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Abstract. In this paper, we introduce an adaptive traffic prediction approach for 
self-optimizing the performance of a Prediction-based Decentralized Routing 
(PDR) algorithm. The PDR algorithm is based on the Ant Colony Optimization 
(ACO) meta-heuristics in order to compute the routes. In this approach, an ant 
uses a combination of the link state information and the predicted available 
bandwidth instead of the ant’s trip time to determine the amount of deposited 
pheromone. A Feed Forward Neural Network (FFNN) is used to build adaptive 
traffic predictors which capture the actual traffic behavior. Our contribution is a 
new self-optimizing mechanism which is able to locally adapt the prediction 
validity period depending on the prediction accuracy in order to efficiently 
predict the link traffic. We study three performance parameters: the rejection 
ratio, the percentage of accepted bandwidth and the effect of prediction use. In 
general, our new algorithm reduces the rejection ratio of requests, achieves 
higher throughput when compared to the AntNet and Trail Blazer algorithms.   

Keywords: Traffic engineering, self-organization, ant-based routing, quality of 
service, artificial neural network. 

1   Introduction 

The rapid growth of the Internet forces the Internet Service Providers (ISPs) to search 
for a new technology which has the capability to maximize the network utilization. 
They hope to increase their revenues by deploying the concept of service 
differentiation and offering higher quality services. To support such capabilities, the 
conventional IP technologies should use the methodology of Traffic Engineering 
(TE). 

TE is defined as that aspect of Internet network engineering dealing with the issue 
of performance evaluation and performance optimization of operational IP networks 
[1]. TE aims to cover different optimization issues that are related to the network 
performance such as providing the requested Quality of Service (QoS), minimizing 
the total delay and maximizing the network throughput, improving the network 
resources utilization by optimally distributing the traffic over the network topology 
and quick recovery in from failures. 
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There are different sets of routing classifications that depend on different point of 
views. Routing algorithms can be classified as static or dynamic. With static routing 
algorithms such as the Minimum Hop Algorithm (MHA), the administrator computes 
off-line all possible routes using statistic information and updates the routing table 
accordingly. Dynamic routing algorithms use information about the current state to 
compute the requested route on demand. All routing decisions in the dynamic routing 
approach are performed online to reflect changes of network states. This paper 
focuses on dynamic routing approaches. Most routing protocols are dynamic such as 
the Open Shortest Path First (OSPF) protocol [2], the Routing Information Protocol 
(RIP) and Multi-Protocol Label Switching (MPLS) [3].  

The efficiency of TE schemes mainly depends on the routing optimization. Most of 
the dynamic routing algorithms use the available Bandwidth (BW) to choose the paths 
between the source and destination pairs. The provided QoS depends on accurate 
measurements of the available BW. Due to the varying nature of the available BW, 
updating the link state with the current measured BW is not an efficient approach to 
represent the link utilization. Therefore, new approaches perform an estimation of the 
link utilization in the future using the actual traffic profile. The proposed routing 
mechanism should optimize the network utilization, improve the network 
survivability and reduce future interference between requests. 

Routing algorithms can be classified into centralized or decentralized also. In the 
centralized routing approach; the source router has all necessary information to 
compute the routes. In the decentralized routing approach, the routing decisions are 
taken based on the local state information only and by each network node 
individually. Most decentralized routing approaches use ant-based mechanisms [4]. 
These algorithms are based on Ant Colony Optimization (ACO) meta-heuristics. Ant 
systems represent a self-organizing approach which applies the principle of indirect 
communication between agents by handling the changes to their environment [5]. Ant 
routing algorithms are inspired from real ants' behaviors which have the ability of 
discovering the shortest path to a food source and their nest without any knowledge of 
geometry but with a keen sense of smell. By applying reinforcement learning 
techniques, ant routing algorithms can find the optimal or a close-to-optimal path 
between the source and destination through a positive feedback mechanism. 

In this paper, we introduce an adaptive traffic prediction mechanism for self-
optimizing the performance of Prediction-based Decentralized Routing (PDR) 
algorithm which is based on the ACO meta-heuristics to compute the routes. The idea 
of the PDR algorithm is to use the combination of the link state information and the 
predicted available BW instead of the ant’s trip time to determine the amount of 
pheromone to deposit. We build our traffic predictor using the FFNN which has 
proved its accuracy to capture the actual traffic behavior. The proposed predictor uses 
a new adaptive mechanism to be able to locally adapt the prediction validity period 
depending on the prediction accuracy in order to efficiently predict the link traffics. 
Depending on the predicted load value, the algorithm computes the available BW and 
combines it with the current available BW in the link weight formula that is used to 
select the optimal path.  The remainder of this paper is organized as follows: Section 
2 gives an overview of the related work. Section 3 introduces the design details of our 
approach. Section 4 demonstrates the comparative results and discusses the 
performance evaluation. Future work and conclusions are presented in section 5. 
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2   Related Work 

The traditionally used algorithm within the MPLS domain is the Shortest Path First 
(SPF) algorithm proposed by E. Dijkstra [6] to solve the shortest path problem. The 
basic idea of the SPF algorithm is used in many routing protocols such as the OSPF 
protocol. Dijkstra’s algorithm depends on the fact that states on subsections of 
shortest paths are also shortest paths. It does not just compute the shortest path to a 
specific destination, but computes the shortest paths to all possible destinations in the 
network. Roch A. Guerin [7] has introduced a modification to the shortest path 
algorithm, called Widest Shortest Path (WSP), which is based on the computation of 
the shortest paths in the first stage with the extension that if there is more than one 
shortest path, it chooses the one with the maximum BW. This work is introduced to 
provide extensions to the OSPF protocol in order to support QoS routing in IP-based 
networks.  

Since all previous algorithms aim to select the best paths without considering 
future path requests, the related performance does not achieve the best results in 
maximizing the network utilization or the acceptance rate of requests. The Minimum 
Interference Routing Algorithm (MIRA) is an example of an advanced routing 
algorithm [8]. The idea of MIRA is avoiding the routing over links that may interfere 
with another path request in the future. The definition of interference in MIRA 
depends on computing the maximum flow (max-flow) value between a given ingress 
and egress pair. The minimum interference path is the path that maximizes the 
minimum max-flow between all other ingress-egress pairs. 

A.B. Bagula [9] introduced a Least Interference Optimization Algorithm (LIOA) 
which reduces the interference among competing flows by balancing the number and 
quantity of flows that are carried by a link to achieve efficient routing of BW 
guaranteed requests. In general, simulation studies demonstrate that LIOA 
outperforms many routing algorithm such as MHA, and MIRA algorithms. The 
comparative study of theses algorithms depends on different performance metrics 
including the rejection ratio of requests and the successful re-routing of requests upon 
single link failures. 

E. Einhorn and A. Mitschele-Thiel introduced the Reinforcement Learning for 
Traffic-Engineering (RLTE) algorithm [10]. This work presents a novel distributed 
and self-organized QoS routing approach that is based on reinforcement learning. We 
have introduced a primary version of the Predicting of Future Load-based Routing 
(PFLR) algorithm in [11]. The PFLR algorithm uses the predictions of the future load 
in order to solve the routing problem. The performance of the PFLR algorithm has 
been compared to earlier routing approaches like the WSP and CSPF algorithms. The 
primary version of the PFLR algorithm has reduced the rejection ratio of requests and 
achieves a higher throughput.  

We have proposed an enhanced version of PFLR in [12]. PFLR v.2 combines the 
predicted future load and current residual BW of each link in a formula to represent 
the Reciprocal of available BW (RBW) and then updates the link weight formula with 
RBW. The PFLRv.2 performance has been compared with current routing approaches 
like DORA and LIOA algorithms and demonstrated the efficiency of PFLRv.2 by 
testing three performance criteria: the rejection ratio of requests, the percentage of 
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accepted BW and the rejection ratio of rerouted requests within the link failure 
scenario. 

AntNet [13] is an ACO algorithm for distributed and adaptive best-effort routing in 
IP networks. AntNet is considered the first algorithm that is inspired by ant colony 
behavior to solve the routing problem. The behavior of AntNet depends on the mobile 
agents or the ants’ framework. During the forward phase, each ant constructs a path 
by taking a sequence of decisions based on a stochastic policy parameterized by local 
pheromones and heuristic information. Once it arrives at the destination, the backward 
phase starts. The backward ants retrace the route, followed by their forward ant, and 
update the local routing information with an amount of pheromone in all the 
intermediate nodes. 

Yun and Zincir [14] introduced an adaptive routing algorithm based on the AntNet 
algorithm. This approach uses a new structure of the routing table to overcome the 
problem of unrealistic requirements for global information of the original AntNet 
algorithm. The Trail Blazer (TB) routing algorithm minimizes the network congestion 
through local decisions, based on latency measurements collected by scout packets 
[15]. TB is meant to be an extension of existing link-state protocols such as OSPF, 
which provides shortest-path information to initialize the probability table. Therefore, 
TB does not require a learning period to discover the network topology. TB is also 
simpler than the AntNet algorithm. 

We have proposed a first version of our TE algorithm named Prediction-based 
Decentralized Routing (PDR) algorithm [16] that can efficiently enhance the routing 
performance. This algorithm is a member of a class of traffic-aware routing 
algorithms based on the behavior of ants. We have compared the performance of the 
PDR algorithm with WSP and SPF algorithms under two different network load 
scenarios and have shown that the PDR algorithm performs considerably better. 

3   Prediction-Based Decentralized Routing 

This section provides a detailed description of our improved version for the 
Prediction-based Decentralized Routing algorithm (PDRv.2). Figure 1 outlines the 
operation of PDRv.2. In the algorithm, ants are distributed through the network to 
discover the best paths. The ants use a combination of the link state information and 
the predicted link load instead of the ant’s trip time to determine the amount of 
pheromone to deposit. This is simpler and requires less control parameters. After 
selecting the best path, the routing algorithm forwards the packets through the 
network and updates the reserved BW of each link that belongs to the best path 
between the source and the destination. 

The idea behind the design of PDR is to consider the future link load to enhance 
the performance of Ant-based routing algorithms. Therefore, we propose a traffic 
predictor that able to accurately predict the traffic behavior. ANN offers prediction 
capability with different types of network traffic and has the ability to learn and adapt 
dynamically. Experimental results show that, ANN can accurately estimate a 
complicated network traffic pattern efficiently [17]. 
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Fig. 1. Prediction-based Decentralized Routing (PDRv.2) algorithm 

The proposed predictor has two different processes: the training, and the prediction 
process. In the training process, the internal structure of FFNN is constructed by a 
training based on traffic samples of link histories. During the prediction processes, the 
future link load on every link is estimated after a specified period of time or a 
specified prediction interval, which is named Window Size (WS). This means that, 
each link has a predictor which is placed on one of the directly connected nodes. Each 
predictor works on its link history and has its own parameter values. In other words, 
the predictions are made decentralized to achieve a fast prediction and to conquer the 
complexity of prediction.  

The new proposed feature of the PDRv.2 algorithm is the parameter adaptation 
process. The Prediction Validity Period (PVP) parameter is adapted and self-
optimized depending on the prediction accuracy. The PVP parameter represents the 
duration of a period for which the prediction is valid with a high degree of 
confidence. With the help of this feature, the training of each predictor is triggered 
independently of each other. 

3.1   Training Process 

The structure of the used FFNN is shown in Figure 2. It consists of three layers: The 
input layer contains three neurons; the hidden layer contains fifteen neurons and only 
one neuron in the output. The Levenberg-Marquardt [18] training algorithm is used 
because it is the fastest and most accurate one in our case. We have tested different 
FFNN design and different values of training period size to achieve an efficient 
predictor. In contrast to the training process in the previous version of PDR algorithm 
that is event-based, the training process in PDRv.2 algorithm is time-based.  

In the event-based approach, if a new path is requested in the network, a new event 
is generated. During the previous version of PDR, a history of the last thousand 
events (plus WS) of link traffic values is used for training purpose. However in 
PDRv.2 algorithm, a history of the last hundred time units of link traffic values is 
used for training purpose. One training pattern contains the minimum, maximum and  
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Fig. 2. Feed forward neural network architecture 

average of traffic during a time unit. This pattern is formed in a row as input values 
and one expected output value. The expected output value is a history value WS time 
after the input values. By shifting, one hundred of training patterns are generated. In 
the previous version of PDR, the training process is triggered every one hundred 
traffic samples. In the new version, the training process is triggered every PVP period 
which is adapted depending on the prediction accuracy.  

3.2   Prediction Process  

In the prediction process, the minimum, maximum and average of the traffic during 
the last time unit are used as input for the FFNN which predicts a value for the link 
load after a WS period. The prediction process is triggered every WS period. An 
analysis study is done to select the best value of WS. In other words, the prediction 
happens every WS period and the predictor structure is not changed until the PVP 
period has elapsed.  

3.3   Parameter Adaptation Process 

In the PDRv.2 algorithm, we propose to use a new adaptive feature called parameter 
adaptation process. The main objective for this process is to give the predictor the 
ability to optimize the PVP parameter. A PVP parameter contains multiple WS 
periods to represent how many times the prediction is done.  

PVP = WS ×PN, (1)

Since PN is the Prediction Numbers. 
The parameter adaptation process depends on the predictions accuracy that is 

calculated by comparing the actual and predicted traffic loads. Therefore, archiving 
processes are required to archive the actual and predicted traffic loads. The prediction 
accuracy can be represented by the prediction error and there are different error 
representation methods. In this paper, we use the Root Mean Square Error (RMSE) to 
represent the prediction accuracy. If AL is the Actual traffic Load and PL is the 
Predicted traffic Load, then the RMSE value is: 

ܧܵܯܴ ൌ ඨ∑ ሺܮܣ െ ሻଶேୀଵܮܲ ܰ  (2)
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During this process, the PN parameter is adjusted depending on the comparison 
between the RMSE and Error Threshold (ETh) parameters. Then, the PVP parameter 
is updated.  

3.4   PDRv.2 Algorithm 

The PDR algorithm is built on the principles of the TB routing framework. In the TB 
design, each router has two tables: a link probability table Pt and an average 
transmission delay table avg. Pt contains m rows, one for each destination node. Each 
row has K entries, one for each outgoing link of the router. The entry pt[d,i] is the 
probability of sending a packet to destination d on the outgoing link i. The table avg 
has m entries, one for each destination node. The entry avg(d) is the average 
transmission delay from the current node to the destination d, which is computed from 
the last M scout packets that arrived from d. The scout packet is sent from the source 
to the destination to explore the network. At every intermediate node, the scout packet 
selects the outgoing link randomly. When scout packets find their destination, they 
return to their source on the same path they have arrived on and update their 
accumulated latency td in every intermediate node by td =td + t(i),where t(i) is the 
current latency of the outgoing link i. Then, the scout packets use the accumulated 
latency td to update the pt table as follows: 

f(td) =  max(min(avg(d)/td,10),0.1) (3)

∆p=  δ ×  f(td) 
(4)

pt[d,i] =  (pt[d,i] + ∆p )  / ( 1+ ∆p) 
(5)

pt[d,j]j≠i=  (pt[d,j])  / ( 1+ ∆p) 
(6)

The average latency avg(td) is used to scale the positive reinforcement value of the 
scout packet. A larger value of f(td) indicates a better (shorter) path. f(td) is limited to 
the range [0.1,10] to prevent wide fluctuations in ∆p, which is the reinforcement value 
of pt[d,j]. δ defines the learning rate of the algorithm. All entries in Pt table of the 
same destination d are scaled by 1+∆p to ensure that their sum remains 1. 

In our approach, an ant uses a combination of the link state information and the 
predicted link load instead of the ant’s trip time to determine the amount of 
pheromone to deposit, so that it has a simpler process and less control parameters. 
The current latency t(i)  of an outgoing link i  in the TB algorithm is replaced by the 
Link Weight formula LW(i). LW(i) represents a combination of PFLR and LIOA to 
reduce the interference among competing flows by balancing the number and required 
BW of flows carried by a link to achieve efficient routing.  

The LIOA algorithm represents a cost metric which balances the number and the 
intensity of the flows offered to the routes. In the LIOA design, LW(i) = Ilc / 
(Available BW) (1-lc) ,whereas  I is the number of flows carried on the link and lc is the 
least interference control parameter which represents a trade-off between the number 
and the magnitude of the flows traversing a link. On the other hand, the PFLR 
algorithm proposes to incorporate the Predicted Available BW (PABW) in the link 
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weight formula to optimize the performance of routing. Therefore, we propose to use 
the LW(i) formula as follows: ܹܮሺ݅ሻ ൌ ܫ  ൬ ሺ1 െ αሻሺ݈ܾ݈݁ܽ݅ܽݒܣ ሻሺଵିሻܹܤ  αሺܹܲܤܣሻሺଵିሻ ൰ (7)

The LW(i) formula is controlled by a parameter called α ,which represents the 
prediction weight. A low α reduces the influence of the predicted value on the BW. A 
high value of α increases the influence and suppresses the current value of the 
available BW. 

 
PDRv.2 Algorithm 

1) Repeat the following step until the time of the PVP has elapsed. 

a) At regular intervals of WS, predict the available BW in all links in the 
network after a specified WS. 

b) At regular intervals of N, each node generates and sends an ant to a 
destination.  

c) When a node receives an ant:  

i. It will forward the ant and selects the next link for the ant´s route 
randomly.  

ii. The ant never selects an outgoing link that leads to a node that has 
been visited earlier in its path (a loop). If there is no such outgoing 
link, the ant will die. 

d) When the current node is the destination, then, the ant will return to the 
source on the same path on which it has arrived. 

e) At each intermediate node : 

i. Compute LW(i) of the outgoing link i on every link in the backward 
path using Equation (7). 

ii. Compute td, td=td+ LW(i). 

iii. Update the pt and avg tables using Equations (3), (4), (5) and (6). 

2) Call the parameters adaptation procedure to adapt the PVP parameter.  

3) Train the predictor on the link load histories.  

4) Go to step 1. 

5) On the other hand, when a node receives a data packet, which needs to be 
forwarded, data packets will be routed according to the probabilities in the pt 
table. 
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The parameter adaptation procedure consists of three steps. The first step is the 
computation of RMSE using Equation (2). In the second step, the PN parameter is 
adjusted depending on the comparison between the RMSE and Error Threshold (ETh) 
parameters. For example, if the RMSE value is equal or less than the ETh value, this 
means that the prediction accuracy is very good and the number of predictions should 
be increased by two. The last procedure step is calculating the new value of the PVP 
parameter using Equation (1). 

 
Parameters adaptation procedure: 

1) Compute the RMSE of prediction using Equation (2). 

2) Update the PN respect to the following comparisons:  

a) If RMSE •  ETh, PN=PN +2. 

b) If RMSE > ETh & RMSE •  ETh*1.5, PN=PN +1. 

c) If RMSE > ETh*1.5 & RMSE •  ETh*2, PN =PN -1. 

d) If RMSE > ETh*2, PN=PN -2. 

3) Compute the new PVP value, PVP=WS* PN. 

4   Performance Evaluation 

In this section, we evaluate the performance of PDRv.2 based on some test scenarios 
and discuss the results. All test scenarios are implemented using Visual Basic and the 
ANN toolbox in MATLAB [18]. We modify both, the AntNet and TB algorithm, by 
replacing the transmission delay with the available BW information to be able to 
compare the PDRv.2 algorithm with them. Three performances parameters are 
studied: 

1. The rejection ratio of path requests, 
2. The percentage of accepted BW and 
3. The effect of prediction use. 

Our experiment is done on two network topologies. The first one is the MIRA 
network [8] that is shown in Figure 3, where the thicker links have a capacity of 4800 
capacity units while the thinner links have a capacity of 1200 capacity units. The 
second one is a real network topology that is shown in Figure 4. It is a reference 
topology suited for an advanced hybrid optical and packet network in the U.S. named 
Internet2 [19]. In contrast to the performance study of PDRv.1, we consider the 
requests from all possible combinations of source and destination pairs. 

In the MIRA scenario, we examine the performance of the routing algorithms for 
two generated traffic demands. The first load scenario is a Moderate Load (ML): The 
arrival of requests follows a Poisson distribution and the holding time of the requests 
is based on an exponential distribution. The second is a heavy load (HL). In the  
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Fig. 3. MIRA network topology 

 

Fig. 4. Internet2 network topology 

Internet2 scenario, we examine the performance of the PDRv.2 algorithm for a real 
traffic demand. The real traffic demands are collected from the trace flies of the 
NetFlow tool for the first day of 2009 year [19]. Table 1 describes the PDRv.2 
parameters and shows the range and used value in our simulation. 

Table 1.  The PDRv.2 algorithm parameters 

Variable Value 
lc (least interference control parameter) 0.1 
M (keep the average of the last M of td) {15, 20} 

δ (learning rate) {0.01, 0.02} 
α (prediction weight) 0.9 

WS (window size) 1 



464 A.A. Turky, F. Liers, and A. Mitschele-Thiel 

4.1   Generated Traffic Scenario 

In the next scenario, we consider the MIRA topology and generate two different 
traffic demands using different values for the Poisson and exponential distributions. 

4.1.1   Moderate Load Scenario 
Figure 5 shows the rejection ratio of requests for the moderate load scenario. The 
results show that, the PDRv.2 algorithm rejects approximately 18.36% less requests 
than the TB algorithm and 49.80% less requests than the AntNet algorithm.  

 

Fig. 5. The rejection ratio of requests for the moderate load scenario 

Figure 6 shows the percentage of accepted BW for the moderate load scenario. The 
PDRv.2 algorithm accepts approximately 1.0% more bandwidth than the TB 
algorithm and 4.31% more bandwidth than the AntNet algorithm.  

 

Fig. 6. The percentage of accepted BW for the moderate load scenario 
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4.1.2   Heavy Load Scenario 
Figure 7 shows the rejection ratio of requests for the heavy load scenario. The results 
show that, the PDRv.2 algorithm rejects approximately 7.55% less requests than the 
TB algorithm and 44.23% less requests than the AntNet algorithm. 

 

Fig. 7. The rejection ratio of requests for the heavy load scenario 

Figure 8 shows the percentage of accepted BW for the heavy load scenario. The 
results show that, the PDRv.2 algorithm accepts approximately 0.52% more 
bandwidth than the TB algorithm and 5.93% more bandwidth than the AntNet 
algorithm. 

 

Fig. 8. The percentage of accepted BW for the heavy load scenario 
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4.2   Real Traffic Scenario 

Figure 9 shows the rejection ratio of requests for the real traffic scenario. The results 
show that, the PDRv.2 algorithm rejects approximately 26.68% less requests than the 
TB algorithm and 46.14% less requests than the AntNet algorithm. 

 

Fig. 9. The rejection ratio of requests for the real traffic scenario 

Figure 10 shows the percentage of accepted BW for the real traffic scenario. The 
results show that, the PDRv.2 algorithm accepts approximately 0.43% more 
bandwidth than the TB and 2.16% more bandwidth than the AntNet algorithm. 

 

Fig. 10. The percentage of accepted BW for the real traffic scenario 
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4.3   The Effect of Prediction Use 

Table 2 shows the rejection ratio of requests for different prediction weights. In this 
section, we aim to study the effect of prediction use. Therefore, we run the PDRv.2 
algorithm one time with prediction weigh (α) = 0.9 and another time with prediction 
weigh (α) = 0. In general, the PDRv.2 algorithm with prediction weigh (α) = 0.9 
algorithm rejects the least requests in all scenarios of traffic types. In other words, the 
use of prediction has a positive impact on the routing performance.  

Table 2. The rejection ratio of requests (%) for different prediction weighs 

Traffic type Medium load Heavy load Real traffic 
PDRv.2(α=0.9) 3.45 6.08 3.16 
PDRv.2(α=0) 3.79 6.46 3.26 

5   Conclusion and Future Work 

We have introduced a new self-optimizing mechanism to enhance the performance of 
the PDR algorithm. The PDRv.2 algorithm is a member of a class of traffic-aware 
routing algorithms based on the behavior of ants. The main idea of PDR is to let the 
ants use a combination of the link state information and the predicted available 
bandwidth instead of the ant’s trip time to determine the amount of pheromone to 
deposit. The new mechanism has the ability to locally adapt the prediction validity 
period depending on the prediction accuracy in order to efficiently predict the link 
traffics. We have compared the performance of our proposed PDRv.2 algorithm with 
the TB and AntNet algorithms in two different networks and with different traffic 
types. In general, our algorithm performs considerably better than the comparative 
algorithms with respect to different performance comparison criteria. 

In the future, we plan to test the performance of the PDR algorithm with more 
complex network topologies. We plan to test the performance of PDR with respect to 
other performance criteria too. In addition, a comparison of the PDR algorithm with 
other ant algorithms is planned. 
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