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Abstract. In this paper, we study the problem of power allocation for
streaming multiple variable-bit-rate (VBR) videos in the downlink of a
cellular network. We consider a deterministic model for VBR video traffic
and finite playout buffer at the mobile users. The objective is to derive
the optimal downlink power allocation for the VBR video sessions, such
that the video data can be delivered in a timely fashion without caus-
ing playout buffer overflow and underflow. The formulated problem is
a nonlinear nonconvex optimization problem. We analyze the convexity
conditions for the formulated problem and propose a two-step greedy
approach to solve the problem. We also develop a distributed algorithm
based on the dual decomposition technique. The performance of the pro-
posed algorithms are validated with simulations using VBR video traces
under realistic scenarios.

Keywords: convex optimization, distributed algorithm, downlink power
control, video streaming, variable bit rate video.

1 Introduction

According to a recent study by Cisco, data traffic over wireless networks is
expected to increase by a factor of 66 times by 2013. Much of the increase in
future wireless data traffic will be video related, as driven by the compelling
need for ubiquitous access to multimedia content for mobile users. Such drastic
increase in video traffic will significantly stress the capacity of existing and future
wireless networks. While new wireless network architectures and technologies are
being developed to meet this “grand challenge” [1,2,3,4], it is also important to
revisit existing wireless networks, to maximize their potential in carrying real-
time video data.

In this paper, we consider the problem of streaming multiple videos in the
downlink of a cellular network. The system is interference limited: the capacity
of a specific mobile user depends on the Signal to Interference-plus-Noise Ratio
(SINR) at the user, which is a function of the power allocation for all the mobile
users. Therefore, effective downlink power control is necessary for such a wireless
video system to minimize the intra-cell interference for concurrent video sessions.

We consider the challenging problem of streaming concurrent variable-bit-
rate (VBR) videos in the cellular network. This is motivated by the fact that
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VBR video offers stable and superior quality over constant bit rate (CBR)
videos. Furthermore, many stored video content are VBR. It is important to
support such stored VBR videos over existing wireless networks without the
need for transcoding. The main challenge in supporting VBR video stems from
its high rate variability and complex autocorrelation structure, making it hard
for network control and may cause frequent playout buffer underflow or over-
flow. In this paper, we adopt a deterministic traffic model for stored VBR video,
which jointly considers frame size, frame rate, and playout buffer size [5, 6, 7].
Unlike prior work, we exploit effective downlink power control to adjust the
downlink capacities based on prior knowledge of frame sizes and palyout buffer
occupancies.

Specifically, we present a downlink power control framework for streaming
multiple VBR videos in a cellular network. With the deterministic VBR video
traffic model, we formulate an optimization problem that jointly considers don-
wlink power control, intra-cell interference, VBR video traffic characteristics,
playout buffer underflow and overflow constraints, and base station (BS) peak
power constraint. The objective is to maximize the total throughput, which can
achieve high playout buffer utilization. As a result, playout buffer underflow or
overflow events can be minimized. We analyze the convex/concave regions of the
formulated problem and develop a two-step downlink power allocation algorithm
for solving the problem. We also develop a distributed algorithm based on the
dual decomposition technique from convex optimization, in order to reduce the
control and computation overhead at the BS. We evaluate the performance of
the proposed distributed algorithm with simulations using VBR video traces.
Our simulation results verify the accuracy of the analysis and demonstrate the
efficacy of the proposed algorithms.

The remainder of this paper is organized as follows. The system model is
presented in Section 2. We develop a two-step algorithm to solve the power allo-
cation problem in Section 3, and a distributed algorithm based on dual decom-
position in Section 4. Simulation results are presented in Section 5 and related
work are discussed in Section 6. Section 7 concludes this paper.

2 Network and Video System Model

We consider the downlink of a cellular network. In the cell, a BS streams multiple
VBR videos simultaneously to mobile users in the cell, which share the downlink
bandwidth. We assume the last-hop wireless link is the bottleneck, while the
wired segment of a session path is reliable with sufficient bandwidth. Thus the
corresponding video data is always available at the BS before the scheduled
transmission time.

VBR video traffic exhibits both strong asymptotic self-similarity and short-
range correlation. A stochastic model capturing the complex auto-correlation
structure often requires a large number of parameters, and is thus hard to be
incorporated for scheduling real-time video data. To this end, we adopt a de-
terministic model that considers frame sizes and playout buffers [6]. Let Dn(t)
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Fig. 1. Transmission schedules for VBR video session n

denote the cumulative consumption curve of the n-th mobile user, representing
the total amount of bits consumed by the decoder at time t. The cumulative
consumption curve is determined by video characteristics such as frame sizes
and frame rates. Assume mobile user n has a playout buffer of size bn bits and
its video has Tn frames. We can derive a cumulative overflow curve for the user
as

Bn(t) = min{Dn(t − 1) + bn, Dn(Tn)}, 0 ≤ t ≤ Tn. (1)

Bn(t) is the the maximum number of bits that can be received at time t without
overflowing user n’s playout buffer. Finally we define cumulative transmission
curve Xn(t) as the cumulative amount of transmitted bits to user n at time t.
To simplify notation, we assume the video sessions have identical frame rate and
the frame intervals are synchronized. A time slot t is equal to the t-th frame
interval, denoted as τ .

The three curves for user n are illustrated in Fig. 1. A feasible transmission
schedule will produce a cumulative transmission curve Xn(t) that lies within
Dn(t) and Bn(t), i.e., causing neither underflow nor overflow at the playout
buffer. In practice, Dn(t)’s are known for stored videos and can be delivered to
the BS during session setup phase, and Bn(t)’s can be derived as in (1).

We consider N subscribers in the cell and let U denote the set of users. In
each time slot t, the BS transmits to each user n with power Pn(t) and the power
allocation is P (t) = [P1(t), · · · , Pn(t)]T . We also consider a maximum transmit
power constraint P̄ , i.e.,

∑
n∈U Pn(t) ≤ P̄ , for all t. When the power allocation

P (t) is determined, the SINR at user n can be written as [8, 9]

γn(P (t)) =
LnGnPn(t)

β
∑

k �=n GnPk(t) + ηn
, (2)
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where Pn is the power allocated to user n, Gn is the path gain between the BS
and user n, ηn is the noise power at user n, Ln is a constant for user n (e.g.,
processing gain), and β denotes the orthogonality factor, with 0 ≤ β ≤ 1. In this
paper, we consider the case β = 1, where the SINR of a user not only depends
on its own power allocation but also the power allocations of other users.

We assume slow-fading channels such that the path gains do not change within
each time slot [8]. The downlink capacity Cn(t) depends on the SINR at user n,
the channel bandwidth Bw, and the transceiver design, such as modulation and
channel coding. Without loss of generality, we use the upper bound as predicted
by Shannon’s Theorem:

Cn(P (t)) = Bw log (1 + γn(P (t))) . (3)

In time slot t, Cn(t)τ bits of video data will be delivered to user n. The cumu-
lative transmission curve Xn(t) is

Xn(0) = 0; Xn(t) = Xn(t − 1) + Cn(t)τ. (4)

For a feasible power allocation, the cumulative transmission curves should satisfy

Dn(t) ≤ Xn(t) ≤ Bn(t), for all n, t, (5)

i.e., without causing playout buffer underflow or overflow.
From (3)∼(5), the lower and upper limit on the feasible SINR at user n can

be derived as
⎧
⎨

⎩

γmin
n (t) = max

{
exp

{
max{0,Dn(t)−Xn(t−1)}

Bwτ

}
, γth

n

}

γmax
n (t) = exp

{
Bn(t)−Xn(t−1)

Bwτ

}
,

(6)

where γth
n is the minimum SINR requirement imposed by the transceiver design.

γmin
n (t) is the SINR that the just empties the buffer at the end of time slot t,

without causing underflow; γmax
n (t) is the SINR that just fills up the buffer at

the end of time slot t, without causing overflow.
Generally, feasible power allocation P (t) is not unique for a given set of VBR

video sessions. Among the set of feasible solutions, a schedule that transmits
more data is more desirable since it provides more flexibility for optimizing
future power allocations. We formulate the problem of optimal downlink power
control for VBR videos, termed Problem A, as

(A) maximize
∑

n∈U log(1 + γn(t)) (7)
subject to:

γn(t) =
LnGnPn(t)

∑
k �=n GnPk(t) + ηn

, for all n (8)

γmin
n (t) ≤ γn(t) ≤ γmax

n (t), for all n (9)
∑

n∈UPn ≤ P̄ . (10)
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In Problem A, the objective is to achieve the maximum buffer uitilization at the
users, under playout buffer underflow and overflow constraints and BS maximum
transmit power constraints. This is a nonlinear nonconvex problem, to which
traditional convex optimization techniques cannot directly apply. Due to the
large variability of VBR traffic, the SINRs may assume values ranging from
very low to very high, to avoid playout buffer underflow and overflow. Thus
the existing high SINR approximation [10] and low SINR approximation [11]
techniques cannot be directly applied.

3 Two-Step Downlink Power Allocation

In Problem A, we consider an interference-limited system, where the capacity of
downlink n depends on the power allocations for all the users. In the following,
we first derive conditions for the optimal solution, and then present a two-step
power allocation algorithm for solving Problem A.

Lemma 1. If there exists a feasible power allocation P (t) that achieves γmax
n (t)

for all n, the solution is optimal.

Proof. If the feasible power allocation P (t) achieves γmax
n (t) for all n, then all

the user buffers are full at the end of the time slot, according to (6). The objective
value (7) cannot be further improved without causing buffer overflow. Thus the
solution is optimal.

Lemma 2. If the upper limit γmax
n (t) cannot be achieved for every user n, then

the optimal power allocation P (t) satisfies
∑

n∈U Pn(t) = P̄ .

Proof. Consider a feasible power allocation P ′(t) = [P ′
1(t), P ′

2(t), · · · , P ′
N (t)]T

and
∑

n∈U P ′
n(t) < P̄ . We can construct another feasible power allocation

P ′′(t) = [P ′′
1 (t), P ′′

2 (t), · · · , P ′′
N (t)]T , such that P ′′

n (t) = κ · P ′
n(t), for all n, and

κ · ∑n∈U P ′
n(t) =

∑
n∈U P ′′

n (t) ≤ P̄ , where κ > 1. For the SINR at user n, we
have

γn(P ′′(t)) =
LnGnP ′′

n (t)
∑

k �=n GnP ′′
k (t) + ηn

=
κLnGnP ′

n(t)
∑

k �=n κGnP ′
k(t) + ηn

>
κLnGnP ′

n(t)
∑

k �=n κGnP ′
k(t) + κηn

= γn(P ′(t)).

It follows that
∑

n∈U log(1+γn(P ′′(t))) >
∑

n∈U log(1+γn(P ′(t))), since log(1+
x) is an increasing function of x.

Choosing κ = P̄ /
∑

n∈U P ′
n(t), we can construct a feasible solution P ′′′(t) =

κ · P ′(t), such that
∑

n∈U P ′′′
n (t) = P̄ . Then we have γn(P ′′′(t)) > γn(P ′(t))
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and
∑

n∈U log(1 + γn(P ′′′(t))) >
∑

n∈U log(1 + γn(P ′(t))). That is, any feasible
solution with

∑
n∈U P ′

n(t) < P̄ will be dominated by feasible solutions with∑
n∈U P ′′′

n (t) = P̄ . We conclude that the optimal solution P (t) must satisfy∑
n∈U Pn(t) = P̄ .

We have the following result for the optimal solution of Problem A, which di-
rectly follows Lemmas 1 and 2.

Theorem 1. A solution to Problem A is optimal if (i) it achieves the maximum
SINR γmax

n (t) for all n; or (ii) its total transmit power is P̄ .

Theorem 1 implies that we can examine the SINR (or buffer) constraints and
the peak power constraint separately. In the rest of this section, we present a
two-step power allocation algorithm for solving Problem A. We first examine
Problem A under condition (i) in Theorem 1, to obtain Problem B as

(B) γmax
n (t) =

LnGnPn(t)
∑

k �=n GnPk(t) + ηn
, for all n, (11)

subject to:
∑

n∈UPn ≤ P̄ . (12)

In Problem B, (11) is a system of linear equations of power allocation P (t).
Rearranging the terms, we can rewrite (11) in the matrix form as:

(I − F)P (t) = u, for P (t) � 0, (13)

where I is the identity matrix, F is a N × N matrix with

Fnm =
{

0, if n = m
γmax

n /Ln, otherwise, (14)

and u = [η1γ
max
1 /LnG1, η2γ

max
2 /LnG2, · · · , ηNγmax

N /LnGN ]T .
Since all the variables are nonnegative, F is a non-negative matrix. Accord-

ing to the Perron-Frobenius Theorem, we have the following equivalent state-
ments [12]:

Fact 1. The following statements are equivalent: (i) there exits a feasible power
allocation satisfying (13); (ii) the spectrum radius of F is less than 1; (iii) the
reciprocal matrix (I−F)−1 =

∑∞
k=0 (F)k exists and is component-wise positive.

Based on Theorem 1 and Fact 1, we derive the first step of the two-step power
allocation algorithm, as given in Table 1. If Problem B is solvable, the Step I
algorithm in Table 1 produces the optimal solution for Problem A according to
Theorem 1. Otherwise, we derive Problem C by applying Lemma 2, as

(C) maximize
∑

n∈U log(1 + γn(t)) (15)
subject to:

γn(t) =
LnPn(t)

P̄ − Pn(t) + An
, for all n (16)

Pmin
n (t) ≤ Pn(t) ≤ Pmax

n (t), for all n (17)
∑

n∈UPn(t) = P̄ , (18)
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Table 1. Two-Step Power Allocation Algorithm: Step I

1 BS obtains bn, Dn, and Bn, and computes γmax
n for all user n;

2 BS tests the existence of feasible solutions using (13);
3 IF (13) is solvable, compute its solution P (t);

ELSE, go to Step II of the algorithm, as given in Table 2;
4 IF

∑
n∈U Pn(t) ≤ P̄ , stop with the optimal solution P (t);

ELSE go to Step II of the algorithm, as given in Table 2;

where An = ηn/Gn is the ratio of noise power and channel gain, representing
the quality of the user n downlink channel. Pmin

n (t) and Pmax
n (t) are solved from

(9) and (16), as
{

Pmin
n (t) = γmin

n (P̄ + An)/(Ln + γmin
n )

Pmax
n (t) = γmax

n (P̄ + An)/(Ln + γmax
n ). (19)

Since the total transmit power is P̄ , the objective value in (15) and the SINR in
(16) for each user only depends on its own power. Note that all the constraints
are now linear. To solve Problem C, we examine the objective function to see if
it is convex. We omit time index t in the following for brevity.

Lemma 3. The capacity of each user n, Cn, has one inflection point P ∗
n : when

Pn < P ∗
n , Cn is in concave; when Pn > P ∗

n , Cn is convex.

Proof. Taking the first and second derivatives of the objective function (15) with
respect to Pn, we have

∂Cn(Pn)
∂Pn

=
Ln(P̄ + An)

(P̄ − Pn + An)[P̄ + (Ln − 1)Pn + An]
(20)

∂2Cn(Pn)
∂Pn

2 =
−Ln[(Ln − 2)(P̄ + An) + 2(1 − Ln)Pn](P̄ + An)

[(P̄ − Pn + An)2 + LnPn(P̄ − Pn + An)]2
. (21)

Since Pn ≤ P̄ and An > 0, both the first and second derivatives exist. Letting
∂2Cn(Pn)

∂Pn
2 = 0, we derive the unique inflection point

P ∗
n =

Ln − 2
2(Ln − 1)

(P̄ + An). (22)

When Pn < P ∗
n , it can be shown that ∂2Cn(Pn)

∂Pn
2 < 0; when Pn > P ∗

n , it can be

shown that ∂2Cn(Pn)
∂Pn

2 > 0.

The normalized capacities for a two-user system is plotted in Fig. 2, with the
inflection points marked. It can been observed that the curves are concave on
the left hand side of the inflection points and convex on the right hand side of
the inflection points. The processing gain is usually large for practical systems
(e.g., Ln = 128 in IS-95 CDMA). We assume Ln � 1 in the following analysis.
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Fig. 2. Normalized capacity curves and inflection points for a two-user system, where
link 1 has better quality than link 2, i.e. A1 < A2

Theorem 2. For Problem C, there can be at most two links operating in the
convex region if Ln ≥ (4P̄ + 6An)/(P̄ + 3An).

Proof. The reflection point is P ∗
n = Ln−2

2(Ln−1) (P̄ +An). As Ln → ∞, we have P ∗
n =

0.5(P̄ + An). Only one link can operate in the convex region due to constraint
(18). Since ∂P∗

n

∂Ln
> 0, P ∗

n is an increasing function of Ln. When 1 	 Ln < ∞, we
have P ∗

n < 0.5·(P̄ +An). Letting 3P ∗
n = P̄ , we have Ln = (4P̄ +6An)/(P̄ +3An).

For a clean channel where An ≈ 0, Ln ≥ 4 will guarantee at most two links
operating in the convex region. The following results are on the impact of channel
quality An = ηn/Gn.

Theorem 3. For a given Ln, the inflection point P ∗
n is an increasing function

of An. For two links i and j with the same transmit power P , if Ai < Aj, we
have Ci(P, Ai) > Cj(P, Aj) and ∂Ci(Pi,Ai)

∂Pi
|Pi=P >

∂Cj(Pj ,Aj)
∂Pj

|Pj=P > 0.

Proof. The first part can be easily shown by the first derivative of P ∗
n with

respect to An, which is ∂P∗
n

∂An
= Ln−2

2(Ln−1) > 0, for Ln > 2. The second part can be
easily shown by evaluating (15), (16), and (20).

Theorem 3 shows that, for two links in the convex region with the same initial
power P , allocating more power to the link with better quality can achieve larger
objective value than alternative ways of splitting the power between the two links
(i.e., achieving the multi-user diversity gain). Based on the above analysis, we
develop the second step of the power allocation algorithm for solving Problem
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Table 2. Two-Step Power Allocation Algorithm: Step II

Initialization:
1 BS obtains bn, Dn, and Bn for all user n;
2 BS computes γmax

n , γmin
n , and P ∗

n , for all n;
3 BS computes the minimum required sum power P̄min =

∑
n∈U P min

n

and gap ΔP = P̄ − P̄min;
4 IF P̄min > P̄ , remove links from U , according to descending order

of An, until P̄min ≤ P̄ ;

5 Compute Rn =
Cn(min{P max

n ,P min
n +ΔP })−Cn(P min

n )

min{P max
n ,P min

n +ΔP }−P min
n

, for all P max
n > P ∗

n ;

Phase 1:
6 Select all the users satisfying P min

n < P ∗
n as a set U ′ ⊆ U ;

7 Solve Problem C under constraints
P min

n ≤ Pn ≤ min (P max
n , P ∗

n) and
∑

n∈U′ Pn ≤ P̄ ′ = P̄ − ∑
n∈Ū′ P min

n ,
where Ū ′ is the complementary set of U ′, and obtain solution P 1;

8 Calculate Rn by updating P min
n to the solution in Line 7 and assign

the remaining power to the nodes in set U , in descending order of Rn;
9 Obtain the Phase 1 solution, P p1 , and objective value fp1 ;

Phase 2:
10 Select the link with the maximum Rn, and assign all the available

power P̄ − P̄min to the link, until either all the power is assigned or
the link attains power P max

n ;
11 IF there is still power to allocate, THEN select all the nodes in set U\n

and repeat Lines 5 ∼ 8;
12 Obtain the Phase 2 solution, P p2 , and objective value fp2 ;

Phase 3:
13 Select the first 2 links with the largest Rn’s, and assign all the availble

power P̄ − P̄min to the links, until all the power is assigned or the links
attains power P max

n , and repeat Line 11;
14 Obtain the Phase 3 solution, P p3 , and objective value fp3 ;

Decision:
15 Choose the largest objective value among fp1 , fp2 and fp3 , and stop

with the corresponding power assignment;

C, as given in Table 2. In Table 2, Lines 3 ∼ 4 tests the feasibility of the power
allocation. If the sum of the total minimum required power is larger than the
BS peak power, there is no feasible power allocation and there will be buffer
underflow. In this case, we select users with “good” channels for transmission
and suspend the users with “bad” channels.

The Step II algorithm checks the three possible solution scenarios for Problem
C depending on the network status and video parameters:

– All links operate in the convex region;
– One link operates in the convex region and the remaining links operate in

the concave region
– Two links operate in the convex region and the remaining links operate in

the concave region.
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Each of the three phases in Table 2 considers the optimality condition for one of
the three scenarios. In particular, Phase 1 first optimizes the power allocation in
the concave region and then allocates the remaining power to the links that could
be moved to the convex region. Phase 2 allocates as much power as possible to
the link with the best quality, which could work in the convex region. Phase 3
attempts to move the second best link to the convex region if the total power
constraint is not violated. Usually when Ln and n are large, Phase 3 will rarely
occur due to the peak power constraint.

In Table 2, Line 7 presents a convex optimization component, for which several
effective solution techniques can be applied. In the following section, we describe
a distributed algorithm for Line 7 based on dual decomposition.

4 Distributed Algorithm

As discussed in Section 3, the core of the Step II algorithm is to solve Problem
C in the concave region (see Fig. 2). In this section, we present a distributed
algorithm for this purpose, where the users are involved in power allocation to
reduce the control and computation overhead on the BS. In the concave region,
we have Problem D as

(D) maximize
∑

n∈U log(1 + γn(t)) (23)
subject to:

γn(t) =
LnPn(t)

P̄ − Pn(t) + An
, for all n (24)

Pmin
n (t) ≤ Pn(t) ≤ min{Pmax

n , P ∗
n}, for all n (25)

∑
n∈UPn(t) ≤ Ptot, (26)

where Ptot ≤ P̄ is the total power budget for the links in the concave region. For
brevity, we define P th

n = min{Pmax
n , P ∗

n} and drop the time slot index t in the
following analysis.

Introducing non-negative Lagrange multipliers λn, μn, and ν for constraints
(25) and (26), respectively, we obtain the Lagrange function as

L(P , λ, μ, ν) (27)

=
∑

n∈U

[

log
(

1 +
LnPn

P̄ − Pn + An

)

+ λn(Pn − Pmin
n )

]

+
∑

n∈U
[
μn(P th

n − Pn)
]
+ ν

(
Ptot −

∑
n∈UPn

)

=
∑

n∈U
[Ln(Pn, λn, μn, ν)+(μnP th

n −λnPmin
n )

]
+νPtot,

where

Ln(Pn, λn, μn, ν) = log
(

1 +
LnPn

P̄ − Pn + An

)

+ (λn − μn − ν)Pn. (28)
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Since Ln only depends on user n’s own parameters, we have the dual decompo-
sition for each user n. For given Lagrange multipliers (or, prices) λ̂n, μ̂n, and ν̂,
we have the following subproblem for each user n.

P̂n(λ̂n, μ̂n, ν̂) = arg max
P min

n ≤Pn≤P th
n

Ln(Pn, λ̂n, μ̂n, ν̂), for all n. (29)

Subproblem (29) has a unique optimal solution due to the strict concavity of Ln.
We use the gradient method [13] to solve (29), where user n iteratively updates
its power Pn as:

Pn(l + 1) (30)
= [Pn(l) + θ(l)∇nLn(Pn)]∗

=
[

Pn(l) + θ(l)
Ln(P̄ + An)

(P̄ − Pn + An)(P̄ + (Ln − 1)Pn + An)
+ θ(l)(λn − μn − ν)

]∗
,

where [·]∗ denotes the projection onto the range of [Pmin
n , P th

n ]. The update
stepsize θ(l) varies in each step l and is determine by the Armijo Rule [13]. Due
to the strict concavity of Ln, the series {Pn(1), Pn(2), · · ·} will converge to the
optimal solution P̂n as l → ∞.

For a given optimal solution for problem (29), P̂ = [P̂1, · · · , P̂N ]T , the master
dual problem is as follows:

minimize L(P̂ , λ, μ, ν) (31)
subject to: λn, μn, ν ≥ 0, for all n. (32)

Since the objective function (31) is differentiable, we also apply the gradient
method to solve the master dual problem [13], where the Lagrange multipliers
are iteratively updated as

⎧
⎪⎨

⎪⎩

λn(l + 1) = [λn(l) − αλ(l) · ∂L(λ,μ,ν)
∂λn

]+, for all n

μn(l + 1) = [μn(l) − αμ(l) · ∂L(λ,μ,ν)
∂μn

]+, for all n

ν(l + 1) = [ν(l) − αν(l) · ∂L(λ,μ,ν)
∂ν ]+,

(33)

where [·]+ denotes the projection onto the nonnegative axis. The update stepsizes
are also determined by the Armijo Rule [13]. As the dual variables λ(l), μ(l), ν(l)
converge to their stable values as l → ∞, the primal variables P̂ will also con-
verge to the optimal solution [14].

The distributed algorithm is given in Table 3, where the above procedures are
repeated iteratively. The BS first broadcasts Lagrange multipliers to the users.
Each user updates its requested power as in (30), using local information Pmin

n ,
Pmax

n , P ∗
n , An, Ln, and BS peak power P̄ . Each user then sends its requested

power back to the BS, and the BS will updates the Lagrange multipliers as in
(33). And so forth, until the optimal solution is obtained.
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Table 3. Distributed Power Control Algorithm

1 BS sets l = 0 and prices λn(l), μn(l), ν(l) equal to some
nonnegative initial values for all n;

2 BS broadcasts the prices to the selected users;
3 Each user locally solves problem (29) as in (30) to obtain its

requested power;
4 Each user sends its requested power to the BS;
5 BS updates prices λn(l), μn(l), ν(l) as in (33) and broadcasts

new prices λn(l + 1), μn(l + 1), ν(l + 1) for all n;
6 Set l = l + 1 and go to Step 3, until the solution converges;

5 Simulation Results

We evaluate the proposed algorithms with simulations, using a cellular network
with 20 users. The downlink bandwidth is 1 MHz. The path gain averages are
Gn = d−4

n , where dn is the physical distance from the BS to user n. The downlink
channel is modeled as log-normal fading with zero mean and variance 8 dB [8].
The processing gains are set to Ln = 128 for all n. The distance dn is uniformly
distributed in [100m, 1000m]. The device temperature is T0 = 290 Kelvin and
the equivalent noise bandwidth is Bw = 1MHz. The BS peak power constraints
is set to P̄ = 10 Watts. We use three VBR movies traces, Star Wars, NBC News,
and Tokyo Olympics, from the Video Trace Lib [15]. Each playout buffer is set
to 1.5 times of the largest frame size in the requested VBR video.

In the simulations, the proposed power allocation algorithm is executed at
the beginning of each time slot. In Fig. 3, we plot the cumulative consumption,
overflow and transmission curves for NBC News transmitted to user 2. The
top sub-figure is the overview of 10, 000 frames. We also plot the curves from
frame 2, 620 to 2, 640 in the bottom sub-figure. We observe that the cumulative
transmission curve X(t) is very close to the cumulative overflow curve B(t),
indicating that the algorithm always aim to maximize the transmission rate as
allowed by the buffer and power constraints. The playout buffers are almost fully
utilized most of the time. There is no playout buffer overflow and underflow for
the entire range of 10, 000 frames. Among the NBC News frames, frame 2, 625
is the largest frame. We let seven out of the 20 links playout this largest frame
simultaneously at time slot 2, 625 in the simulation. There is no buffer underflow
under such heavy load.

In Fig. 4, we plot the power allocation and price updates for all the 20 links in
one of the 10,000 time slots. The power and prices converges in around 70 steps.
The converged power vector is P̂ = [0.0022, 1.396, 0.0356, 0.0024, 1.396, 0.0351,
0.0016, 1.396, 0.0356, 0.0026, 1.396, 0.0356, 0.0023, 1.396, 0.0356, 0.0018, 1.396,
0.0356, 0.0034, 1.394] Watts.

Finally, we compare the proposed algorithm with a diversity-aware power allo-
cation scheme, where the BS allocates power according to channel quality. With
this scheme, the best channel n will be assigned power to achieve its maximum
required power Pmax

n (t). Then the second best channel will be allocated power
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Fig. 3. Transmission schedule for video NBC News to user 2
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Fig. 4. Convergence of power allocation and Lagrange multipliers

until its maximum required power is achieved, and so forth until all of P̄ is
allocated.

We simulate 50 users with the same network and video settings. We compare
the algorithms by their average playout buffer utilization. In Fig. 5, we plot the
average buffer utilization from frame 2, 000 to 2, 999. It can be seen that the
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Fig. 5. Average playout buffer utilization

proposed algorithm consistently achieves high buffer utilization, ranging from
60% to 100%. The diversity scheme achieves buffer utilization around 30% ex-
cept for frames from 2,250 to 2,400. Such considerably higher buffer utilization
translates to better video quality: there is no buffer overflow or underflow for
proposed algorithm, while there is buffer underflow in 17% of the playout frames
for the diversity scheme.

6 Related Work

There have been several papers on VBR video over wired network. Due to long-
range-dependent (LRD) VBR video traffic, the piecewise-constant-rate transmis-
sion and transport (PCRTT) method was used to optimize certain objectives
while preserving continuous video playout. In [5], Liew and Chan developed
bandwidth allocation schemes for multiple VBR videos to share a CBR channel.
In [6], Salehi et al. presented an optimal algorithm for smoothing VBR video
over a CBR link. Feng and Liu [7] introduced a critical bandwidth allocation al-
gorithm to reduce the number of bandwidth variations and to maximize receiver
buffer utilization. Due to the fundamental difference between wireless and wired
links, these techniques cannot be directly applied to the problem of VBR video
over wireless networks.

The downlink power allocation problem was studied in [8, 9], aiming to ob-
tain the power allocation that maximizes a properly defined system utility. A
distributed algorithm based on dynamic pricing and partial cooperation was
proposed. Deng, Webera, and Ahrens [16] studied the achievable maximum sum
rate of multi-user interference channels. These papers provide the theoretical
foundation and effective algorithms for utility maximization of downlink traffic,
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but the techniques used cannot be directly applied for VBR video over wireless
networks with buffer and delay constraints.

In [17, 18], the authors studied the problem of one VBR stream over a given
time-varying wireless channel. In [17], it was shown that the separation between
a delay jitter buffer and a decoder buffer is in general suboptimal, and several
critical system parameters were derived. In [18], the authors studied the fre-
quency of jitters under both network and video system constraint and provided
a framework for quantifying the trade-offs among several system parameters.
In this paper, we jointly consider power control in wireless networks, playout
buffers, and video frame information, and address the more challenging prob-
lem of streaming multiple VBR videos, and present a cross-layer optimization
approach that does not depend on any specific channel or video traffic models.

7 Conclusion

We developed a downlink power allocation model for streaming multiple VBR
videos in a cellular network. The model considers interactions among downlink
power control, channel interference, playout buffers, and VBR video traffic char-
acteristics. The formulated problem aims at maximizing the total transmission
rate under both peak power and playout buffer overflow/underflow constraints.
We presented a two-step approach for solving the problem and a distributed
algorithm based on the dual decomposition technique. Our simulation studies
validated the efficacy of the proposed algorithms.
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