
vastly improved when the processor features a large number of general-purpose
registers, which is the case with the ATmega128 [3]. The hybrid multiplication
method, introduced by Gura et al in [9], works similar as the product-scanning
technique, but processes d ≥ 2 bytes of the operands at a time, which reduces
the number of required loop iterations by a factor of d. In each iteration of the
inner loop, d ≥ 2 bytes of the operands are loaded from RAM, then multiplied
together using d2 mul instructions, and added to a running sum. However, the
hybrid method can not be applied on processors with few registers.
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3 Our Implementation

In this section, we describe our ECC implementation in detail and analyze its
performance on an 8-bit ATmega128 processor [3]. Our implementation differs
from previous work (e.g. [9,16,17,22,23,25]) in two main aspects. First, we com-
bine efficient finite-field arithmetic with fast group arithmetic; the former is
achieved by using an Optimal Prime Field (OPF) [7] as “underlying” algebraic
structure, while the scalar multiplication profits from an efficiently computable
endomorphism provided by a so-called Gallant-Lambert-Vanstone (GLV) curve
[6]. The basic concepts of OPFs (including a formal definition of OPFs, how to
do arithmetic in OPFs, and how to construct a GLV curve over an OPF) can
be found in [7]; here in this paper we show the applicability of OPFs to secure
ad-hoc and sensor networks. A second difference to related work is the concrete
implementation of the multi-precision multiplication. We do not use the hybrid
multiplication method from [9], but apply a special loop unrolling technique to
achieve high performance on a wide variety of platforms, including processors
with a small number of general-purpose registers. The hybrid multiplication, on
the other hand, can only be implemented when a large number of registers is
available, which is not always the case. Even though the ATmega128 features
a large register file with 32 registers (which means that hybrid multiplication is
possible), we decided to use it as experimental platform for our implementation
in order to allow for direct comparison with previous work. The ATmega128 is
a simple 8-bit RISC processor based on the AVR instruction set, i.e. the usual
arithmetic and logical instructions are supported, including an integer-multiply
instruction with a 2-cycle latency [3].

3.1 Optimal Prime Field (OPF)

An Optimal Prime Field (OPF) [7] is a finite field defined by a prime p of the
form u · 2k + v, where u and v are constants that fit into a single register of the
target processor (or, more precisely, 0 < u, v < 2w where w denotes the word
size of the target processor). In our case, both u and v are 8-bit constants since
our implementation is optimized for an 8-bit processor. The specific prime we
chose is p = 232 · 2152 + 99, which happens to be a 160-bit prime that looks as
follows when written in hex notation:

p = 0xE800000000000000000000000000000000000063 (3)

OPFs are characterized by a low Hamming weight [7]. In particular, when p is
stored in an array of w-bit words, only the most and least significant words are
non-zero; all words between them are zero. The low weight of these primes al-
lows for efficient software implementation of the modular reduction operation
because only the two non-zero words of p need to be processed [7]. Well-known
modular reduction methods, including Montgomery and Barrett reduction, can
be well optimized for low-weight primes such that the reduction operation has
linear complexity, similar to generalized-Mersenne (GM) and pseudo-Mersenne
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(PM) primes [10,20]. A particular advantage of OPFs over GM prime fields is
their flexibility; there exist a large number of OPFs for a given bitlength, while
the number of GM primes with “good” arithmetic properties is rather limited
[20]. The large number of OPFs for a given bitlength facilitates the construction
of a GLV curve with an efficiently computable endomorphism suitable for the
implementation of ECC, which is not possible with the GM primes specified by
the NIST (see [7] for further details).

We implemented multiplication and squaring in OPFs using Montgomery’s
modular reduction method. More precisely, we optimized the Finely Integrated
Operand Scanning (FIPS) method [14] for Montgomery multiplication with re-
spect to the low weight of our OPF so that only the non-zero bytes p19 = 232
and p0 = 99 of the prime p = 232 · 2152 + 99 are processed. An implementation
of the FIPS technique for “arbitrary” primes executes 2s2 + s single-precision
multiplications (i.e. mul instructions) when the operands consist of s words. In
our case of processing 160-bit operands on an 8-bit processor (i.e. s = 20), this
amounts to 820 mul instructions for a single Montgomery multiplication. How-
ever, after optimizing the FIPS technique taking into account that s − 2 bytes
of p are 0, only only s2 + 3s single-precision multiplications have to be carried
out, which results in 460 mul instructions for 160-bit operands. A conventional
multiplication of two s-word operands (without reduction operation) requires
s2 mul instructions [10,14]; consequently, the overhead of modular reduction in
our OPF is 3s mul instructions, i.e. scales linearly with the operand length.

The optimized FIPS method for Montgomery multiplication in an OPF has a
nested-loop structure with a simple inner loop in which a multiply-accumulate
operation is performed, i.e. two bytes are multiplied and the 16-bit product is
added to a running sum held in three registers. More precisely, each iteration
of the inner loop executes two ld, one mul, one add, and two adc instructions
on an Atmega128, which takes nine clock cycles altogether. Furthermore, three
clock cycles of loop overhead (i.e. increment or decrement of a loop counter and
branch instruction) contribute to the execution time. Since this overhead con-
stitutes 25% of the overall execution time of the inner loop, it makes sense to
apply techniques for reducing loop overhead, such as loop unrolling or hybrid
multiplication. The basic idea of hybrid multiplication, as described in [9], is to
process d > 1 bytes of the operands in each iteration of the inner loop (instead
of just a single byte), which reduces the overall number of loop iterations by a
factor of d. However, hybrid multiplication is only advantageous on processors
featuring a large number of registers; for example, when d = 4 (i.e. four bytes
of each operand are processed per loop iteration), 14 registers are necessary to
store the bytes of the operands and running sum [9].

As already mentioned, we did not apply the hybrid multiplication technique
since we aimed for a flexible implementation that can be easily ported to various
different platforms, including processors with a small number of registers. In-
stead, we reduced the loop overhead of our optimized FIPS method for OPFs
by unrolling the inner loop. In general, loop unrolling is done by replicating the
loop body a certain number of times and adjusting (i.e. reducing) the iteration
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Table 1. Execution times (in clock cycles) of arithmetic operations in OPFs of length
128, 144, 160, 176, and 192 bits on an ATmega128 processor

Operation 128 bit 144 bit 160 bit 176 bit 192 bit

Addition 506 560 614 668 722

Subtraction 514 562 610 672 731

Multiplication 3,598 4,358 5,239 6,143 7,070

Squaring 2,967 3,488 4,086 4,642 5,277

Inversion 110,414 133,698 157,840 185,361 214,687

count accordingly. Loop unrolling improves the performance since the overhead
for updating and testing the loop counter and branching back to the beginning
of the loop is executed less frequently. However, this gain in performance comes
at the expense of an increase in code size. To achieve a proper balance between
these two metrics of interest, we decided to unroll only the inner loop. Unfortu-
nately, the number of inner-loop iterations of both the standard FIPS method
and our optimized OPF-variant is not constant, but varies between 1 and s. An
efficient unrolling technique for such loops is Duff’s device [11], as was shown in
[8] for the standard FIPS method. We applied the Duff device from [8] to the
optimized FIPS method for our 160-bit OPF, which means that we replicated
the body of the inner loop 20 times. This approach for loop unrolling achieves
almost the same performance as “full” loop unrolling (i.e. unrolling of both the
inner and the outer loop), but does so at a faction of the code size.

Table 1 summarizes the execution time of addition, subtraction, multiplica-
tion, squaring, and inversion in OPFs of different size, ranging from 128 to 192
bits. The addition in an OPF is performed by first calculating the sum of two
field elements, followed by a conditional subtraction of the prime p. Hence, the
addition time (and also the subtraction time) is not constant but depends on
whether or not a subtraction (resp. addition) of p is carried out. Also both the
multiplication and squaring may require a final subtraction of p, which impacts
the execution time. Our OPF multiplication with unrolled inner loop is a little
slower than the hybrid multiplication from [9], but occupies only five registers
for operands and the running sum, while the hybrid technique with d = 4 needs
14 registers.

3.2 Gallant-Lambert-Vanstone (GLV) Curve

In order to speed up the scalar multiplication k · P , we use a so-called Gallant-
Lambert-Vanstone (GLV) curve as introduced in [6]. This family of curves can
be described by a Weierstraß equation of the form y2 = x3 + b (i.e. a = 0 and
b �= 0) or y2 = x3 + ax (i.e. a �= 0 and b = 0) over a prime field Fp and features
an efficiently computable endomorphism φ whose characteristic polynomial has
small coefficients. Such an endomorphism provides the possibility to calculate a
scalar multiplication as k · P = k1 · P + k2 · φ(P ), which is more efficient than a
straightforward calculation of k · P since k1 and k2 have typically only half the
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bitlength of k and the two multiplications k1 ·P and k2 ·φ(P ) can be performed
simultaneously (i.e. in an interleaved fashion) using Shamir’s trick as explained
in [10, Section 3.3.3]. However, as already mentioned, a GLV curve with good
cryptographic properties can not be constructed over any prime field; in partic-
ular, it is not possible to find a GLV curve of prime order over the GM prime
fields standardized by the NIST (see [7] for further details).

Since there exist a large number of OPFs, it is not hard to find an OPF of a
given bitlength such that a GLV curve with good cryptographic properties can
be constructed over it. Our implementation uses the GLV curve

E : y2 = x3 + 3 (4)

(i.e. a = 0 and b = 3) over the prime field Fp defined by p = 232 · 2152 + 99. The
group of points on this curve has prime order, namely

#E(Fp) = n = 1324485858831130769622088630463083182986367428713 (5)

and satisfies all properties listed in [21, Section 3.1.1.1], which means that this
curve can be securely used for the implementation of ECC. Consequently, this
specific pair of OPF and GLV curve offers good arithmetic and cryptographic
properties. In the following, we summarize some basic facts about our special
curve, analogously to [10, page 125]. Since a = 0 and p ≡ 1 mod 3, our curve is
of the type described in Example 4 in [6]. The underlying field Fp contains an
element β of order 3 (since p ≡ 1 mod 3); our implementation uses

β = 1039364585860691323337591166412095487330325497064 (6)

According to [6, Example 4], the map φ : E → E defined by

φ : (x, y) 	→ (βx, y) and φ : O 	→ O (7)

is an endomorphism of E defined over Fp. The characteristic polynomial of φ is
λ2 + λ + 1. In order to exploit this endomorphism for scalar multiplication, we
need a root modulo n of the characteristic polynomial, i.e. we need a solution to
the equation λ2 + λ + 1 ≡ 0 mod n; for our implementation we use

λ = 893685873620479505526293352198704065242719655609 (8)

The solution λ has the property that φ(P ) = λP for all P ∈ E(Fp) [6,10]. Note
that computing φ(P ) for a point P = (x, y) requires only one multiplication in
Fp, namely β · x.

When using a GLV curve [6], the common strategy for computing k · P is to
decompose the scalar k into two “half-length” integers k1 and k2 (referred to as
balanced length-two representation of k) such that k = k1 + k2λ mod n. This
decomposition of k into k1 and k2 is described in detail in [6] and [10]. Because
k ·P = k1 ·P + k2 · λ ·P = k1 ·P + k2 · φ(P ), the result of k ·P can be obtained
by first computing φ(P ) (which takes just a single field multiplication) and then
using simultaneous multiple point multiplication (“Shamir’s trick”) to perform
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Table 2. Execution times (in million clock cycles) of 160-bit scalar multiplication

Implementation Field type Fixed P. Rand. P. Notes

Wang and Li [25] PM prime 9.14 9.95 Sliding window

Szczechowiak et al. [22] GM prime 9.38 9.38 Comb method

Ugus et al. [23] PM prime 5.09 7.59 MOV, 1 prec. point

Liu and Ning [17] PM prime 15.05 15.05 Sliding window

Gura et al. [9] PM prime 6.48 6.48 NAF

Our implementation OPF 5.48 5.48 GLV curve

these two half-length scalar multiplications in an interleaved fashion. A conven-
tional computation of k · P using the double-and-add approach requires a total
of l point doublings and on average l/2 point additions, whereby l refers to the
bitlength of k. The number of additions can be reduced to l/3 by representing
the scalar k in Non-Adjacent Form (NAF). On the other hand, our GLV curve
allows us to obtain k · P with only l/2 doublings and l/4 additions when the
two half-length scalars k1 and k2 are represented in Joint Sparse Form (JSF) as
described in [10]. Consequently, the endomorphism of our GLV curve halves the
number of point doublings and reduces the number of point additions by some
8.3% on average.

Our implementation performs the point (i.e. curve) arithmetic using mixed
Jacobian-affine coordinates as detailed in [10, Section 3.2.2]. More precisely, we
implemented the point addition and doubling according to Algorithm 3.2.2 and
Algorithm 3.2.1, respectively, whereby we optimized the latter with respect to
a = 0 such that a point doubling can be carried out with three multiplications
in Fp instead of four [7]. The addition of points over our 160-bit OPF requires
roughly 57,760 clock cycles on an ATmega128 processor, while a point doubling
is executed in about 35,450 cycles. Our implementation of the point arithmetic
is written in ANSI C and directly calls the Assembly-language functions for the
OPF arithmetic. A scalar multiplication executes in 5.48 · 106 clock cycles on an
ATmega128 processor when exploiting Shamir’s trick and representing the two
half-length scalars in JSF. The comparison with related work in Table 2 shows
that our implementation sets a new speed record for ECC on an ATmega128.

4 Conclusions

In this paper, we introduced an efficient ECC implementation for DSRC-based
ad-hoc and sensor networks that realize security services (e.g. authentication)
according to the IEEE standard 1609.2. Our implementation is able to perform
a 160-bit scalar multiplication on an ATmega128 processor in slightly less than
5.5 · 106 clock cycles, which establishes a new performance record for ECC on
8-bit platforms. Compared to previous work, our implementation advances the
state-of-the-art in two main aspects. First, we combine efficient field arithmetic
(thanks to the use of an OPF) with fast scalar multiplication on a GLV curve
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by exploiting an efficiently computable endomorphism. Second, we do not use
Gura’s hybrid multiplication technique, but unroll the inner loops of our field
multiplication and squaring operations following “Duff’s device” to reduce the
execution time. Therefore, our ECC software can be easily ported to various
other platforms, even to processors with very few general-purpose registers on
which hybrid multiplication would not work.
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