
X. Zhang and D. Qiao (Eds.): QShine 2010, LNICST 74, pp. 454–468, 2011.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011

Self-optimizing Mechanism for Prediction-Based
Decentralized Routing

Abutaleb Abdelmohdi Turky, Florian Liers, and Andreas Mitschele-Thiel

Integrated Communication Systems Group
Ilmenau University of Technology

98693 Ilmenau, Germany
{abutaleb-abdelmohdi.turky,florian.liers,mitsch}@tu-ilmenau.de

Abstract. In this paper, we introduce an adaptive traffic prediction approach for
self-optimizing the performance of a Prediction-based Decentralized Routing
(PDR) algorithm. The PDR algorithm is based on the Ant Colony Optimization
(ACO) meta-heuristics in order to compute the routes. In this approach, an ant
uses a combination of the link state information and the predicted available
bandwidth instead of the ant’s trip time to determine the amount of deposited
pheromone. A Feed Forward Neural Network (FFNN) is used to build adaptive
traffic predictors which capture the actual traffic behavior. Our contribution is a
new self-optimizing mechanism which is able to locally adapt the prediction
validity period depending on the prediction accuracy in order to efficiently
predict the link traffic. We study three performance parameters: the rejection
ratio, the percentage of accepted bandwidth and the effect of prediction use. In
general, our new algorithm reduces the rejection ratio of requests, achieves
higher throughput when compared to the AntNet and Trail Blazer algorithms.

Keywords: Traffic engineering, self-organization, ant-based routing, quality of
service, artificial neural network.

1 Introduction

The rapid growth of the Internet forces the Internet Service Providers (ISPs) to search
for a new technology which has the capability to maximize the network utilization.
They hope to increase their revenues by deploying the concept of service
differentiation and offering higher quality services. To support such capabilities, the
conventional IP technologies should use the methodology of Traffic Engineering
(TE).

TE is defined as that aspect of Internet network engineering dealing with the issue
of performance evaluation and performance optimization of operational IP networks
[1]. TE aims to cover different optimization issues that are related to the network
performance such as providing the requested Quality of Service (QoS), minimizing
the total delay and maximizing the network throughput, improving the network
resources utilization by optimally distributing the traffic over the network topology
and quick recovery in from failures.

 Self-optimizing Mechanism for Prediction-Based Decentralized Routing 455

There are different sets of routing classifications that depend on different point of
views. Routing algorithms can be classified as static or dynamic. With static routing
algorithms such as the Minimum Hop Algorithm (MHA), the administrator computes
off-line all possible routes using statistic information and updates the routing table
accordingly. Dynamic routing algorithms use information about the current state to
compute the requested route on demand. All routing decisions in the dynamic routing
approach are performed online to reflect changes of network states. This paper
focuses on dynamic routing approaches. Most routing protocols are dynamic such as
the Open Shortest Path First (OSPF) protocol [2], the Routing Information Protocol
(RIP) and Multi-Protocol Label Switching (MPLS) [3].

The efficiency of TE schemes mainly depends on the routing optimization. Most of
the dynamic routing algorithms use the available Bandwidth (BW) to choose the paths
between the source and destination pairs. The provided QoS depends on accurate
measurements of the available BW. Due to the varying nature of the available BW,
updating the link state with the current measured BW is not an efficient approach to
represent the link utilization. Therefore, new approaches perform an estimation of the
link utilization in the future using the actual traffic profile. The proposed routing
mechanism should optimize the network utilization, improve the network
survivability and reduce future interference between requests.

Routing algorithms can be classified into centralized or decentralized also. In the
centralized routing approach; the source router has all necessary information to
compute the routes. In the decentralized routing approach, the routing decisions are
taken based on the local state information only and by each network node
individually. Most decentralized routing approaches use ant-based mechanisms [4].
These algorithms are based on Ant Colony Optimization (ACO) meta-heuristics. Ant
systems represent a self-organizing approach which applies the principle of indirect
communication between agents by handling the changes to their environment [5]. Ant
routing algorithms are inspired from real ants' behaviors which have the ability of
discovering the shortest path to a food source and their nest without any knowledge of
geometry but with a keen sense of smell. By applying reinforcement learning
techniques, ant routing algorithms can find the optimal or a close-to-optimal path
between the source and destination through a positive feedback mechanism.

In this paper, we introduce an adaptive traffic prediction mechanism for self-
optimizing the performance of Prediction-based Decentralized Routing (PDR)
algorithm which is based on the ACO meta-heuristics to compute the routes. The idea
of the PDR algorithm is to use the combination of the link state information and the
predicted available BW instead of the ant’s trip time to determine the amount of
pheromone to deposit. We build our traffic predictor using the FFNN which has
proved its accuracy to capture the actual traffic behavior. The proposed predictor uses
a new adaptive mechanism to be able to locally adapt the prediction validity period
depending on the prediction accuracy in order to efficiently predict the link traffics.
Depending on the predicted load value, the algorithm computes the available BW and
combines it with the current available BW in the link weight formula that is used to
select the optimal path. The remainder of this paper is organized as follows: Section
2 gives an overview of the related work. Section 3 introduces the design details of our
approach. Section 4 demonstrates the comparative results and discusses the
performance evaluation. Future work and conclusions are presented in section 5.

456 A.A. Turky, F. Liers, and A. Mitschele-Thiel

2 Related Work

The traditionally used algorithm within the MPLS domain is the Shortest Path First
(SPF) algorithm proposed by E. Dijkstra [6] to solve the shortest path problem. The
basic idea of the SPF algorithm is used in many routing protocols such as the OSPF
protocol. Dijkstra’s algorithm depends on the fact that states on subsections of
shortest paths are also shortest paths. It does not just compute the shortest path to a
specific destination, but computes the shortest paths to all possible destinations in the
network. Roch A. Guerin [7] has introduced a modification to the shortest path
algorithm, called Widest Shortest Path (WSP), which is based on the computation of
the shortest paths in the first stage with the extension that if there is more than one
shortest path, it chooses the one with the maximum BW. This work is introduced to
provide extensions to the OSPF protocol in order to support QoS routing in IP-based
networks.

Since all previous algorithms aim to select the best paths without considering
future path requests, the related performance does not achieve the best results in
maximizing the network utilization or the acceptance rate of requests. The Minimum
Interference Routing Algorithm (MIRA) is an example of an advanced routing
algorithm [8]. The idea of MIRA is avoiding the routing over links that may interfere
with another path request in the future. The definition of interference in MIRA
depends on computing the maximum flow (max-flow) value between a given ingress
and egress pair. The minimum interference path is the path that maximizes the
minimum max-flow between all other ingress-egress pairs.

A.B. Bagula [9] introduced a Least Interference Optimization Algorithm (LIOA)
which reduces the interference among competing flows by balancing the number and
quantity of flows that are carried by a link to achieve efficient routing of BW
guaranteed requests. In general, simulation studies demonstrate that LIOA
outperforms many routing algorithm such as MHA, and MIRA algorithms. The
comparative study of theses algorithms depends on different performance metrics
including the rejection ratio of requests and the successful re-routing of requests upon
single link failures.

E. Einhorn and A. Mitschele-Thiel introduced the Reinforcement Learning for
Traffic-Engineering (RLTE) algorithm [10]. This work presents a novel distributed
and self-organized QoS routing approach that is based on reinforcement learning. We
have introduced a primary version of the Predicting of Future Load-based Routing
(PFLR) algorithm in [11]. The PFLR algorithm uses the predictions of the future load
in order to solve the routing problem. The performance of the PFLR algorithm has
been compared to earlier routing approaches like the WSP and CSPF algorithms. The
primary version of the PFLR algorithm has reduced the rejection ratio of requests and
achieves a higher throughput.

We have proposed an enhanced version of PFLR in [12]. PFLR v.2 combines the
predicted future load and current residual BW of each link in a formula to represent
the Reciprocal of available BW (RBW) and then updates the link weight formula with
RBW. The PFLRv.2 performance has been compared with current routing approaches
like DORA and LIOA algorithms and demonstrated the efficiency of PFLRv.2 by
testing three performance criteria: the rejection ratio of requests, the percentage of

 Self-optimizing Mechanism for Prediction-Based Decentralized Routing 457

accepted BW and the rejection ratio of rerouted requests within the link failure
scenario.

AntNet [13] is an ACO algorithm for distributed and adaptive best-effort routing in
IP networks. AntNet is considered the first algorithm that is inspired by ant colony
behavior to solve the routing problem. The behavior of AntNet depends on the mobile
agents or the ants’ framework. During the forward phase, each ant constructs a path
by taking a sequence of decisions based on a stochastic policy parameterized by local
pheromones and heuristic information. Once it arrives at the destination, the backward
phase starts. The backward ants retrace the route, followed by their forward ant, and
update the local routing information with an amount of pheromone in all the
intermediate nodes.

Yun and Zincir [14] introduced an adaptive routing algorithm based on the AntNet
algorithm. This approach uses a new structure of the routing table to overcome the
problem of unrealistic requirements for global information of the original AntNet
algorithm. The Trail Blazer (TB) routing algorithm minimizes the network congestion
through local decisions, based on latency measurements collected by scout packets
[15]. TB is meant to be an extension of existing link-state protocols such as OSPF,
which provides shortest-path information to initialize the probability table. Therefore,
TB does not require a learning period to discover the network topology. TB is also
simpler than the AntNet algorithm.

We have proposed a first version of our TE algorithm named Prediction-based
Decentralized Routing (PDR) algorithm [16] that can efficiently enhance the routing
performance. This algorithm is a member of a class of traffic-aware routing
algorithms based on the behavior of ants. We have compared the performance of the
PDR algorithm with WSP and SPF algorithms under two different network load
scenarios and have shown that the PDR algorithm performs considerably better.

3 Prediction-Based Decentralized Routing

This section provides a detailed description of our improved version for the
Prediction-based Decentralized Routing algorithm (PDRv.2). Figure 1 outlines the
operation of PDRv.2. In the algorithm, ants are distributed through the network to
discover the best paths. The ants use a combination of the link state information and
the predicted link load instead of the ant’s trip time to determine the amount of
pheromone to deposit. This is simpler and requires less control parameters. After
selecting the best path, the routing algorithm forwards the packets through the
network and updates the reserved BW of each link that belongs to the best path
between the source and the destination.

The idea behind the design of PDR is to consider the future link load to enhance
the performance of Ant-based routing algorithms. Therefore, we propose a traffic
predictor that able to accurately predict the traffic behavior. ANN offers prediction
capability with different types of network traffic and has the ability to learn and adapt
dynamically. Experimental results show that, ANN can accurately estimate a
complicated network traffic pattern efficiently [17].

458 A.A. Turky, F. Liers, and A. Mitschele-Thiel

Fig. 1. Prediction-based Decentralized Routing (PDRv.2) algorithm

The proposed predictor has two different processes: the training, and the prediction
process. In the training process, the internal structure of FFNN is constructed by a
training based on traffic samples of link histories. During the prediction processes, the
future link load on every link is estimated after a specified period of time or a
specified prediction interval, which is named Window Size (WS). This means that,
each link has a predictor which is placed on one of the directly connected nodes. Each
predictor works on its link history and has its own parameter values. In other words,
the predictions are made decentralized to achieve a fast prediction and to conquer the
complexity of prediction.

The new proposed feature of the PDRv.2 algorithm is the parameter adaptation
process. The Prediction Validity Period (PVP) parameter is adapted and self-
optimized depending on the prediction accuracy. The PVP parameter represents the
duration of a period for which the prediction is valid with a high degree of
confidence. With the help of this feature, the training of each predictor is triggered
independently of each other.

3.1 Training Process

The structure of the used FFNN is shown in Figure 2. It consists of three layers: The
input layer contains three neurons; the hidden layer contains fifteen neurons and only
one neuron in the output. The Levenberg-Marquardt [18] training algorithm is used
because it is the fastest and most accurate one in our case. We have tested different
FFNN design and different values of training period size to achieve an efficient
predictor. In contrast to the training process in the previous version of PDR algorithm
that is event-based, the training process in PDRv.2 algorithm is time-based.

In the event-based approach, if a new path is requested in the network, a new event
is generated. During the previous version of PDR, a history of the last thousand
events (plus WS) of link traffic values is used for training purpose. However in
PDRv.2 algorithm, a history of the last hundred time units of link traffic values is
used for training purpose. One training pattern contains the minimum, maximum and

 Self-optimizing Mechanism for Prediction-Based Decentralized Routing 459

Fig. 2. Feed forward neural network architecture

average of traffic during a time unit. This pattern is formed in a row as input values
and one expected output value. The expected output value is a history value WS time
after the input values. By shifting, one hundred of training patterns are generated. In
the previous version of PDR, the training process is triggered every one hundred
traffic samples. In the new version, the training process is triggered every PVP period
which is adapted depending on the prediction accuracy.

3.2 Prediction Process

In the prediction process, the minimum, maximum and average of the traffic during
the last time unit are used as input for the FFNN which predicts a value for the link
load after a WS period. The prediction process is triggered every WS period. An
analysis study is done to select the best value of WS. In other words, the prediction
happens every WS period and the predictor structure is not changed until the PVP
period has elapsed.

3.3 Parameter Adaptation Process

In the PDRv.2 algorithm, we propose to use a new adaptive feature called parameter
adaptation process. The main objective for this process is to give the predictor the
ability to optimize the PVP parameter. A PVP parameter contains multiple WS
periods to represent how many times the prediction is done.

PVP = WS ×PN, (1)

Since PN is the Prediction Numbers.
The parameter adaptation process depends on the predictions accuracy that is

calculated by comparing the actual and predicted traffic loads. Therefore, archiving
processes are required to archive the actual and predicted traffic loads. The prediction
accuracy can be represented by the prediction error and there are different error
representation methods. In this paper, we use the Root Mean Square Error (RMSE) to
represent the prediction accuracy. If AL is the Actual traffic Load and PL is the
Predicted traffic Load, then the RMSE value is:

ܧܵܯܴ ൌ ඨ∑ ሺܮܣ െ ሻଶேୀଵܮܲ ܰ (2)

460 A.A. Turky, F. Liers, and A. Mitschele-Thiel

During this process, the PN parameter is adjusted depending on the comparison
between the RMSE and Error Threshold (ETh) parameters. Then, the PVP parameter
is updated.

3.4 PDRv.2 Algorithm

The PDR algorithm is built on the principles of the TB routing framework. In the TB
design, each router has two tables: a link probability table Pt and an average
transmission delay table avg. Pt contains m rows, one for each destination node. Each
row has K entries, one for each outgoing link of the router. The entry pt[d,i] is the
probability of sending a packet to destination d on the outgoing link i. The table avg
has m entries, one for each destination node. The entry avg(d) is the average
transmission delay from the current node to the destination d, which is computed from
the last M scout packets that arrived from d. The scout packet is sent from the source
to the destination to explore the network. At every intermediate node, the scout packet
selects the outgoing link randomly. When scout packets find their destination, they
return to their source on the same path they have arrived on and update their
accumulated latency td in every intermediate node by td =td + t(i),where t(i) is the
current latency of the outgoing link i. Then, the scout packets use the accumulated
latency td to update the pt table as follows:

f(td) = max(min(avg(d)/td,10),0.1) (3)

∆p= δ × f(td)
(4)

pt[d,i] = (pt[d,i] + ∆p) / (1+ ∆p)
(5)

pt[d,j]j≠i= (pt[d,j]) / (1+ ∆p)
(6)

The average latency avg(td) is used to scale the positive reinforcement value of the
scout packet. A larger value of f(td) indicates a better (shorter) path. f(td) is limited to
the range [0.1,10] to prevent wide fluctuations in ∆p, which is the reinforcement value
of pt[d,j]. δ defines the learning rate of the algorithm. All entries in Pt table of the
same destination d are scaled by 1+∆p to ensure that their sum remains 1.

In our approach, an ant uses a combination of the link state information and the
predicted link load instead of the ant’s trip time to determine the amount of
pheromone to deposit, so that it has a simpler process and less control parameters.
The current latency t(i) of an outgoing link i in the TB algorithm is replaced by the
Link Weight formula LW(i). LW(i) represents a combination of PFLR and LIOA to
reduce the interference among competing flows by balancing the number and required
BW of flows carried by a link to achieve efficient routing.

The LIOA algorithm represents a cost metric which balances the number and the
intensity of the flows offered to the routes. In the LIOA design, LW(i) = Ilc /
(Available BW) (1-lc) ,whereas I is the number of flows carried on the link and lc is the
least interference control parameter which represents a trade-off between the number
and the magnitude of the flows traversing a link. On the other hand, the PFLR
algorithm proposes to incorporate the Predicted Available BW (PABW) in the link

 Self-optimizing Mechanism for Prediction-Based Decentralized Routing 461

weight formula to optimize the performance of routing. Therefore, we propose to use
the LW(i) formula as follows: ܹܮሺ݅ሻ ൌ ܫ ൬ ሺ1 െ αሻሺ݈ܾ݈݁ܽ݅ܽݒܣ ሻሺଵିሻܹܤ αሺܹܲܤܣሻሺଵିሻ ൰ (7)

The LW(i) formula is controlled by a parameter called α ,which represents the
prediction weight. A low α reduces the influence of the predicted value on the BW. A
high value of α increases the influence and suppresses the current value of the
available BW.

PDRv.2 Algorithm

1) Repeat the following step until the time of the PVP has elapsed.

a) At regular intervals of WS, predict the available BW in all links in the
network after a specified WS.

b) At regular intervals of N, each node generates and sends an ant to a
destination.

c) When a node receives an ant:

i. It will forward the ant and selects the next link for the ant´s route
randomly.

ii. The ant never selects an outgoing link that leads to a node that has
been visited earlier in its path (a loop). If there is no such outgoing
link, the ant will die.

d) When the current node is the destination, then, the ant will return to the
source on the same path on which it has arrived.

e) At each intermediate node :

i. Compute LW(i) of the outgoing link i on every link in the backward
path using Equation (7).

ii. Compute td, td=td+ LW(i).

iii. Update the pt and avg tables using Equations (3), (4), (5) and (6).

2) Call the parameters adaptation procedure to adapt the PVP parameter.

3) Train the predictor on the link load histories.

4) Go to step 1.

5) On the other hand, when a node receives a data packet, which needs to be
forwarded, data packets will be routed according to the probabilities in the pt
table.

462 A.A. Turky, F. Liers, and A. Mitschele-Thiel

The parameter adaptation procedure consists of three steps. The first step is the
computation of RMSE using Equation (2). In the second step, the PN parameter is
adjusted depending on the comparison between the RMSE and Error Threshold (ETh)
parameters. For example, if the RMSE value is equal or less than the ETh value, this
means that the prediction accuracy is very good and the number of predictions should
be increased by two. The last procedure step is calculating the new value of the PVP
parameter using Equation (1).

Parameters adaptation procedure:

1) Compute the RMSE of prediction using Equation (2).

2) Update the PN respect to the following comparisons:

a) If RMSE • ETh, PN=PN +2.

b) If RMSE > ETh & RMSE • ETh*1.5, PN=PN +1.

c) If RMSE > ETh*1.5 & RMSE • ETh*2, PN =PN -1.

d) If RMSE > ETh*2, PN=PN -2.

3) Compute the new PVP value, PVP=WS* PN.

4 Performance Evaluation

In this section, we evaluate the performance of PDRv.2 based on some test scenarios
and discuss the results. All test scenarios are implemented using Visual Basic and the
ANN toolbox in MATLAB [18]. We modify both, the AntNet and TB algorithm, by
replacing the transmission delay with the available BW information to be able to
compare the PDRv.2 algorithm with them. Three performances parameters are
studied:

1. The rejection ratio of path requests,
2. The percentage of accepted BW and
3. The effect of prediction use.

Our experiment is done on two network topologies. The first one is the MIRA
network [8] that is shown in Figure 3, where the thicker links have a capacity of 4800
capacity units while the thinner links have a capacity of 1200 capacity units. The
second one is a real network topology that is shown in Figure 4. It is a reference
topology suited for an advanced hybrid optical and packet network in the U.S. named
Internet2 [19]. In contrast to the performance study of PDRv.1, we consider the
requests from all possible combinations of source and destination pairs.

In the MIRA scenario, we examine the performance of the routing algorithms for
two generated traffic demands. The first load scenario is a Moderate Load (ML): The
arrival of requests follows a Poisson distribution and the holding time of the requests
is based on an exponential distribution. The second is a heavy load (HL). In the

 Self-optimizing Mechanism for Prediction-Based Decentralized Routing 463

Fig. 3. MIRA network topology

Fig. 4. Internet2 network topology

Internet2 scenario, we examine the performance of the PDRv.2 algorithm for a real
traffic demand. The real traffic demands are collected from the trace flies of the
NetFlow tool for the first day of 2009 year [19]. Table 1 describes the PDRv.2
parameters and shows the range and used value in our simulation.

Table 1. The PDRv.2 algorithm parameters

Variable Value
lc (least interference control parameter) 0.1
M (keep the average of the last M of td) {15, 20}

δ (learning rate) {0.01, 0.02}
α (prediction weight) 0.9

WS (window size) 1

464 A.A. Turky, F. Liers, and A. Mitschele-Thiel

4.1 Generated Traffic Scenario

In the next scenario, we consider the MIRA topology and generate two different
traffic demands using different values for the Poisson and exponential distributions.

4.1.1 Moderate Load Scenario
Figure 5 shows the rejection ratio of requests for the moderate load scenario. The
results show that, the PDRv.2 algorithm rejects approximately 18.36% less requests
than the TB algorithm and 49.80% less requests than the AntNet algorithm.

Fig. 5. The rejection ratio of requests for the moderate load scenario

Figure 6 shows the percentage of accepted BW for the moderate load scenario. The
PDRv.2 algorithm accepts approximately 1.0% more bandwidth than the TB
algorithm and 4.31% more bandwidth than the AntNet algorithm.

Fig. 6. The percentage of accepted BW for the moderate load scenario

 Self-optimizing Mechanism for Prediction-Based Decentralized Routing 465

4.1.2 Heavy Load Scenario
Figure 7 shows the rejection ratio of requests for the heavy load scenario. The results
show that, the PDRv.2 algorithm rejects approximately 7.55% less requests than the
TB algorithm and 44.23% less requests than the AntNet algorithm.

Fig. 7. The rejection ratio of requests for the heavy load scenario

Figure 8 shows the percentage of accepted BW for the heavy load scenario. The
results show that, the PDRv.2 algorithm accepts approximately 0.52% more
bandwidth than the TB algorithm and 5.93% more bandwidth than the AntNet
algorithm.

Fig. 8. The percentage of accepted BW for the heavy load scenario

466 A.A. Turky, F. Liers, and A. Mitschele-Thiel

4.2 Real Traffic Scenario

Figure 9 shows the rejection ratio of requests for the real traffic scenario. The results
show that, the PDRv.2 algorithm rejects approximately 26.68% less requests than the
TB algorithm and 46.14% less requests than the AntNet algorithm.

Fig. 9. The rejection ratio of requests for the real traffic scenario

Figure 10 shows the percentage of accepted BW for the real traffic scenario. The
results show that, the PDRv.2 algorithm accepts approximately 0.43% more
bandwidth than the TB and 2.16% more bandwidth than the AntNet algorithm.

Fig. 10. The percentage of accepted BW for the real traffic scenario

 Self-optimizing Mechanism for Prediction-Based Decentralized Routing 467

4.3 The Effect of Prediction Use

Table 2 shows the rejection ratio of requests for different prediction weights. In this
section, we aim to study the effect of prediction use. Therefore, we run the PDRv.2
algorithm one time with prediction weigh (α) = 0.9 and another time with prediction
weigh (α) = 0. In general, the PDRv.2 algorithm with prediction weigh (α) = 0.9
algorithm rejects the least requests in all scenarios of traffic types. In other words, the
use of prediction has a positive impact on the routing performance.

Table 2. The rejection ratio of requests (%) for different prediction weighs

Traffic type Medium load Heavy load Real traffic
PDRv.2(α=0.9) 3.45 6.08 3.16
PDRv.2(α=0) 3.79 6.46 3.26

5 Conclusion and Future Work

We have introduced a new self-optimizing mechanism to enhance the performance of
the PDR algorithm. The PDRv.2 algorithm is a member of a class of traffic-aware
routing algorithms based on the behavior of ants. The main idea of PDR is to let the
ants use a combination of the link state information and the predicted available
bandwidth instead of the ant’s trip time to determine the amount of pheromone to
deposit. The new mechanism has the ability to locally adapt the prediction validity
period depending on the prediction accuracy in order to efficiently predict the link
traffics. We have compared the performance of our proposed PDRv.2 algorithm with
the TB and AntNet algorithms in two different networks and with different traffic
types. In general, our algorithm performs considerably better than the comparative
algorithms with respect to different performance comparison criteria.

In the future, we plan to test the performance of the PDR algorithm with more
complex network topologies. We plan to test the performance of PDR with respect to
other performance criteria too. In addition, a comparison of the PDR algorithm with
other ant algorithms is planned.

References

1. Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., Xiao, X.: Overview and Principles of
Internet Traffic Engineering. RFC3272 (2002)

2. Moy, J.: OSPF Version 2. RFC 2328 (1998)
3. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architecture. RFC

3031 (2001)
4. Sim, K.M., Sun, W.H.: Ant Colony Optimization for Routing and Load-Balancing: Survey

and New Directions. IEEE Trans. on Sys., Man and Cyber. 33(5), 560–572 (2003)
5. Guerin, R., Orda, A., Williams, D.: QoS routing mechanisms and OSPF extensions. J.

IEEE Global Telecommunication 3, 1903–1908 (1997)
6. Kunkle, D.R.: Self-organizing Computation and Information Systems: Ant Systems and

Algorithms. Technical report, Rochester Inst. of Technology (2001)

468 A.A. Turky, F. Liers, and A. Mitschele-Thiel

7. Dijkstra, E.W.: A note on two problems in connexion with graphs. J. Numerische
Mathematik 1(1), 269–271 (1959)

8. Kar, K., Kodialam, M., Lakshman, T.V.: Minimum Interference Routing of Bandwidth
Guaranteed Tunnels with MPLS Traffic Engineering Applications. IEEE J. Selected Areas
in Comm. 18(2), 2566–2579 (2000)

9. Bagula, A.B., Botha, M., Krzesinski, A.E.: Online Traffic Engineering: The Least
Interference Optimization Algorithm. In: ICC 2004, pp. 1232–1236 (2004)

10. Einhorn, E., Mitschele-Thiel, A.: RLTE: Reinforcement Learning for Traffic-Engineering.
In: 2nd Inter. Conf. on Autonomous Infrastructure, Man. and Sec., pp. 120–133 (2008)

11. Turky, A.A., Mitschele-Thiel, A.: MPLS Online Routing Optimization Using Prediction.
In: Altman, E., Chaintreau, A. (eds.) NET-COOP 2008. LNCS, vol. 5425, pp. 45–52.
Springer, Heidelberg (2009)

12. Turky, A.A., Mitschele-Thiel, A.: Use of Load Prediction Mechanism for Dynamic Routing
Optimization. In: IEEE Symposium on Comp. and Communications, pp. 782–786 (2009)

13. Caro, G.D., Dorigo, M.: AntNet: Distributed stigmergetic control for communications
networks. J. Artificial Intelligence Research 9, 317–365 (1998)

14. Yun, H., Heywood, A.: Intelligent Ants for Adaptive Network Routing. In: CNSR 2004,
pp. 255–261 (2004)

15. Gabber, E., Smith, M.A.: Trail Blazer: A Routing Algorithm Inspired by Ants. In: ICNP
2004, pp. 36–47 (2004)

16. Turky, A.A., Mitschele-Thiel, A.: Prediction-based Decentralized Routing Algorithm. In:
Self-organizing, Adaptive, Context-Sensitive Distributed Systems, EASST, vol. 17 (2009)

17. Eswaradass, A., Sun, X.H., Wu, M.: Network Bandwidth Predictor (NBP): A System for
Online Network performance Forecasting. In: IEEE International Symposium on Cluster
Computing and the Grid, pp. 265–268 (2006)

18. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing,
Boston (1996)

19. Neural Network Toolbox, MATLAP version (R2009a),
http://www.mathworks.com/products/neuralnet

20. Internet2 Observatory Data Collections,
http://www.internet2.edu/observatory/archive/

	Self-optimizing Mechanism for Prediction-Based Decentralized Routing
	Introduction
	Related Work
	Prediction-Based Decentralized Routing
	Training Process
	Prediction Process
	Parameter Adaptation Process
	PDRv.2 Algorithm

	Performance Evaluation
	Generated Traffic Scenario
	Real Traffic Scenario
	The Effect of Prediction Use

	Conclusion and Future Work
	References

