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Abstract. In this paper, we study the impacts of sensor node distributions on 
network coverage. We first show the impacts on network coverage by adopting 
different sensor node distributions through both analytical and simulation 
studies. Then, we adopt a distribution-free approach to study network coverage, 
in which no assumption of probability distribution of sensor node locations is 
needed. The proposed approach has yielded good estimations of network 
coverage. 
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1   Introduction 

In most previous work concerning network coverage problems where sensors are 
deployed randomly, researchers assume the spatial distributions of sensor nodes are 
known when evaluating their proposed algorithms or protocols. Major disadvantages 
of such an analysis method include: 1) it is very difficult to choose an accurate sensor 
location distribution; 2) inaccurate distribution assumption will result in poor analysis 
of protocols or algorithms; and 3) changes in sensor distributions may lead to 
variations in system performance sometimes even invalidate the whole analysis. 

Motivated by this intuition, we propose a network coverage analysis approach in 
which no assumption on sensor location distribution is required. Thus, the approach is in 
effect a distribution-free approach. The approach is suitable to solve network coverage 
problem concerning a great number of sensors, which are deployed randomly. 

We summarize the contribution of the paper as follows, 1) we evaluated the effects 
of sensor location distribution via both analytical modeling and computer simulations, 
and have concluded that accurate sensor location distribution is important to 
assessment of sensor networks where a great number of sensors are randomly 
deployed; 2) we then propose a distribution-free sensor network modeling approach, 
which uses a non-parametric statistical approach; 3) we verify the approach by using 
our previous work in [10] as an example. 

                                                           
* Corresponding author. 
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2   Related Work 

A sensor network may contain a large number of simple sensor nodes. Sensor nodes 
are often powered by batteries, and hence have to operate on limited energy budgets. 
Furthermore, it is difficult to replace batteries in the sensors deployed in inaccessible 
or inhospitable environments. Thus, many research efforts have been spent on the 
energy conservation of sensor nodes to extend sensor network life time [13]. The 
network lifetime is defined as the time between the initialization of the network and 
the first case of battery exhaustion among sensor nodes. Extending the network 
lifetime has been extensively researched [1-3]. A lot of protocols keep a subset of 
sensor nodes vigilant for sensing and communication tasks while putting the others in 
power-save mode [4]. On the other hand, energy efficiency should not be achieved at 
the cost of reduced network coverage and connectivity. Thus, the network coverage 
and connectivity have also been considered simultaneously in some researches [5-8]. 
There are many related papers in sensor networks [21-109]. 

In [9], the authors studied a network with sensor nodes deployed strictly in grids. 
Plenty of work focus on sensor networks where sensor locations follow a Poisson 
point process and sensors are uniformly distributed in sensing fields, e.g., [19] and 
[20]. In [18], barrier coverage problems are studied when sensors are distributed 
along the line with random offsets due to wind and other environmental factors. In 
[8], the authors investigate energy efficiency in more general sensor networks where 
the sensor nodes are deployed randomly. In [10], the authors study a randomized 
scheduling algorithm where sensors are uniformly distributed. The paper [14] 
proposes a worst and average case algorithm for coverage calculation from a 
perspective of computational geometry where no sensor location distribution is 
required. Nevertheless, little work has been done where no prior knowledge of sensor 
node location distribution is required. 

This paper studies the impact of sensor location distributions on network coverage 
and provides a distribution-free approach in which no assumption on sensor location 
distribution is required and sensor locations can be in any distribution. To the best of 
our knowledge, no literature is found to apply distribution-free approach to sensor 
network coverage problems. 

3   Coverage Intensity 

3.1   Coverage Intensity 

Assume n sensors are randomly deployed to form a wireless sensor network to cover 
a field, which we refer to as the sensing field. The sensor network runs a randomized 
scheduling algorithm. The randomized scheduling algorithm is given as follows. Let 
S  denote the set of all the n sensor nodes. Let S  be divided into k  disjoint subsets 

jS  ( 1, 2,..., )j k=  and each sensor node is randomly assigned to one of these subsets. 

At any time, only one subset of sensor nodes are active and the rest of sensor nodes 
are inactive. The objective is to extend the network life time and maintain satisfactory 
coverage. We measure the coverage using coverage intensity. 
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Network coverage intensity is the ratio of the time when a point in the field of the 
sensor network is covered by at least one active sensor node to the total time. We 
model the sensor node deployment field as a two-dimensional Cartesian coordination 
system. The field ranges from 0 to X and 0 to Y on X- and Y-axis respectively. 
Assume that the sensing area of a sensor is the area of a circle and the sensing range 
of sensors is R, the radius of the circle.  Let ( , )f x y  denote the probability density 

function of sensor node locations. Actual deployment of sensor nodes may be 
unknown, and ( , )f x y  can be any distribution.  Let ( , )P g h  denote the probability 

that a given point ( , )g h  is covered by at least one sensor node. We have 

2 2 2( ) ( )

( , ) ( , )
x g y h R

P g h f x y dxdy
− + − ≤

= ∫∫
 

(1)

Since n sensors are divided into k disjoint subsets, which take turns to wake up and 
perform sensing tasks while the rest of the subsets are in power-save mode. Then the 
probability that point ( , )g h is covered by an active sensor can be written as  

( , ) 1 [1 ( , ) ]nC g h P g h k= − −   (2)

Coverage intensity is the detection metrics for the whole network. Note that point 
( , )g h  is randomly chosen from the sensing field. Thus, the network coverage 

intensity for the network is  

( ( , ))nC E C g h=  (3)

It is worth noting that in the above discussion, no assumption on sensor location 
distribution is given, and the sensor location distribution can be any distribution, 
which can even be a distribution which has no explicit form.    

The above derivation does not consider edge effect. Since the whole sensing field 
must have boundaries, a coverage area of a sensor node may not be completely inside 
the whole sensing field, which we refer to as the edge effect. The computer 
simulations in Section V show that the error rate between the simulation and 
analytical results is very small and can be neglected when the number of sensors is 
large.  

3.2   Uniform Distribution 

Assume that sensors are uniformly deployed in the sensing field. This case is studied 
in detail in [10]. For comparison purpose, we reformulate the coverage intensity using 
the result obtained in previous subsection. Sensor location ( , )g h  follows a two-

dimensional uniform distribution, namely ( )( , ) 1f x y XY= . Plug this into equations 

(1)-(3), we can obtain the network coverage intensity for the two dimensional uniform 
distribution. 

2 2 2

2

( ) ( )

1
( , )U

x g y h R

R
P g h dxdy

XY XY

π

− + − ≤

= =∫∫
 

 (4)
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(6)

where we use superscript U to indicate that sensor locations follow a two-dimensional 
uniform distribution.  

3.3   Two-Dimensional Gaussian Distribution 

Assume that sensor nodes deployed in the sensing field follow a two-dimensional 
Gaussian distribution. The probability density function of the two-dimensional 
Gaussian distribution is given as 

2

2 2 2[( 2) ( 2) ] 21

2
( , ) x X y Yf x y e σ

πσ
− − + −=  

Plugging this into (1), we have 

2

2 2 2

2 2 2

[( 2) ( 2) ] 2

( ) ( )
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− − + −

− + − ≤

= ∫∫  

where subscript G indicates that sensor locations follow a two-dimensional Gaussian 
distribution.  

Let x x g= −′  and y y h= −′ ,  

2
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(7)

Plug (8) into (2) and (3), we have, 

( , ) 1 [1 ( , ) ]G G nC g h P g h k= − −            (8) 
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( ( , ))G G
nC E C g h=  (9)

3.4   GU Distribution 

In this part, we assume that known sensors location distribution is the one along 
the x -axis, where sensor locations follow a Gaussian distribution with a mean of 

2X , and along the y -axis, where sensor locations follow a uniform distribution 

with a mean of 2Y . For simplicity, we name this two-dimensional distribution as a 

GU distribution. Similar to the above, we need to calculate the probability ( , )P g h  to 

obtain coverage intensity under a GU distribution. Thus, we have  

2 2 2( ) ( )

( , ) ( ) ( )GU

x g y h R

P g h f x f y dxdy
− + − ≤

= ∫∫
 

where 

2

2

( 2)

21
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2
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−−

=  and 
1

( )f y
Y

= . Note that superscript GU indicates 

that sensor locations follow a GU distribution.  
Following the similar steps in previous subsection, we have  
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(10)

( , ) 1 [1 ( , ) ]GU GU nC g h P g h k= − −   (11)

( ( , ))GU GU
nC E C g h=   (12)

4   Distribution-Free Approach 

In this section, we introduce the distribution-free approach for estimating coverage 
intensity. The approach uses a non-parametric statistical method [11], [16]. It does not 
require that the sensor location distribution to be known. Instead, it requires the 
locations of a few sensors among the deployed sensors.  

There are many studies regarding sensor node localization. Common localization 
approaches rely on a few sensor anchor or beacon nodes whose locations are known 
in advance, for example, via GPS signals. Thus, we can have a few sensors whose 
locations can be accurately determined.  Due to random factors in real world, such as 
wind, sensor location distributions are impossible to be exactly the same as assumed 
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distributions. Since inaccurate knowledge on sensor location distributions can yield 
misleading or invalid network coverage estimations, we propose a distribution-free 
approach to estimate network coverage intensity. The approach is not based on an 
assumed distribution. Instead, it is based on the locations of a sample of sensor nodes 
whose locations are known.  

In the rest of this section, we first present how we infer sensor location distribution 
from the locations of a sample of sensor nodes using a non-parametric statistical 
method, called Kernel-density estimation [11], [16]. Next, we describe the 
distribution-free method.  

4.1   Infer Sensor Location Distribution from Locations of Sample Sensor Nodes 

Denote the locations of randomly selected sample nodes as ( , )i iX Y ,  i = 1, 2, …, N, 
where N is the sample size. The probability density at any point (x, y) can be 
estimated using the locations of the sample of sensor nodes, i.e.,   

1

1ˆ ( , ) ,
N

i i
h

ix y x y

x X y Y
f x y K

Nh h h h=

⎛ ⎞− −= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑
 

 (13)

where ( )K  is some kernel, and hx and hy are smoothing factors or window-width. It 

is quite often that ( )K is taken to be a standard Gaussian function with mean 0 and 

variance 1, i.e., 

2 21
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Plugging (14) into (13), we get, 
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 (15)

Note that 1) window-width hx and hy indirectly control the variance of the Gaussian 
function, and 2) probability density functions to be estimated can be multi-modal [16] 
and by no means have to be Gaussian even though the kernel is a Gaussian function.      

Choices of N, h, and ( )K are the factors determining the efficiency and 
effectiveness of the estimation of the probability density. 

4.2   Distribution-Free Coverage Intensity Estimation 

The approach has four steps, 1) obtaining the locations of the sample sensor nodes; 2) 
analyzing the locations and obtaining the window-width (hx and hy); 3) approximating 
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sensor location distribution using Kernel-density estimation; 4) based on the Kernel-
density estimation, calculating the coverage intensity.  

Though N and ( )K are also factors related to the efficiency and effectiveness of 

the approach, they are determined empirically before sensor deployment in this paper. 
The above four steps are carried out after sensor deployment without using any 
assumed sensor location distribution.  

The coverage intensity is calculated as follows. Replacing ( , )f x y  in (1) by (13), 

we get, 

2 2 2

2 2 2

( ) ( )

1( ) ( )

ˆ( , ) ( , )

1
,

DF
h

x g y h R

N
i i

ix y x yx g y h R

P g h f x y dxdy

x X y Y
K dxdy

Nh h h h

− + − ≤

=− + − ≤

=

⎛ ⎞− −= ⎜ ⎟⎜ ⎟
⎝ ⎠

∫∫

∑∫∫
 

(16)

where superscript DF indicates we are using the distribution-free approach. Plugging 
(16) into (2) and (3), we have, 

( , ) 1 [1 ( , ) ]DF DF nC g h P g h k= − −  (17) 

( ( , ))DF DF
nC E C g h=  (18)

5   Simulation Verification  

In this section, we perform computer simulations to verify our analytical model 
presented in Section III. We developed a discrete event simulation program in C++. In 
our program, there are scheduling events, intrusion starting events, and intrusion 
departure events. The program is capable of loading any sensor deployment 
configuration. In our simulations below, sensor nodes are deployed randomly in the 
sensing field. The purposes of this section are 1) to demonstrate that the analytical 
model in Section III is accurate; 2) the edge effect is neglectable. For coping with 
limited space, we show only the results for GU distributions for the first purpose. For 
the second purpose, we show only the results for the two-dimensional uniform 
distributions.  

In this section, the standard deviation (σx) of Gaussian distribution along the x-axis 
is 20, the number of deployed sensor nodes (n) is 1000, the size of the whole sensing 
field is 10000, the sensing area of each sensor is 30, and the number of subsets is 4, 
unless otherwise stated.  

Fig. 1 shows the network coverage intensity vs. the number of sensor nodes with 
both analytical and simulation results. The figure shows that the analytical results 
match exactly with the simulation results. In addition, the network coverage intensity 
increases as the number of sensor nodes increases, and when the number of disjointed 
subsets (k) increases, the network coverage intensity becomes smaller.  

 
 
 



 Sensor Distribution on Coverage in Sensor Networks 335 

 

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sensor Nodes (n)

C
ov

er
ag

e 
In

te
ns

ity
 (

C n)

k=2(Analytical)

k=2(simulation)
k=4(Analytical)

k=4(simulation)

 

Fig. 1. Coverage Intensity vs. n  

6   Impacts of Sensor Location Distribution on Network Coverage 
Estimation 

In this section, we show the impacts of inaccurate sensor location distribution on 
network coverage estimation. Intuitively, the discrepancy between actual and 
estimated network coverage would occur when the knowledge of the sensor location 
distribution is inaccurate. We intend to demonstrate that the discrepancy is so great 
that the inaccurate sensor location distributions may in effect render the network 
coverage estimation worthless and misleading. This section is organized as follows. 1) 
We compare the calculated coverage intensity when sensor locations follow two-
dimensional uniform and two-dimensional Gaussian distributions respectively. This 
case can be interpreted as that actual sensor location distribution is a two-dimensional 
Gaussian distribution; however, we assume the distribution is a two-dimensional 
uniform distribution; or vice versa. 2) Similarly, we next compare the calculated 
coverage intensity between two-dimensional uniform and GU distributions.  

The coverage intensity for uniform distributions is calculated using equation (6), 
that for two-dimensional Gaussian distributions using equation (9), and that for GU 
distributions using equation (12). We choose 100X = , 100Y = , and 3R =  unless 
otherwise stated. 

6.1   Two-Dimensional Gaussian and Uniform Distributions 

Fig. 2 shows the coverage intensity vs. the number of sensor nodes (n) for both two-
dimensional Gaussian distributions and Uniform distributions.  
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Fig. 2. Cn vs. n ( 2, 5k σ= = ) 

7   Example and Evaluation of Distribution-Free  

In this section, we are to demonstrate how to apply the distribution-free approach to 
estimate network coverage intensity. As discussed in Section IV, three factors affect 
the effectiveness and efficiency of the approach. The three factors are kernel ( )K , 
sample size N, and windows-width hx and hy. Literature has shown that Gaussian 
function is a good choice to estimate probability density for continuous random 
variables using Kernel-density estimation method [16]. Note that probability density 
functions to be estimated can be multi-modal and by no means have to be Gaussian 
even though the kernel is a Gaussian function.  Nevertheless, we have to determine 
sample size and windows-width beforehand. In subsection VII.A, we present some 
discussion on the sample size and the window-width. In subsection VII.B, we present 
a complete example of the distribution-free approach, and compare the result obtained 
from the distribution-free approach with that obtained from actual distribution. 

7.1   Sample Size 

Larger number of sample sensor nodes lead to better estimation of network coverage. 
Large sample can be obtained by deploying large number of anchor or beacon sensor 
nodes, or determining accurate locations of large number of sensor nodes, which is 
either expensive or difficult to achieve.   However, when too few sample sensor nodes 
are chosen, the network coverage estimation can be inaccurate. In this paper, we use a 
simple method to determine the sample size. The method requires a few number of 
field experiments, 

1. Deploy n sensors in a sensing field via a desirable vehicle, e.g., an aircraft or a 
rocket. Obtain the locations of all the sensors. The sensors are treated as a 
population, and we calculated the mean and the variance of the locations of the 
sensors. Denote the population mean and the population variance as Y and 

2S respectively. 
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2. Randomly select a small number of sensors. The sensors constitute a sample. 
Obtain their locations. Calculate the mean and the variance of the locations. 
Denote the sample mean and the sample variance as y  and 2s  respectively.  

3. Calculate the error between the sample mean and the population mean, and 

denote it as ( )r y Y Y= − . 

4. As suggested in [12], the proper sample size is estimated as 

( )0 01n n n N= +  where  ( ) ( ) 2

0 2n u S rYα⎡ ⎤= ⎣ ⎦ and 2uα  is the value of the 

vertical boundary for the area of 2α  in the right tail of the standard normal 

distribution. 
 

Repeat the above steps for a few times to converge to the desired sample size. 

7.2   Example and Evaluation of Distribution-Free Approach 

Step 1:Obtain Locations of Sample Sensors 

Before the sensor node deployment, according to the number of sensor nodes 
deployed in sensor network, we decide the number of sample sensor nodes, and 
randomly select the sample sensor nodes and equip them with proper components 
such as GPS receivers to become anchor or beacon nodes.  Second, after random 
deployment, the locations of the sample sensor nodes are obtained via a sensor 
localization protocol. The locations of the sample sensors are ( , )

i i
X Y , i = 1, 2, … N, 

where N  is the sample size.  

Step 2:Window-Width (h) 

Many numerical methods have been developed to find h, and they mostly minimize 
the so-called Mean Integrated Squared Error [16]. In our experiment, we use a fast 
and accurate bivariate kernel density estimator as in [16] to obtain the values of 
window-width (hx and hy). For example, we obtain the bivariate window-width 
as ( , ) (3.88,16.71)x yh h = . 

Step 3:Distribution Estimation 

Based on the sample location coordinates from step 1 and bivariate window-width 
from step 2, the density function can be calculated using equation (15) since we use 
Gaussian function as the kernel.  

Step 4: System Performance Evaluation 

In this step, we can use the estimated density function to calculate the network 
coverage intensity using equations (16)-(18). Fig. 3 shows the estimation results. 

Fig. 3 shows the network coverage intensity vs. the number of sensor nodes for 
Uniform distribution, GU distribution and the Estimated GU distribution, where the 
standard deviation of Gaussian distribution along the x-axis is 5 and the number of 
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Fig. 3. Estimation performance (size of sample=50) 

disjointed subsets is 2. In the experiment, the size of the whole sensing field is 10000; 
the sensing area of each sensor is 30. In Fig.3, in sensor network, the number of 
whole deployed sensors varies from 500 to 2500, but we only use 50 sample sensors 
to estimate the distribution through the kernel density estimation method.  

8   Conclusion  

Network coverage problems are important to wireless sensor networks. Previous 
works are based on assumed probability density functions that govern the distribution 
of sensor nodes in the sensing field. However, the actual distribution of sensor nodes 
may be very different from the assumed one. Our analytical and simulation studies 
show that when a different assumption is used, the introduced error on the network 
coverage metrics can be very large and cannot be neglected.  

In this paper, we first reformulate the network coverage intensity using general 
probability distribution. In other words, we do not assume that the sensor location 
distributions are known. We verified the formulization using computer simulations, 
which show that the analytical results and computer simulations match exactly.   

Most importantly, we proposed a distribution-free approach for estimating network 
coverage intensity. In our proposed method, no assumption on sensor location 
distribution is required. Instead, we take a small sample of the actual deployment, and 
carry on a statistical analysis to capture the distribution function of the deployment. In 
practice, this small set of sample can be the sensor nodes equipped with GPS 
receivers, and thus their locations are known. Furthermore, we used the kernel density 
estimator to estimate the deployment distribution. Based on the obtained knowledge, 
the network coverage metrics can be calculated.  

The results show that a small sample of sensor nodes yields fairly good estimates 
on the distribution used. In particular, compared with the case that a different 
assumption (the uniform distribution) than actual sensor location distribution (GU 
distribution) is used, the distribution-free approach yields far better results. 
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