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Abstract. Feasibility and popularity of mobile multimedia have made
video communications between mobile devices a rising trend with a wide
range of applications. However, two main problems have emerged. First:
in most of mobile devices, the power-hungry multimedia processor relies
on the battery as the only form of power resource and the characteristics
of a battery keep changing as the discharging operation goes. How to
wisely utilize the energy stored in batteries on mobile device becomes a
critical issue in designing a wireless video communication system. Sec-
ond: in order to achieve QoS on mobile devices, the requested video chip
has to be displayed under a given standard of quality. Therefore, it is also
necessary for the received video to satisfy the constraint of an acceptable
level of distortion. To analyze and optimize the communication quality
and energy consumption behavior of battery-driven wireless video com-
munication systems, we propose an optimization framework which takes
into account the characteristics of battery driven devices by consider-
ing the relation between energy consumption and capacity discharging
behavior of battery. In our framework, the video coding and transmis-
sion parameters are jointly optimized to minimize the battery capacity
consumption under a predefined level of expected received video distor-
tion. Experimental results indicate the efficiency and effectiveness of the
proposed optimization framework.

Keywords: multimedia, video, battery, wireless communication system,
QoS, distortion.

1 Introduction

Technologies in video compression and transmission over wireless communication
networks have enabled mobile multimedia on portable wireless devices, such as
cellular phones, laptop computers connected to WLANs, and cameras in surveil-
lance and environmental tracking systems. Video coding and streaming are also
envisioned in an increasing number of applications in the areas of battlefield intel-
ligence, reconnaissance, and telemedicine. Present 3G and emerging 4G wireless
systems, and IEEE 802.11 WLAN standards have dramatically increased the
transmission bandwidth, and therefore, resulted in a great amount of personal
communication users on video streaming applications. Although wireless video
communications is highly desirable, a primary limitation in wireless systems is
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the basic design architecture that most mobile devices are typically powered
by batteries with limited energy capacity. This limitation is of fundamental im-
portance due to the high energy consumption rate in the duality of encoding
and transmitting video bit streams during multimedia communications. From
the perspective of battery-aware design and power management, how to wisely
decide the energy allocation is a critical issue in order to efficiently use battery
energy to guarantee a required lifetime and avoid task failure or malfunction
due to the exhaustion of battery capacity before the whole video delivery task
is finished.

The lifetime, or time-to-failure, of one battery is the time when it becomes
fully discharged. Once the battery is exhausted, the mobile system shuts down.
According to different acceptable distortion levels on wireless video communi-
cation and characteristics of one specific type of battery, we need to jointly
consider a series of configurations in related modules and operating procedures
during source coding and transmission to minimize the battery capacity under
a certain constraint on distortion.

So far, there has been no dedicated analytical framework investigating an
entire wireless video communication system where mobile devices use regular
battery as the only form of power source in literature. And no experimental
analysis on battery performance or optimization under a specific wireless multi-
media platform has been performed. An analytical framework was presented to
address the Power-Rate-Distortion relationship of a generic video encoder in [1].
However, video transmission was not considered in the evaluation of distortion
and power consumption. Although some work [2,3,4] analyzed the energy effi-
ciency of both video coding and transmission, the issue of power consumption
was addressed without specifying the underlying characteristics of battery driven
devices and no solution to minimize capacity consumption under the constraint
of video quality is presented.

In this paper, we develop an optimization framework for wireless video de-
livery under the constraint of the video distortion required in a wireless video
communication system. We first discuss the experimental methods and models
to analyze the energy consumption in video encoding and transmission. Based on
the analytical results, the problem of battery-aware wireless video coding and
delivery is formulated to jointly select the video coding and transmission pa-
rameters to minimize the battery capacity consumption under the constraint of
expected end-to-end received video distortion imposed by the desired video qual-
ity requirement. Our framework aims at the joint optimization of video coding
and wireless transmission from the perspective of battery capacity condition.

This paper is organized as follows. Section 2 presents the formulation of the
problem to solve. In section 3, measurements of energy consumption for video
encoder and models for video stream transmission are introduced. Section 4
presents the method to calculate the expected distortion of a wireless video
communication system. Analysis of working status of battery driven equipment
is discussed in Section 5. Optimization method and framework are proposed in
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Section 6. Section 7 presents the experimental results. Some concluding remarks
are given in Section 8.

2 Problem Statement

2.1 Energy Consumption on Video Coding

To analyze the power consumption on video coding in a portable device, first, we
need to determine the computational complexity of video coding at the encoder.
Here, the computational complexity is measured by the running time of processor
when video coding processes are under operation. Then, based on the power
management technology of the underlying microprocessor in the mobile device,
such as DVS CMOS circuits design technology [5], we can measure the energy
used in those processes.

As shown in Figure 1, the major modules in a typical video encoding system
include motion estimation (ME) and compensation, DCT, quantization, entropy
encoding of the quantized DCT coefficients, inverse quantization, inverse DCT,
picture reconstruction, and interpolation. In the literature, plenty of research
results have been reported to evaluate and reduce the computational complexity,
and thereby the power consumption of these modules [1,6,7]. It has been shown
that, for each module in Figure 1, one or more control parameters together with
the specific characteristics of a video chip can be extracted or selected to control
the computational complexity of the module. For example, according to [1], the
ME module could use the number of sum of absolute difference (SAD) as the
complexity control parameter, while the modules of DCT, quantization, inverse
quantization, inverse DCT, picture reconstruction may use a same complexity
control parameter – the number of macroblocks (MB) which has nonzero DCT
coefficients after quantization in a video frame. Let Λ = [λ1, λ2, · · · , λI ] be the set
of control parameters to control the computational complexity of these modules.

Therefore, the overall encoder complexity (or processor workload) ξ is a func-
tion of video processing parameters Λ, denoted by ξ(Λ). Hence, the energy con-
sumption of the underlying microprocessor to compress and encode one video
clip, denoted by Ee, is a function of processor workload xi, therefore, is also a
function of Λ, denoted by

Ee = Φ(xi) · t = Ee(Λ) = Ee(λ1, λ2, · · · , λI), (1)

where Φ(·) is the power consumption model of the microprocessor [8], which can
be obtained by measurement. For example, the power consumption model of the
Intel PXA255 XScale processor is well approximated by Φ(xi) = β × xγ

i , where
γ = 2.5, and β is a constant [9].

2.2 Energy Consumption on Video Transmission

To analyze the energy consumption on video transmission, we need to consider
both the transmission scheme and the power control technology adopted by
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Fig. 1. Block diagram of a typical video encoder. For INTRA MB or frames, motion
estimation and compensation are not needed.

the transmitter on mobile device. General energy Et used in transmitting one
video stream after video coding not only depends on wireless channel conditions,
such as, instantaneous channel fading factor and channel noise power density,
but also on transmission parameters, such as, frequency bandwidth, desirable
packet error rate (PER), and modulation and coding schemes. Without loss of
generality, let Θ = [θ1, θ2, · · · , θJ ] be the set of parameters affecting or controlling
the transmission energy level. Therefore, the energy used in transmission can be
represented by

Et = Et(Θ) = Et(θ1, θ2, · · · , θJ). (2)

2.3 Problem Formulation

Based on equations (1) and (2), the total energy consumption required from
mobile device battery to deliver a video clip is

Etot = Ee + Et, (3)

Because our framework aims at minimizing the capacity consumed from bat-
tery, it is necessary to convert energy into electric quantity. Once the hardware
platform is set, we can derive the relation between the energy used for video
delivery and the electric quantity consumed from the battery. The consumed
battery capacity measured as the electric quantity can be express as

Ctot = f(Etot), (4)

Let D be the expected video distortion, and it depends on the video processing
parameters Λ and the transmission parameters Θ. Different power supply re-
sults in different battery lifetime since the capacity of a given battery at certain
status is fixed. Therefore, based on (3) and (4), the objective of the proposed
framework is, for a specific video application, to determine the optimal values of
the parameters {Λ, Θ} for a series of current video frames to minimize the bat-
tery capacity under the constraint on distortion Dmax required by the specific
application, which can be formulated as

min
{Λ, Θ}

Ctot(Λ, Θ)

s.t. : D(Λ, Θ) ≤ Dmax. (5)
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3 Energy Consumption Models and Measurement

3.1 Encoder Energy Consumption Model

Video coding or compression is a basic technology that enables the storage and
transmission of a large amount of digital video data. Many standard video en-
coder systems, including MPEG-1/-2/-4, H.26x, and H.264/AVC employ a hy-
brid coding architecture based on DCT and Motion Estimation Compensation
(ME/MC) scheme. Existing processes during wireless video communication in-
clude modules of ME (motion estimation), PROCODING (including DCT, in-
verse DCT, quantization, inverse quantization, and reconstruction) and ENC
(entropy encoding). During video coding process, with the help of electric quan-
tity measure equipment, the energy used in battery-powered multimedia proces-
sor can be derived from the operating time of CPU which enables the hardware
resources to accomplish series of steps for video coding. On a specific video cod-
ing platform, the operating time of CPU depends on the characteristics of the
specific video clip and complexity parameters selected in the steps of video cod-
ing. In the process of PROCODING, Quantization Parameter (QP), a parameter
that controls the quality and bit rate of video compression, is a key factor to
affect the number of nonzero MBs (NZMB) in one video frame which are needed
to be coded. While the computation for quantization is independent of the bit
rate, with a smaller quantization step size, more computation for variable length
coding (VLC) is needed due to the increased number of nonzero coefficients.
Many experiments have shown that all the steps together in PROCODING em-
ploy a large proportion of CPU occupancy and eat up more than 50% of the total
energy consumption on encoder. Compared with other modules in source cod-
ing, PROCODING energy consumption is almost twice of the energy consumed
in ME and six times of the energy consumed in ENC. Quantization step is the
key complexity control parameter in the processes of PROCODING, therefore,
it is reasonable for us to set quantization step q as the main optimal complexity
control parameter in the video coding processes to calculate the energy used
to encode a specific video clip on a certain hardware platform. The total time
used in coding the whole video clip depends on the CPU running time spent on
encoding every frame of this video. Denote the total number of frames in a video
clip as n and the time used to encode kth frame as tk. Then the total operating
time of CPU T tot

e to encode the a video clip can be expressed as

T tot
e =

n∑

k=1

tke , (6)

On the other hand, total energy used in coding the whole video clip also depends
on the energy Ek

e , which is used to encode the kth frame of this video. So the
total operating energy of CPU Etot

e used for coding can be written as

Etot
e =

n∑

k=1

Ek
e , (7)
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It is possible for us to directly find the amount of electric quality used to encode
every frame of a video by referring the corresponding experiment test result from
equipment of energy measurement. In this way, once the hardware platform is
decided, the energy in encoder for one frame is a function of the CPU running
time tk spent on coding this frame and the key complexity control parameter qk

chosen to compress the same frame. The function of total energy used in encoder
can be given by

Etot
e =

n∑

k=1

fe(tk, qk). (8)

where fe(·) is the uniform way to calculate the energy consumption of one frame
during coding processes.

3.2 Transmission Energy Consumption Model

The total transmission energy can be calculated by adding together the energy
used on transmitting every frame of a video. This is given by

Etot
t =

n∑

k=1

Ek
t , (9)

where Ek
t is the energy consumption used for transmitting the kth frame. The

energy used to transmit a frame depends on the compressed bits of this frame
and channel transmission rate. Compressed bits of one frame is the size of a
stream which is generated after coding processes of a video frame and mostly
decided by the characteristics of the input video and the quantization step q
applied on this frame. Channel transmission rate depends on the transmission
bandwidth and adaptive modulation and coding (AMC) scheme. Different choice
of AMC scheme applied in the transmitter will result in different transmission
rates and spectral efficiency. Let W be the underlying channel bandwidth, and
Ki be the transmission rate of AMC scheme i. Then, the resulting transmission
rate when data is transmitted by using the ith AMC scheme is

Ri = Ki · W, (10)

If we use Fi to represent the compressed bits size of the ith frame after coding
processes, then the energy used for kth frame can be denoted as

Ek
t = P · Fi

Ri
= P · Fi

Ki · W , (11)

Where P is the transmission power. Fi can also be determined by referring the
corresponding experiment test result. In general, the energy in transmission for
one frame is a function of time spent on coding processes tk, AMC scheme i
and the complexity control parameter qk chosen to compress the current frame.
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Therefore the total energy consumption in transmitting a video clip can be
written as

Etot
t =

n∑

k=1

ft(tk, qk, i). (12)

where ft(·) is the function to calculate the energy consumption used to transmit
one frame.

4 Expected End-to-End Distortion

During the wireless video communication process, the total expected end-to-
end distortion is caused during source coding and transmission. In order to
acquire an accurate result of the distortion through the whole wireless video
transmission system, in this work, we consider and calculate the overall end-to-
end distortion instead of just simply adding the coding introduced-distortion and
the transmission introduced-distortion together. Because a robust error conceal-
ment technique is necessary to avoid significant visible error in the reconstructed
frames at the decoder, we consider a simple but efficient temporal concealment
scheme used in our previous research [10]: a lost macroblock is concealed using
the median motion vector candidate of its received neighboring mocroblocks (the
topleft, top, and top-right) in the preceding row of macroblacks. The candidate
motion vector of a macroblock is defined as the median motion vectior of all 4×4
blocks in the macroblock. If the preceding row of macroblocks is also lost, then
the estimated motion vector is set to zero and the macroblock in the same spatial
location is the previously reconstructed frame is used to conceal the current loss.
Although some straight-forward error concealment strategies do not cause packet
dependencies, as a generic framework, the more complicated scenario is consid-
ered here as a superset for the simpler cases. Due to the difficulty in computing
the actual video quality perceived by the end users, in this work the received
video quality is evaluated as the expected end-to-end distortion by using the
ROPE method. The expected distortion is accurately calculated in real-time at
the source node by taking all related parameters into account, such as source
codec parameters (e.g., quantization, packetization, and error concealment) and
network parameters (e.g., packet loss rate and throughput). Therefore, given the
dependencies introduced by the above error concealment scheme, the expected
distortion of slice/packet πi can be calculated at the encoder as

E[Di] = (1 − pi)E[DR
i ] + pi(1 − pi−1)E[DLR

i ] + piPi − 1E[DLL
i ], (13)

where pi is the loss probability of packet πi, E[DR
i ] is the expected distortion

of packet πi if received, and E[DLR
i ] and E[DLL

i ] are respectively the expected
distortion of the lost packet πi after concealment when packet πi−1 is received or
lost. The expected distortion of the whole video frame which contents m packets,
denoted by E[D], can be written as

E[D] =
m∑

i=1

E[Di], (14)
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Generally multiple modulation and coding schemes are available to wireless sta-
tions in a wireless data network to achieve a good tradeoff between the trans-
mission rate and transmission reliability. Modulation schemes that allow a larger
number of bits per symbol, have symbols closer to each other in the constellation
diagram, which may result in more error in decoding. Varying code rates can be
employed with each modulation scheme to adapt to changing channel conditions
by allowing more redundancy bits for channel coding (lower code rate k/n) as
channel conditions deteriorate. As the code rate decreases, the effective data
rate is reduced, and hence the achievable throughput decreases. We set the term
scheme i to refer to a specific choice of AMC scheme. The probability of error
in a packet of L bytes, for a given AMC scheme i, as a function of the bit error
probability pb,i, can be express as pe,i(L) = 1 − (1 − pb,i)8L. Moreover, pe,i can
also be approximated with sigmoid functions [11,12] in the form of

pe,i(L) =
1

1 + eλ(x−δ)
, (15)

where x is the Signal-to-Interference-Noise-Ratio (SINR). Table 1 shows the sig-
moid parameters (λ, δ) for the 8 AMC schemes in modeling packet transmissions
over an 802.11a WLAN network. From this table and (15), it is easy to see that
pe,i depends on the specific AMC scheme i and so is the overall distortion since
the end-to-end distortion is the function of pe,i. Once the packet error proba-
bility is calculated, the expected end-to-end distortion can be derived based on
equations (13) and (14).

We have noted that, except for the characteristics of the input video, the
quantization parameters (QP) applied in source coding procedure play another
critical role in contributing the total distortion since the larger the quantization
step size is, the more small DCT coefficients will be lost. Thus, from (14), dif-
ferent levels of distortion will be achieved under different levels of QP. In other
words, the value of quantization step q needs to be considered as another param-
eter to control the total distortion. Therefore, for a specific platform, the total
expected distortion associated with AMC scheme i and QP q can be denoted as

E[D]tot = D(q, i). (16)

Table 1. Approximation of packet error probability for different AMC schemes

Mod Scheme δ λ CodeRate AMCScheme
(dB) (dB−1) (bits/symbol) (i)

BPSK 2.3 0.640 0.5 1

BPSK 6.1 0.417 0.75 2

QPSK 5.3 0.461 1 3

QPSK 9.3 0.444 1.5 4

16-QAM 10.9 0.375 2 5

16-QAM 15.1 0.352 3 6

64-QAM 18.2 0.625 4 7

64-QAM 21.2 0.419 4.5 8
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5 Battery Capacity Measurement

Mobile devices are mostly driven by battery. Once the battery becomes fully
discharged, the battery-powered electronic system goes off-line. Available battery
capacity has a nonlinear relationship with its discharging current due to the
battery current effect. That means a battery tends to provide more energy at a
lower discharge current. Some battery lifetime and capacity prediction models
are available, like the analytical model in [13]. But considering that analysis
and optimization of our research is mainly base on the profiles of distortion
and energy consumption, precise data measurement is necessary to make the
work more practical and applicable. So we choose to execute a series of real
experiments to build the experimental profile, which includes all the real time
data information of the parameters we need for optimization and analysis. Once
such profile is set up, electronic parameters, like voltage, current and electric
quantity used for every steps of the operation, can be derived from this profile.
By describing the expression of (4), the capacity consumed from the battery
can be calculated from the energy consumption. The total capacity needed from
battery to achieve wireless video delivery can be derived from the follows

Ctot = Ce + Cc = Ce +
Et

V
, (17)

where Ce is the electric quantity consumed to execute the video coding, and
this value can be derived from the profile result of experiment. Cc is the electric
quantity consumed for video transmission, and this can be calculated from the
transmission energy consumption model introduced in section 3 if the transmitter
operating voltage V is known. Combine with (11) and (12), we get

Ctot = Ce +

∑n
k=1 P · Fi

Ki·W
V

= Ce +
∑n

k=1 ft(tk, qk, i)
V

. (18)

6 Optimized Battery Capacity Framework under
Distortion Constraint

In order to solve the the formulated optimization problem in Section 2, two
profiles need to be established in advance. The first profile is about how the
pattern of the expected received frame distortion changes according to different
set of choices on quantization parameters q and AMC scheme i. The second is
how the battery capacity used for the delivery of one frame is decided by the
same set of choice on QP and AMC scheme. Therefore, in our framework, we
choose quantization parameters q and AMC scheme i to form a two dimensional
independent vectorial variable. Let Q be the total options of QP , I the total
optional AMC schemes. So every video frame has Q · I options of this vector.
Because both parameters are the key control variables to determine the working
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pattern in both coding and transmission, we name this vector as the control
vector, and denote it as (q, i) according to the definitions of previous sections.

Video is fundamentally different from other multimedia resources, for it ba-
sically comprises a group of separated video frames. When we deal with the
optimization of battery capacity under the constraint of video distortion, it is
not reasonable to figure out only one set of optimal control vector to process all
the video frames uniformly, because the dynamics in video content and chan-
nel conditions make it necessary to adjust the QP and AMC parameters frame
by frame. Therefore, we apply the optimization to figure out the best control
vector toward each frame to minimize the battery capacity used to deliver each
frame under the constraint of expected received frame distortion. From (16) and
(18), we can see that the total expected distortion and total energy consump-
tion are based on the choice of control vector used to code and transmit each
video frames. For a specific video, after the execution of experiment and model
applications, the expected received video distortion and battery capacity used
for delivering the whole video clip can be calculated by referring to the received
frame distortion and battery capacity used for delivering each frame.

7 Experimental Result

We conducted experiments to show the performance of the proposed framework.
Four video sequences with varied contents (Carphone, Foreman, Coastguard,
Mobile) in QCIF format are considered in our work. An Imote2 wireless sensor
node which applies PXA271 XScale processor is used in the experiment. Arbin
measurement system is in charge of monitoring and recording all the desired
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Fig. 2. The optimal solution achieving the minimized distortion without the battery
capacity constraint
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Fig. 3. The optimal solution achieving the minimized battery capacity consumption
without the distortion constraint. (AMC Scheme i=8).
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Fig. 4. The optimal solution under the constraint of 36 dB average frame distortion

electronic data. The Y-component of the first 50 frames of each video sequence
is encoded with H.264 codec (JVT reference software, JM 16.2 [14]). We choose
the quantization step size (QP ) and AMC schemes listed in table 1 as the tunable
source coding and transmission parameters. The permissible QP values are [9, 12,
15 . . ., 36]. According to table 1, the permissible AMC scheme i values are [1, 2,
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Fig. 5. The optimal solution under the constraint of 42 dB average frame distortion

3, . . ., 8]. Because different QP results in different bit rate. To maintain a smooth
date rate and thereby a relatively constant power consumption on transmission
to extend the battery lifetime, the difference of the selected QP for neighboring
slices is limited within a threshold of 3. All frames except the first one are coded
as inter frames. To reduce error propagation due to packet loss, 10 random I
Macroblocks were inserted into each frame. The frames are packetized such that
each packet/slice contains one row of MBs, which enables a good balance between
error robustness and compression efficiency.

During an experiment by using the video clip Foreman, figure 2 shows the
condition that no capacity constraint for video delivery was applied, and the
optimization process chose the optimal solution which has the minimized distor-
tion in each frame. In this case, the solution has a total PSNR of 2247.1 dB and
average PSNR of 44.9 dB for each frame, battery capacity consumption is 0.0119
Ah. From the figure we can see that the control vector of each frame concentrates
in the lower range of AMC scheme i and quantization step q. Figure 3 shows the
scenario where no distortion constraint is applied for video delivery, and the op-
timization process chose the optimal solution which has the minimized battery
capacity consumption in each frame. In this case, the solution has a total PSNR
of 1462.4 dB and average PSNR of 29.2 dB for each frame, the battery capacity
consumption is 0.0101 Ah. We can also see that the control vector of each frame
concentrates in the higher range of the quantization step q, and all the frames
are transmitted under the AMC scheme of number 8.

The optimization framework proposed in this paper was tested by three ex-
periments under different values of distortion constraint. In the first experiment
we applied the optimization toward the first 50 frames of the Foreman video
clip, and set the average frame distortion constraint as 36 dB. After executing
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Fig. 6. The optimal solution under the constraint of 29 dB average frame distortion
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Fig. 7. Comparison of battery capacity consumption under three average frame dis-
tortion constraints

our framework, the control vector for each frame can be decided to minimize
the battery capacity consumption and results in a received frame which has a
distortion under 36 dB. Figure 4 shows the 50 control vectors corresponding to
the first 50 frames of the tested video clip. Every point in the space represents an
optimized control vector of one frame to satisfy the constraint. All the optimized
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Fig. 8. Comparison of battery capacity saving in delivering 50, 500, 5000 and 50000
frames

control vectors of these 50 frames has formed an optimized solution for this video
clip. By applying our optimization, this solution can still be figured out as the
number of the video frames grows. Figure 5 and figure 6 show the other two
testing results of establishing the optimized solutions under the average frame
distortion constraints of 42 dB and 29 dB.

Figure 7 shows battery capacity consumption comparison between the opti-
mal solution and traditional solution but satisfies the received framed distortion
constraint. We can see that the solution selected by applying the framework has
the most minimized battery capacity consumption under a certain video quality
constraint. Figure 8 represents how much battery capacity can be saved accord-
ing to the total number of video frames with proposed framework. In the figure,
the gain of saving on battery capacity increases in an exponential fashion when
the total number of video frames needs to be delivered increases. As a result,
the proposed optimization can save considerable amount of battery capacity if
it is applied to a relatively long video delivering case.

8 Conclusion

We developed an analytical framework for mobile wireless video communication
systems driven by battery. A method to optimize the battery capacity consump-
tion under a constraint of expected received video distortion is proposed. Based
on analytical results, the video coding and transmission are jointly considered to
minimize the battery capacity used for one video frame under the constraint of
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expected received frame distortion. Experimental results verified the efficiency
and effectiveness of the proposed optimization framework.
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