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Abstract. High-performance networks are capable of provisioning dedi-
cated channels through circuit/lambda-switching or MPLS/GMPLS tech-
niques to support large-scale data transfer. These dedicated links are
typically shared by multiple users through advance resource reservations,
resulting in varying bandwidth availability in future time periods. Most
previous efforts were focused on centralized bandwidth scheduling to
improve the utilization of network resources and meet the transport re-
quirements of application users. These centralized scheduling schemes
imply the use of a central control plane, posing significant reliability and
scalability challenges as the network size rapidly grows. We propose dis-
tributed algorithms for path computation and bandwidth scheduling in
response to four basic bandwidth reservation requests: (i) fixed band-
width in a fixed slot, (ii) highest bandwidth in a fixed slot, (iii) first slot
with fixed bandwidth and duration, and (iv) all slots with fixed band-
width and duration. These algorithms are developed through a rigorous
extension of the classical breadth first search and Bellman-Ford algo-
rithms to a completely distributed manner, and their performances are
evaluated and analyzed through extensive simulations.

Keywords: distributed scheduling, bandwidth reservation, high-
performance networks.

1 Introduction

1.1 Background

A number of large-scale applications in various science, engineering and busi-
ness domains are generating colossal amounts of data, on the order of terabytes
currently and petabytes or even exabytes in the near future, which must be trans-
ferred over a long geographical distance for remote operations. High-performance
networks that are capable of provisioning dedicated channels have proved to be
a promising solution to large data transfer and several network projects are
currently underway to develop such capabilities, including UltraScience Net
(USN) [17], Circuit-switched High-speed End-to-End Transport ArcHitecture
(CHEETAH) [7], Dynamic Resource Allocation via GMPLS Optical Networks
(DRAGON) [1], Japanese Gigabit Network II [2], Bandwidth on Demand (BoD)
on Geant2 network [3], On-demand Secure Circuits and Advance Reservation
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System (OSCARS) [4] of DOE Energy Sciences Network (ESnet), Hybrid Op-
tical and Packet Infrastructure (HOPI) [5], and Bandwidth Brokers [21]. Such
dedicated channels are a part of the capabilities envisioned for Global Environ-
ment for Network Innovations (GENI) project [6].

The deployments of high-performance networks are expected to increase sig-
nificantly and proliferate into both public and dedicated network infrastructures
across the globe in the coming years. An evidence of this trend in production
networks is reflected by Internet2 offering on-demand circuits and Multiple Pro-
tocol Label Switching (MPLS) tunnels. MPLS improves the forwarding speed of
IP routers by adopting a key concept from the world of virtual-circuit networks:
a fixed-length label. MPLS is often referred to as layer-2.5, which adds a small
MPLS header between the layer-2 header and the layer-3 header in a link-layer
frame. Since modern optical networks have reached a very high transfer rate
(at 40 Gbit/s and beyond), the true advantages of MPLS do not lie in the po-
tential increase in switching speeds, but rather in the new traffic management
capabilities that MPLS enables. OSCARS uses MPLS and Resource Reservation
Protocol (RSVP) to create virtual circuits or Label Switched Paths (LSPs), while
the management and operation of end-to-end virtual circuits within the network
are done at the layer-3 network level. OSCARS supports advance reservation,
but its underlying path computation limits connections over links returned by
traceroute; hence, it does not explore all available bandwidths inside the network.

The dedicated links in high-performance networks are typically shared by mul-
tiple users through various advance reservation techniques, resulting in varying
bandwidth availability in future time periods. Most previous scheduling efforts
were focused on centralized advance bandwidth reservation in high-performance
networks that employ a central control plane [15,16,9]. Such centralized schemes
are suited for small-scale networks, but pose significant reliability and scalability
challenges as the network size increases, which calls for distributed solutions for
large-scale networks. To the best of our knowledge, there are very few studies on
distributed advance bandwidth reservation. In this paper, we formulate four ba-
sic advance bandwidth scheduling problems and propose distributed algorithms
for path computation and bandwidth scheduling. These algorithms are devel-
oped through a rigorous extension of the classical breadth first search (BFS)
and Bellman-Ford algorithms to a completely distributed manner and their per-
formances are evaluated and analyzed through extensive simulations.

1.2 Related Work

As high-speed dedicated networks are increasingly developed and deployed, many
scheduling algorithms have been designed for advance bandwidth reservation. We
provide below a brief survey of such efforts.

The four basic bandwidth scheduling problems discussed in this paper were
first introduced in [18] and were later investigated in [19] with a detailed de-
scription on the solution to each of these problems in the centralized scheme.
Guerin et al. studied these basic scheduling problems with several extensions
to increase the flexibility of services [13]. The scheduling algorithm proposed by
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Cohen et al. considers the flexibility of transfer start time and the capability of
path switching between different paths during the transfer to improve network
utilization [8]. Grimmell et al. formulated a dynamic quickest path problem,
which deals with the transmission of a message from a source to a destination
with the minimum end-to-end delay over a network with propagation delays and
dynamic bandwidth constrains on the links [12]. Veeraraghavan et al. transferred
files with varying bandwidths in different time slots in a simple case where the
path is pre-specified [20]. Ganguly et al. generalized the problems of finding an
optimal path in a graph with varying bandwidths to minimize the total transfer
time, and also proposed approaches to find the minimum number of path switch-
ings to transfer a file in a specified number of time slots [10]. Gorinsky et al.
proposed a Virtual Finish Time First algorithm to schedule incoming files in a
preemptive manner to minimize the total transfer end time over a given dedicated
channel [11]. Most recently, Lin et al. proposed four instant scheduling problems
under different constraints (fixed or variable) on both path and bandwidth [16].
Considering the path switching delay, the scheduling problem using either fixed
or variable paths with variable bandwidths are proved to be NP-complete [15].

Most of the aforementioned efforts were focused on centralized bandwidth
scheduling in dedicated networks managed by a central control plane, where
a global repository storing all bandwidth reservations on all network links has
to be maintained and updated. Such a centralized management scheme is not
adequate for large-scale networks due to its reliability and scalability issues,
which motivate us to develop distributed solutions.

The rest of the paper is organized as follows. We formulate four basic advance
bandwidth scheduling problems in Section 2. The distributed algorithms for these
scheduling problems are presented in Section 3. The scheduling performance is
evaluated in Section 4.

2 Advance Bandwidth Scheduling Problems

We consider a generic control plane to support advance bandwidth reservation
of dedicated channels in high-performance networks [18]. The distributed band-
width scheduler runs on each switch in circuit/lambda-switching networks or on
each router in MPLS-enabled networks, and computes routing paths in a dis-
tributed manner based on the available bandwidth of adjacent links. In MPLS-
enabled networks, a Label Switched Path (LSP) is created by the signaling
daemon at the start time of a bandwidth reservation. Each router along the
computed path receives a path setup request via Resource Reservation Proto-
col (RSVP) and commits bandwidth to create the LSP. At the end time of a
bandwidth reservation, the signaling daemon tears down the corresponding LSP.

We represent the topology of a dedicated network as a directed graph G =
(V, E) with n nodes and m links, where each link l ∈ E maintains a list of residual
bandwidths specified as segmented constant functions of time. An example of
the available bandwidth over time for a link is shown in Fig. 1. We use a 3-tuple
of time-bandwidth (TB) (tl[i], tl[i+1], bl[i]) to represent the residual bandwidth
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Fig. 1. A time-bandwidth example of a link

of link l at time slot [tl[i], tl[i + 1]], i = 0, 1, 2, . . . , Tl − 1, where Tl is the total
number of time slots of link l. The current time point is denoted by tl[0], and the
future time point is denoted by tl[i] (i > 1). We set tl[Tl] = +∞, which indicates
that there is no bandwidth reservation on link l after time point tl[Tl − 1] and
therefore bl[Tl − 1] is the initial bandwidth of link l. Let T be the maximum
number of time slots on a TB list of link l ∈ E. Each node v ∈ V only knows its
neighbor nodes, and maintains the TB lists for all outgoing links from itself to
its neighbor nodes.

Based on different data transport constraints and application requirements,
we formulate four basic advance bandwidth scheduling problems: Given a graph
G = (E, V ) with a time-bandwidth list TB for each link l ∈ E, source vs and
destination vd,

– Fixed-Bandwidth: compute a path from vs to vd with a fixed bandwidth β
in a specified time slot [ts, te].

– Highest-Bandwidth: compute a path from vs to vd with the highest available
bandwidth in a specified time slot [ts, te].

– First-Slot: compute the earliest start time of a path from vs to vd with a
fixed bandwidth β for a specified duration td.

– All-Slots: compute all start time slots of all paths from vs to vd with a fixed
bandwidth β for a specified duration td.

Note that the solution to the First-Slot scheduling problem is the earliest start
time, while the solution to the All-Slots scheduling problem is a union of all
feasible start times. If t is a feasible start time in the solution to All-Slots, the
computed path has bandwidth β from time point t to t + td.

3 Distributed Scheduling Algorithms

We propose an optimal bandwidth scheduling algorithm in a distributed man-
ner for each of these problem. The proposed algorithms are based on the BFS
and Bellman-Ford algorithms and are different from the existing link-state and
distance-vector routing protocols: a node makes a routing decision based on its
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local TB lists and connectivity information, and only broadcasts its own infor-
mation to its neighbor nodes. Although link-state routing protocols are easy to
implement, the periodical broadcasting of node connectivity and link TB lists
incurs a significant amount of overhead. Furthermore, if the changes in node
connectivity and link bandwidth are not promptly updated, the network may
operate with inaccurate information.

We use two types of routing messages between nodes for distributed path ex-
ploration for advance bandwidth scheduling: (i) bandwidth reservation message,
and (ii) acknowledgment (ACK) message. The bandwidth scheduler running on
every node incorporates the scheduling algorithms and handles the routing mes-
sages during path exploration. Node and link states can be updated by simple
periodic message exchanges between neighbor nodes. Every node broadcasts a
HELLO message to its neighbor nodes. Upon the receival of a HELLO message,
a node simply replies with an ACK message to let the neighbor node know that
the link between them is active.

3.1 Fixed-Bandwidth

Given a fixed-bandwidth (FB) reservation request rFB
i , the fixed-bandwidth

scheduling problem is to compute a dedicated channel from source node vs to
destination node vd with specified bandwidth β in time slot [ts, te]. The source
node vs receives rFB

i from an end user, and initiates path exploration by broad-
casting rFB

i to its neighbor nodes. When an intermediate node receives rFB
i from

one of its neighbor nodes, it checks the TB lists of its outgoing links and deter-
mines whether rFB

i can be scheduled on these links. An example of bandwidth
reservation process is shown in Fig. 2. After receiving rFB

i from node v1, node v2

checks the TB lists of three outgoing links (v2, v3), (v2, v4), and (v2, v5). If rFB
i

is feasible only on links (v2, v3) and (v2, v5), node v2 sends rFB
i to nodes v3 and

v5. Once rFB
i reaches the destination node vd, node vd replies with a positive

acknowledgment message, which is echoed all the way back to the source node.

FB
ir

FB
ir

FB
ir

1v 4v

3v

2v

5v

Fig. 2. An example of the bandwidth reservation process for the fixed-bandwidth
problem
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Algorithm 1. Scheduling algorithm for the fixed-bandwidth problem
1: Create a job queue Q to store all reservation requests.
2: Wait for routing messages.
3: if a fixed-bandwidth reservation request rF B

i is received from its neighbor u then
4: Add u to V pre

i .
5: if rF B

i is not in Q then
6: Add rF B

i to Q and mark rF B
i as “pending”.

7: if the current node is the destination of rF B
i then

8: Send a positive acknowledgment of rF B
i to u.

9: else
10: Compute the neighbor node set Si (excluding u) such that rF B

i can be
scheduled on each link between the current node and any neighbor node in
Si. If Si �= ∅, broadcast rF B

i to all nodes in Si; otherwise, send a negative
acknowledgment of rF B

i to u and mark rF B
i as “failed”. Initialize ni = |Si|.

11: else if rF B
i is marked as “failed” in Q then

12: Send a negative acknowledgment of rF B
i to u.

13: Return to line 2.
14: if an acknowledgment of request rF B

i is received from its neighbor node u and u
is in Si then

15: Remove u from Si.
16: if the acknowledgment is positive then
17: Allocate the bandwidth on the link between the current node and node u for

rF B
i . Mark rF B

i as “successful”. Send a positive acknowledgment of rF B
i to the

first node that is added to V pre
i .

18: else
19: ni = ni − 1.
20: if ni ≤ 0 then
21: Mark rF B

i as “failed”, and send a negative acknowledgment of rF B
i to all

nodes in V pre
i .

22: Return to line 2.

The algorithm details for the fixed-bandwidth scheduling problem are pro-
vided in Algorithm 1. Each node maintains a job queue Q that stores band-
width reservation requests. When a bandwidth reservation request arrives, Q is
dynamically updated and the request state is changed. A bandwidth reservation
request in Q is in one of three states: “pending”, “successful”, and “failed”. The
scheduling daemon waits for control messages and processes bandwidth reserva-
tion messages in lines 3-13 and acknowledgment messages in lines 14-22.

– When the current node receives a fixed-bandwidth reservation request rFB
i

from its neighbor node u, the algorithm first adds u to the node set V pre
i

that stores all the previous nodes from which rFB
i is received and is used

for sending back the acknowledgment. The algorithm then checks whether
rFB
i is in Q. If rFB

i is not in Q, the algorithm adds rFB
i to Q, marks rFB

i

as “pending”, and replies with a positive acknowledgment if rFB
i is destined

to itself; otherwise, the algorithm computes the potential qualified neighbor
node set Si. A neighbor node is qualified if rFB

i can be successfully scheduled
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on the link between the current node and that neighbor node based on its
time-bandwidth list. If Si is not empty, the current node broadcasts rFB

i

to all the nodes in Si, which is an expansion performed in BFS. If Si is
an empty set, which means that there does not exist any qualified neighbor
node, the current node replies with a negative acknowledgment to u where
rFB
i is received from and marks rFB

i in Q as “failed”. In the case that rFB
i

is in Q but rFB
i is already marked as “failed”, the current node sends a

negative acknowledgment of rFB
i to u since there does not exist any feasible

path that passes the current node to satisfy rFB
i .

– When the current node receives an acknowledgment of rFB
i from its neighbor

u and u is in Si, the algorithm removes u from Si to avoid receiving duplicate
acknowledgments from the same neighbor node and checks whether the ac-
knowledgment is positive or negative. If the acknowledgment is positive, the
algorithm allocates the bandwidth on the link between the current node and
u for rFB

i and sends a positive acknowledgment of rFB
i to the first node that

is added to V pre
i . Otherwise, the algorithm decreases ni by 1. Note that ni

is initialized to be |Si| in line 10 and is used to count the number of negative
acknowledgments received from neighbor nodes in Si. If ni reaches 0, which
indicates that the current node receives negative acknowledgments from all
the nodes in Si and there does not exist a qualified link of the current node,
the algorithm marks rFB

i as ”failed” and sends a negative acknowledgment
of rFB

i to all the nodes in V pre
i . An example of the algorithm processing

acknowledgment messages is shown in Fig. 3, where the solid line represents
the fixed-bandwidth reservation request and the dashed line represents the
acknowledgment. The current node is v3 that receives rFB

i from both v1

and v2, and broadcasts it to v4 and v5. In this example, V pre
i = {v1, v2},

Si = {v4, v5}. The positive acknowledgment process is shown in Fig. 3 (a):
once v3 receives a positive acknowledgment of rFB

i from one node in Si (v5),
it sends the acknowledgment to the node that is firstly added to V pre

i (v1).
The negative acknowledgment process is shown in Fig. 3 (b): only when
v3 receives negative acknowledgments of rFB

i from all the nodes in Si, v3

broadcasts the negative acknowledgment to all the nodes in V pre
i . The path

exploration process for rFB
i is terminated when the source node of rFB

i re-
ceives an acknowledgment.

Performance Tuning. Algorithm 1 is simple and scalable, but some extra
work is needed to improve its performance. A deadlock may occur during the
acknowledgment message processing, as shown in Fig. 4, where there is a cycle of
rFB
i among v2, v3 and v4, but v2 only sends rFB

i to v3 once. With the qualified
neighbor node set Si = {v2, v5} for rFB

i , v4 receives a negative acknowledgment
from v5 and is waiting for the acknowledgment from v2 before sending any ac-
knowledgments to v3. However, v2 is waiting for the acknowledgement from v3

and v3 is waiting for the acknowledgment from v4. Therefore, there is a deadlock
among v2, v3 and v4. To address this issue, we can encode a set of nodes that
a bandwidth reservation request have traversed. When the algorithm computes
Si for rFB

i , Si only includes the qualified neighbor nodes that are not in the set
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Fig. 3. An example of the acknowledging process for the fixed-bandwidth problem
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Fig. 4. An example of deadlock in Algorithm 1

of nodes that rFB
i have traversed. Therefore, there is no bandwidth reservation

request from v4 to v2 in the above example and the deadlock is avoided.
In a special case where a neighbor node u in Si breaks down right after the

current node broadcasted rFB
i , and the current node receives negative acknowl-

edgments from all the nodes in Si except u, ni never reaches 0 in line 23 of
Algorithm 1. If there does not exist a feasible path to satisfy rFB

i , the source
node of rFB

i may never receive a negative acknowledgment. The solution is that
detecting the breakdown of a neighbor node u in Si should be equivalent to
receiving a negative acknowledgment from u for the pending bandwidth reserva-
tion request rFB

i . Also, all the scheduled bandwidth reservations using u must
be canceled. In this case, the current node sends a CANCEL message along the
path for each scheduled bandwidth reservation request using the current node
and u, and the reserved bandwidths on the corresponding links will be released.
Once the source node of a bandwidth reservation request receives a CANCEL
message, the source node initiates another path exploration process to find a new
path. The handling of node failures can also be applied to the rest algorithms.

Algorithm Analysis. Algorithm 1 exhibits several salient features.

(i) Loop free: The job queue that maintains all incoming bandwidth reservation
requests and the verification condition in line 5 ensure that each node broadcasts
a bandwidth reservation request at most once. Hence, there is no loop for a
bandwidth reservation request. Furthermore, the condition of whether u is in Si

in line 17 and the update of Si in line 18 ensure that each node receives at most
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one acknowledgment from a neighbor node in Si. Hence, there is no loop for an
acknowledgment.

(ii) Fault tolerant: Any node and link failures can be detected by periodical
HELLO messages exchanged between nodes. Hence, any node failure does not
affect the path exploration process if there still exists a feasible path.

(iii) Time efficient: The runtime complexity of this algorithm is O(T ·m) in the
worst case. Unlike most distributed routing algorithms where each node must
wait for a constant time period to collect all messages from its neighbor nodes,
this algorithm processes each incoming routing message immediately to speed
up path exploration. In the worst case, the algorithm involves O(m) message
communications in the entire network.

3.2 Highest-Bandwidth

Given a highest-bandwidth reservation request rHB
i , the highest-bandwidth

scheduling problem is to compute a dedicated channel from source node vs to
destination node vd with the highest available bandwidth during time slot [ts, te].
This problem can be solved by extending Dijkstra’s shortest path algorithm in
the centralized scheme. We propose a distributed solution based on Bellman-
Ford algorithm to this problem. The source node vs receives rHB

i from an end
user, initializes the highest bandwidth of rHB

i to be infinity, and initiates the
path exploration process by broadcasting rHB

i to its neighbor nodes. The neigh-
bor nodes compute their highest bandwidth according to the incoming rHB

i , and
broadcast their results only if the bandwidth value is increased. Note that the
highest available bandwidth of the entire path is determined by the bottleneck
bandwidth of all component links in the specified time slot. Hence, the high-
est bandwidth of rHB

i on each node is dynamically updated during the path
exploration process.

The algorithm details for the highest-bandwidth scheduling problem are pro-
vided in Algorithm 2. Let BWi(vs, vcur) denote the highest bandwidth of the
path found so far from source node vs to the current node vcur for rHB

i in
Q, and BW ′

i (vs, vcur) denote that for the incoming rHB
i . The algorithm waits

for control messages, and processes bandwidth reservation messages in lines 3-
17 and acknowledgment messages in lines 18-20. When the current node re-
ceives a highest-bandwidth reservation request rHB

i from its neighbor node u,
the algorithm checks whether rHB

i is in Q; if not, the algorithm adds rHB
i to

Q. If the highest bandwidth of the incoming rHB
i is larger than that of rHB

i

in Q (i.e. BW ′
i (vs, vcur) > BWi(vs, vcur)), the algorithm updates the highest

bandwidth of rHB
i in Q. The algorithm computes the highest bandwidth of the

path found so far from source node vs to every neighbor node v by calculat-
ing BWi(vs, v) = min{BWi(vs, vcur), BWi(vcur, v)}, where BWi(vcur, v) is the
highest bandwidth of the link (vcur , v) during the time slot specified in rHB

i .
The algorithm encodes BWi(vs, v) in rHB

i and sends rHB
i to v. If the highest

bandwidth of rHB
i in Q does not increase (i.e. BW ′

i (vs, vcur) ≤ BWi(vs, vcur)),
the algorithm returns to line 2 directly to avoid message broadcasting. If the
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Algorithm 2. Scheduling algorithm for the highest-bandwidth problem
1: Create a job queue Q to store all reservation requests.
2: Wait for routing messages.
3: if a highest-bandwidth reservation request rHB

i is received from its neighbor node
u then

4: if rHB
i is destined to the current node then

5: Restart a timer for rHB
i .

6: if rHB
i is not in Q then

7: Add rHB
i to Q.

8: else if BW ′
i (vs, vcur) > BWi(vs, vcur) then

9: BWi(vs, vcur) = BW ′
i (vs, vcur)

10: else
11: Return to line 2.
12: Set vpre

i = u.
13: if rHB

i is not destined to the current node then
14: Compute the neighbor node set Si (excluding u).
15: for all v ∈ Si do
16: BWi(vs, v) = min{BWi(vs, vcur), BWi(vcur, v)}. Encode BWi(vs, v) in

rHB
i and send rHB

i to v.
17: Return to line 2.
18: if an acknowledgment of request rHB

i is received from its neighbor node u then
19: Allocate the bandwidth on the link between the current node and node u for

rHB
i . Forward acknowledgment of rHB

i to node vpre
i .

20: Return to line 2.

current node is the destination node of rHB
i , the algorithm restarts a timer for

rHB
i . This timer is used by the destination node to acknowledge the granting

of the request since the destination node does not know when the path explo-
ration process reaches an equilibrium. If the destination node does not receive
any updated rHB

i from its neighbor nodes for a period of time, it is very likely
that the path exploration process for rHB

i has reached an equilibrium. Once the
timer for rHB

i expires, the destination node determines the highest bandwidth
of the entire path and sends an acknowledgment of rHB

i that carries the highest
bandwidth to vpre

i , which is the best neighbor node on the widest path from the
source node to the current node. When the current node receives an acknowl-
edgment of rHB

i from its neighbor node u, it allocates the bandwidth on the link
between the current code and node u, and forwards the acknowledgment of rHB

i

to node vpre
i . This backtracking process continues until the source node of rHB

i

receives the acknowledgment.

Performance Tuning. The time cost of the path exploration process is af-
fected by the timer on the destination node, which needs to be carefully decided
according to the network size and link delay. Let DELAY denote the average
delay of a message communication between two adjacent nodes, which includes
the processing delay on two end nodes and the link delay between them. A node
can estimate DELAY by measuring the round trip time of a message between
itself and its neighbor nodes. Since a bandwidth reservation message traverses
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at least 1 hop and at most n − 1 hops from vs to vd, the difference between the
arrival times of any two request messages is at most (n − 2) · DELAY , which
could be used to set the timer on vd.

Algorithm Analysis. Algorithm 2 also exhibits similar features as Algorithm 1.

(i) Loop free: A node broadcasts rHB
i to its neighbor nodes only when the highest

bandwidth of rHB
i increases. When a node broadcasts rHB

i to its neighbors, the
highest bandwidth of rHB

i does not increase during the path exploration process.
Hence, there is no loop for a bandwidth reservation request. Since node vpre

i is
set only when the highest bandwidth of rHB

i increases and the acknowledgment
is sent to vpre

i , there is no loop for an acknowledgment, either.

(ii) Fault tolerant: Since each node makes a local decision and acts as an au-
tonomous system, a node or link failure would not affect the path exploration
process. If one node on the computed path for rHB

i breaks down after an equi-
librium is achieved but before the acknowledgment of rHB

i is forwarded, the
source node of rHB

i will never receive the acknowledgment. This problem can be
solved as follows. The failure of a node can be detected by its neighbor nodes
by periodical HELLO message exchanges between them. Each neighbor node
then sends a negative acknowledgment of rHB

i to its vpre
i . The source node of

rHB
i eventually receives the negative acknowledgment of rHB

i and may initiate
another path exploration process for rHB

i .

(iii) Time efficient: The runtime complexity of this algorithm is O(m · T ) in
the worst case. Except for the destination node, all other nodes process each
incoming routing message immediately. In the worst case, the algorithm requires
O(n3) message broadcasting as the distributed Bellman-Ford algorithm.

3.3 First-Slot and All-Slots

Given a first-slot or all-slots bandwidth reservation request, rFS
i or rAS

i , the first-
slot or all-slots bandwidth scheduling problem is to compute the time slot with
the earliest start time or all possible time slots of a dedicated channel from vs to
vd with a fixed bandwidth β for duration td. Obviously, first-slot is a special case
of all-slots, and the solution to all-slots can be applied to first-slot. We propose a
distributed algorithm based on Bellman-Ford algorithm for these two problems.

We first define a list of start time slots [ti, ti+1] for each link l ∈ E, denoted
as ST (l). For any time point t during a start time slot [ti, ti+1], i.e. t ∈ [ti, ti+1],
link l has available bandwidth of β from time point t to time point t + td.
The time slots on ST are disjoint and arranged in an ascending order. The ST
list of a link can be constructed from its TB list in O(T ) time, and the ST
list of a path can be constructed by combining the ST lists of all component
links. Let ST (vs, v) denote the union of the ST lists of all paths from source
node vs to node v. Hence, ST (vs, vd) contains all start time slots of all paths
from vs to vd with bandwidth β for duration td. Let

⊕
and

⊗
denote the

point-wise merging and intersection operations of the time slots in two ST lists,
respectively. We have ST (l)

⊕ ∅ = ST (l), ST (l)
⊕�+ = �+, ST (l)

⊗ ∅ = ∅,
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Algorithm 3. Scheduling algorithm for the all-slots problem
1: Create a job queue Q to store all reservation requests.
2: Wait for routing messages.
3: if an all-slots bandwidth reservation request rAS

i is received from its neighbor node
u then

4: if rAS
i is destined to the current node then

5: Restart a timer for rAS
i .

6: if rAS
i is not in Q then

7: Add rAS
i to Q. Set vpre

i = u.
8: else if ST ′

i (vs, vcur) � STi(vs, vcur) then
9: STi(vs, vcur) = STi(vs, vcur)

⊕
ST ′

i (vs, vcur).
10: else
11: Return to line 2.
12: if rAS

i is not destined to the current node then
13: Compute the neighbor node set Si (excluding u).
14: for all v ∈ Si do
15: STi(vs, v) = STi(vs, vcur)

⊗
STi(vcur, v). Encode STi(vs, v) in rAS

i and
send rAS

i to v.
16: Return to line 2.
17: if an acknowledgment of request rAS

i is received from its neighbor node u then
18: Forward acknowledgment of rAS

i to node vpre
i .

19: Return to line 2.

and ST (l)
⊗�+ = ST (l), where ∅ is the empty time slot and �+ is the infinite

time slot of non-negative real values.
The algorithm details for the all-slots bandwidth scheduling problem are pro-

vided in Algorithm 3. The source node vs receives rAS
i from an end user, initial-

izes the ST list of rAS
i to be ST (vs, vs) = �+, and initiates the path exploration

process by broadcasting rAS
i to its neighbor nodes. Let STi(vs, vcur) denote the

list of start time slots of the paths found so far from source node vs to the current
node vcur for rAS

i in Q, and ST ′
i (vs, vcur) denote that for the incoming rAS

i . The
algorithm is modified from Algorithm 2 by replacing the bandwidth operation
with the ST list operation. If the ST list of the incoming rAS

i is not a subset of
the ST list of rAS

i in Q (i.e. ST ′
i (vs, vcur) � STi(vs, vcur)), the algorithm updates

the ST list of rAS
i in Q (i.e. STi(vs, vcur) = STi(vs, vcur)

⊕
ST ′

i (vs, vcur)). Here,
the relationship � of two ST lists holds if at least one time slot in ST ′

i (vs, vcur)
does not belong to any time slots on STi(vs, vcur). Due to the monotonicity
property of

⊕
operation, once start time slots are placed on STi(vs, vcur), they

will not be removed. The algorithm then computes the start time slots of all
paths found so far from source node vs to every neighbor node v by calculating
STi(vs, v) = STi(vs, vcur)

⊗
STi(vcur , v), where STi(vcur, v) is the ST list of

link (vcur, v) for rAS
i . The algorithm encodes STi(vs, v) in rAS

i and sends rAS
i

to v. If the current node is the destination node of rAS
i , the algorithm restarts

a timer for rAS
i . Once the timer for rAS

i expires, the destination node sends an
acknowledgment of rAS

i that carries all start time slots on STi(vs, vd) to vpre
i .
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For the first-slot problem, the earliest start time is the lower boundary of the
first time slot on the returned ST list. For the all-slots problem, the end user at
the source node may choose one or multiple start times from the returned ST
list. Once the start time t for a feasible path is decided, we can apply Algorithm 1
for the fixed-bandwidth problem to perform the actual path computation and
bandwidth scheduling with ts = t and te = t + td.

The runtime complexity of Algorithm 3 is O(m) in terms of
⊕

and
⊗

op-
erations. Since the complexities of

⊕
and

⊗
operations are determined by the

length of the ST list, which is at most m · T in the algorithm, the complexities
of

⊕
and

⊗
operations are of O(m · T ). Therefore, the algorithm complexity is

of O(m2 · T ) in the worst case. Due to the similarity in the algorithm structure,
the performance tuning and algorithm analysis for Algorithm 2 are applicable
to Algorithm 3.

4 Performance Evaluation

We perform simulation-based evaluations for the proposed distributed schedul-
ing algorithms. For performance comparison, we also design and implement a
simple greedy algorithm. In the simulations, each simulated network is randomly
generated with an arbitrary network topology with 50 nodes and 200 links, and
the TB list of each link is also randomly generated with residual bandwidths
ranging from 0.2 Gbps to 10 Gbps in each time slot with an identical length of
1 second. The residual bandwidths follow a normal distribution:

bl[i] = 0.2 + 10 · (1 − e−
1
2 (3x)2), (1)

where x is a random variable within the range of [0,1]. There are 600 time slots
in the TB list of each link.

4.1 Experimental Results for Algorithm 1

We conduct performance comparison between Algorithm 1 and the traceroute-
based method for the fixed-bandwidth problem using various simulated networks.
Note that traceroute is implemented in OSCARS to find the shortest path within
ESnet that MPLS LSP traverses [14]. Once the entire path controlled by OS-
CARS is obtained, each link on the path is then checked for available bandwidth.

Fixed-bandwidth is a decision problem and the satisfiability of a fixed-
bandwidth request is determined by the availability of the network resources.
Algorithm 1 is an optimal algorithm that is able to find a feasible solution when
there exists one. We randomly generate 200 network instances of different topolo-
gies, in each of which, we randomly generate a series of fixed-bandwidth requests
with requested bandwidth β ranging from 0.24 Gbps to 2.4 Gbps at an interval
of 0.24 Gbps. The duration of a request te − ts is constrained within the range
of [1, 10]. We run Algorithm 1 and traceroute on these fixed-bandwidth requests
and plot a series of acceptance rates in response to different β values in Fig. 5.
The acceptance rate is defined as the ratio of successfully scheduled requests
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Fig. 5. Acceptance rates of Algorithm 1 and traceroute for the fixed-bandwidth
problem

and the total 200 submitted requests. We observe that Algorithm 1 exhibits su-
perior performance over the traceroute-based method. Since the requests with
larger β values require more network resources, the acceptance rate decreases as
β increases.

4.2 Experimental Results for Algorithm 2

We compare the performance of Algorithm 2 with that of a greedy algorithm for
the highest-bandwidth problem. In the greedy algorithm, a node always chooses
one neighbor node whose link has the highest available bandwidth in the speci-
fied time slot. In each of 200 randomly generated network instances, we generate
a series of highest-bandwidth requests with duration td = te − ts ranging from 1
to 10 seconds at an interval of 1 second. We run Algorithm 2 and the greedy al-
gorithm on these highest-bandwidth requests and plot the average and standard
deviation of the highest available bandwidth in response to different td values in
Fig. 6. We observe that Algorithm 2 outperforms the greedy approach in all the
cases we studied. We also observe that the average highest available bandwidth
decreases as td increases.

4.3 Experimental Results for Algorithm 3

Algorithm 3 is designed for both the first-slot and all-slots problems. We first
compare the performance of Algorithm 3 with that of a greedy method for the
first-slot problem. In the greedy algorithm, a node always chooses one neighbor
node such that the earliest start time of the path from the source node to the
neighbor node for that request is minimized. We randomly generate a series of
first-slot requests with td = 5 seconds and requested bandwidth β ranging from
0.24 Gbps to 2.4 Gbps at an interval of 0.24 Gbps. We plot the average and
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Fig. 6. The highest bandwidths (mean and standard deviation) of Algorithm 2 and
the greedy method for the highest-bandwidth problem

0.5 1 1.5 2
−200

−100

0

100

200

300

400

500

600

β (Gbps)

E
ar

lie
st

 s
ta

rt
 ti

m
e 

(s
ec

)

Algorithm 3
Greedy

Fig. 7. The earliest start time (mean and standard deviation) of Algorithm 3 and the
greedy method for the first-slot problem

standard deviation of the earliest start time in response to different β values in
Fig. 7. In most of the cases, the earliest start time computed by Algorithm 3 is 0
second. The largest earliest start time is 600 seconds since we assume that there
is no bandwidth reservation on each link after 600 seconds. We observe that the
average of 200 earliest start times computed by Algorithm 3 is much less than
that computed by the greedy method.

We also compare the performance of Algorithm 3 with that of a greedy method
for the all-slots problem. The objective function in the all-slots problem is the
total length of start times. In the greedy method, a node always chooses one
neighbor node such that the total length of start times of the path from the
source node to the neighbor node for that request is maximized. The simulation
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Fig. 8. The total length of start times (mean and standard deviation) of Algorithm 3
and the greedy method for the all-slots problem

settings for the all-slots problem are the same as those for the first-slot problem.
We plot the average and standard deviation of the total length of start times
in response to different β values in Fig. 8, and observe that the performance
superiority of Algorithm 3 is dominant in all the cases.

5 Conclusion

We formulated four basic bandwidth scheduling problems in high-performance
networks that support advance bandwidth reservations. We proposed a dis-
tributed algorithm for each of these problems. These algorithms are based on a
rigorous extension of the classical breadth first search and Bellman-Ford algo-
rithms. The extensive experimental results in a large set of simulated networks
demonstrate the performance superiority of these algorithms in comparison with
greedy approaches.
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