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Abstract. We consider the problem of cooperative data exchange in a group of
wireless clients. In this problem each client initially holds a subset of packets and
needs to obtain all packets held by other clients. Each client can broadcast its
own packets or a combinations thereof to other clients via an error-free broadcast
channel. Assuming that clients know which packets are available to other clients,
our goal is to minimize the total number of transmissions needed to satisfy the
demands of all clients. We present a deterministic algorithm that computes an
optimal solution to this problem in polynomial time.

1 Introduction

In this paper, we consider the problem of cooperative data exchange between a group
of wireless clients that share a common lossless broadcast channel. In this problem,
a set of n packets X = {x1, . . . , xn} needs to be delivered to k clients. Each client
initially holds a subset Xi of packets in X and needs to obtain all packets held by other
clients. Our goal is to design a communication scheme that enables all clients to obtain
all packets with the minimum number of transmissions.

For example, consider the instance of the problem shown in Fig. 1(a) where there
are three wireless clients that need to obtain three packets x1, x2, x3 ∈ GF(2m). Ini-
tially, the clients hold packets {x2, x3}, {x1, x3} and {x1, x2}, respectively, i.e., each
client is missing one packet. A simple cooperative scheme consists of three uncoded
transmissions. However, this is not an optimal solution since the clients can send coded
packets which satisfy demands of multiple clients. The number of transmissions for this
example can be decreased to two by letting the first client broadcast x2 + x3 and the
second client broadcast x1 (see Fig. 1(b)).

In this paper, we present an algorithm that finds, in polynomial time, the optimal
solution for the cooperative data exchange problem. In particular, the algorithm finds
an encoding scheme that achieves the minimum number of transmissions over a small
finite field.
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Fig. 1. Coded data exchange among three clients

Related Work

Cooperative communication at the physical, network and application layers has been
the subject of extensive research in the past few years. Physical-layer user cooperation
in the form of signal relaying has been shown to result in higher data rates, extended
coverage, and robustness to link outages [9, 13, 15]. Network coding [1, 12] is another
powerful technique that has been proposed to enhance achievable data rates, as well as
other aspects, through packet-level encoding at intermediate nodes [11].

Direct information exchange problems were recently considered in [6] and [7] where
it was assumed that the packets available at different network nodes follow a certain
random distribution.

A closely-related coding problem with “subset” side information is the Index Cod-
ing problem [2, 3, 4, 5, 8] which was originally motivated by satellite broadcast ap-
plications with cashing clients. However, the Index Coding setup is centralized and
non-cooperative with a single transmitter server holding all packets and passive clients
having different demands. A related problem of set reconciliation between two or more
similar sets was studied in [14].

When the clients have only information about certain neighboring nodes, and can
communicate to a restricted number of them, our setting is related to that of gossip
algorithms studied in the literature (see e.g., [16]).

In our previous work [17] we have presented an efficient randomized algorithm for
the distributed data exchange problem and established several bounds on the minimum
number of transmissions. In this paper, we extend our results by presenting an efficient
deterministic algorithm for this problem.

2 Model

Consider a set of n packets X = {x1, . . . , xn} to be delivered to k clients belonging
to the set C = {c1, . . . , ck}. The packets are elements of a finite alphabet which will
be assumed to be a finite field Fq throughout this paper. At the beginning, each client
knows a subset of the packets denoted by Xi ⊆ X , while the clients collectively know
all the packets in X , i.e., ∪ci∈CXi = X . We denote by X i = X \Xi the set of packets
missing at client ci. We refer to Xi as the has set of client ci and to Xi as its wants
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set. We assume that each client knows the indices of packets that are available to other
clients.1 Without loss of generality, we assume that each packet in X is needed by at
least one client.

The clients exchange packets over a lossless broadcast channel with the purpose of
making all packets in X available to all clients. The data is transferred in communica-
tion rounds, such that at round i one of the clients, say cti , broadcasts a packet pi ∈ Fq

to the rest of the clients in C. Packet pi may be one of the packets in Xti , or a com-
bination of packets in Xti and the packets {p1, . . . , pi−1} previously transmitted over
the channel. Our goal is to devise a scheme that enables each client ci ∈ C to obtain
all packets in X i while minimizing the total number of transmissions. We refer to the
minimum number of transmissions required to satisfy all clients as OPT .

Our scheme uses linear coding over the field Fq. As discussed in [17], linear codes
are sufficient to achieve the minimum number of transmission in our problem. With
linear coding, any packet pi transmitted by the algorithm is a linear combination of the
original packets in X , i.e.,

pi =
∑

xj∈X

γj
i xj ,

where γj
i ∈ Fq are the encoding coefficients of pi. We refer to the vector γi = [γ1

i , γ2
i ,

. . . , γn
i ] as the encoding vector of pi. The i-th unit encoding vector that corresponds to

the original packet xi is denoted by ui = [u1
i , u

2
i , . . . , u

n
i ], where ui

i = 1 and uj
i = 0

for i �= j. We also denote by Ui the set of unit vectors that correspond to packets in Xi.
A client ci is said to have a unique packet xj if xj ∈ Xi and xj /∈ X� for all � �= i. A

unique packet can be broadcast by the client holding it without any penalty in terms of
optimality. Thus, without loss of generality, we assume that there are no unique packets
in the system. Also, without loss of generality, we assume that all k clients initially have
distinct packet sets.

3 Deterministic Algorithm

In this section, we present a deterministic algorithm for the data exchange problem.
For clarity, we describe and analyze the behavior of the algorithm in terms of encoding
vectors, rather than the original packets. That is, instead of saying that a packet pi =∑

xj∈X γj
i xj has been transmitted, we say that we transmit the corresponding encoding

vector γi = [γ1
i , γ2

i , . . . , γn
i ].

3.1 Algorithm Description

Our algorithm operates over a finite field Fq . The size q of Fq must be larger than 2k,
where k is the number of clients. For a client cj ∈ C we define by Γ (cj) = span(Uj),
i.e., Γ (cj) is the set of all possible encoding vectors in F

n
q that can be generated by

client cj . Then, each vector γi ∈ Γ (cj) can be written as

γi =
∑

ug∈Uj

γg
i ug,

1 This can be achieved by exchanging packet indices at the beginning of data exchange. The
indices can also be piggybacked on the data packets to reduce overhead.
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where each γg
i is an element of Fq.

The algorithm executes in iterations. In each iteration we identify a client that will
be transmitting at that round. The key idea is that at each round i we only determine
the client cti that will transmit a packet at that round, but not the encoding coefficients
of the packet that will be transmitted. The encoding coefficients of each transmitted
packets will be determined at the last stage of the algorithm.

More specifically, for each client cj ∈ C we maintain a counter bj that specifies the
number of the packets that will be transmitted by that client. Initially, bj = 0 for all
cj ∈ C. Once we have determined that client cti is transmitting a packet a round i, we
increment the corresponding counter bti . We denote by Bi = (b1, b2, . . . , bk) the vector
that specifies the number of transmissions made by each client cj ∈ C at iteration i. We
refer to Bi as a counting vector.

Definition 1. We say that a set of vectors Γ fits Bi = (b1, b2, . . . , bk) if Γ can be
partitioned into k disjoint subsets Γ 1, Γ 2, . . . , Γ k, such that for each Γ j , 1 ≤ j ≤ k it
holds that:

1. |Γ j | = bj;
2. Γ j ⊆ Γ (cj).

We also denote by M(Bi) the collection of all sets of vectors that fit Bi.

That is, the set Γ that fits Bi is a union of b1 vectors from Γ (c1), b2 vectors from Γ (c2),
. . . , and bk vectors from Γ (ck).

Definition 2. Let Bi be a counting vector and let Uj be the set of encoding vectors
available to client j. Let M(Bi) the collection of all sets of encoding vectors that fit
Bi. Then, we define Maxrank(Bi, Uj) as follows:

Maxrank(Bi, Uj) = max
Γ∈M(Bi)

rank(Γ ∪ Uj).

For given Bi and Uj , the value of Maxrank(Bi, Uj) can be efficiently computed in poly-
nomial time. First, note, that there exits a set Γ ′ ∈ M(Bi) that maximizes the value of
rank(Γ ∪Uj) that only contains unit vectors ug (corresponding to packets in X). Thus,
we can compute Maxrank(Bi, Uj) by constructing a bipartite graph G(V1, V2, E), as
depicted in Fig. 2. The nodes of V1 correspond to packets in X = {x1, . . . , xn}. For
each client cg ∈ C, set V2 contains bg nodes, each node is connected to all nodes in
V1 that correspond to packets in Xg. In addition, set V2 contains |Xj| = |Uj | nodes,
each node is connected to a corresponding packet in Xj . Note that each node in V2

corresponds to a linear combination of packets in X , and our goal is to maximize
the number of independent linear combinations. It is easy to verify that the value of
Maxrank(Bi, Uj) is equal to the maximum size of a matching in G(V1, V2, E).

The formal description of the algorithm, referred to as Deterministic Data Exchange
(DDE), appears on Fig. 3.
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Fig. 2. The auxiliary graph G = (V1, V2, E) used for computing the value of Maxrank(Bi, Uj)

Algorithm DDE (C, {Uj , cj ∈ C, Fq})
1 For each cj ∈ C do:
2 bj ← 0

enddo
3 B0 ← (b1, b2, . . . , bk)
4 i← 1
5 while there exists a client cj ∈ C for which it holds that

Maxrank(Bi−1, Uj) < n do
6 Let cti be a client for which Maxrank(Bi−1, Uti) is maximum.
7 bti ← bti + 1
8 Bi = (b1, b2, . . . , bk)
9 i← i + 1

endwhile
10 î← i− 1
11 Find a vector set Γ̂ ∈M(Bî) that satisfies rank(Γ̂ ∪ Uj) = n for all cj ∈ C
12 return î encoding vectors γ1, . . . , γî that correspond to elements in Γ̂

Fig. 3. Algorithm DDE

3.2 Algorithm Analysis

We proceed to analyze the correctness of the algorithm. Consider an iteration i of the al-
gorithm. Recall that the vector Bi = (b1, b2, . . . , bk) specifies the number transmissions
made by each client cl ∈ C during iterations 1, . . . , i. Recall also that the collection
M(Bi) includes all possible sets of encoding vectors that fit Bi.

Let OPTi be the minimum number of additional rounds (i.e., starting from round
i + 1) necessary to satisfy requests of all clients in C, provided that during iterations
1, . . . , i the number of transmissions made by each client is consistent with Bi. We
define OPT0 as the optimal solution to the problem at hand, i.e., OPT0 = OPT .
Also, let Li = (l1, l2, . . . , lk) the number of additional transmissions that need to be
done by the clients cj ∈ C to achieve optimum OPTi. We refer to Li as a forward
counting vector at iteration i. Note that OPTi =

∑k
j=1 lj . Note also that the set Li

must satisfy that Maxrank(Bi + Li, Uj) = n for each client cj ∈ C, where Bi + Li =
(b1 + l1, b2 + l2, . . . , bk + lk).
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In order to prove the optimality of the algorithm it is sufficient to show that for each
iteration i = 1, 2, . . . it holds OPTi = OPTi−1 − 1.

Theorem 1. For each iteration i of the algorithm it holds that OPTi = OPTi−1 − 1

Proof: Consider iteration i of the algorithm. Let cti be the client selected at that itera-
tion. Let Bi−1 = (b1, b2, . . . , bk) be the counting vector and Li−1 = (l1, l2, . . . , lk) be
the forward counting vector at iteration i − 1.

First, consider the case in which lti > 0. Let Bi be a vector formed from Bi−1 by
incrementing bti by one. Let Li be a vector formed from Li−1 be decrementing lti by
one. Note that Bi + Li = Bi−1 + Li−1. Thus, after iteration i we need OPTi−1 − 1
transmissions to satisfy Maxrank(Bî, Uj) = n for each client cj ∈ C. Hence it holds
that OPTi = OPTi−1 − 1.

Next, suppose that lti = 0. Note that for each client cj ∈ C it holds that
Maxrank(Bi−1 + Li−1, Uj) = n. Then, there exist vector set Qi−1 ∈ M(Li−1) and
Γi−1 ∈ M(Bi−1) that satisfy, for each client cj ∈ C,

rank(Γi−1 ∪ Qi−1 ∪ Uj) = n. (1)

Also, the definition of Maxrank implies that for each client cj ∈ C there exists a vector
set Γi−1 that satisfies

rank(Γi−1 ∪ Uj) = Maxrank(Bi−1, Uj). (2)

By using the standard network coding techniques (see e.g., [12]) it can be shown that
there exist sets of vectors Γi−1 ∈ M(Bi−1) and Qi−1 ∈ M(Li−1) that satisfy the
conditions of both Equations (1) and (2) for all clients cj ∈ C, provided that the field
size q is larger than the number of constraints (2k).

Since client cti has the largest value of Maxrank(Bi−1, Uj) among all clients in
cj ∈ C, it holds that

n − Maxrank(Bi−1, Uti) = n − rank(Γi−1 ∪ Uti) ≤
k∑

j=1

lj − 1 = OPTi−1 − 1.

This implies that there exists at least one vector v ∈ Qi−1 such that the set
Γi−1 ∪ {Qi−1 \ {v}} ∪ Uti is of rank n.

Let v be such a vector and let ci∗ be a client for which it holds that v ∈ Γ (ci∗). We
denote by Q̃i−1 = Qi−1 \ {v}. Note that for each client cj ∈ C \ {cti} it holds the rank
of vector set Sj = Γi−1 ∪ Q̃i−1 ∪ Uj is at least n− 1. Let C′ be as subset of C \ {cti}
such that for each cj ∈ C′ it holds that rank(Sj) = n − 1.

Let cj be a client in C′ and let ζj be the normal vector to the span of Sj . Note that ζj

is non-zero according to the definition of C′. Note that ζj can be written as

ζj =
∑

ug∈Uti

βgug +
∑

ug∈Uti

βgug,

where U ti is the set of unit encoding vectors that correspond to Xti = X \ Xti .

Lemma 1. There exists ug ∈ Uti such that βg �= 0.
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Proof: Suppose that it is not the case. Then, ζj can be expressed as ζj =
∑

ug∈Uti
βgug.

Then, ζj is a normal to span(Uti). Since ζj is a normal to span(Sj) it is also normal to
span(Γi−1 ∪ Q̃i−1). Thus, ζj is a normal to span(Γi−1 ∪ Q̃i−1 ∪ Uti) which contra-
dicts the fact that rank{Γi−1 ∪ Q̃i−1 ∪ Uti} = n.

Let γ̂ be a projection of ζj to span(Uti), i.e., γ̂ =
∑

ug∈Uti
βgug and let Γi = Γi−1 ∪

{γ̂}. Note that Lemma 1 implies that 〈γ̂, ζj〉 �= 0.

Lemma 2. For each client cj ∈ C′ it holds that

rank{Sj ∪ {γ̂}} = rank{Γi ∪ Q̃i−1 ∪ Uj} = n.

Proof: By way of contradiction, suppose that rank{Sj ∪ {γ̂}} = n − 1. Then, vector
γ̂ belongs to span(Sj). However, this contradicts the fact that 〈γ̂, ζj〉 �= 0.

Lemma 2 implies that after iteration i the demands of all clients in C′ are satisfied
by transmitting vectors in Q̃i−1, i.e., with OPTi−1 − 1 additional transmissions. The
same holds for other clients in C \ C′, because for each client cj ∈ C \ C′ it holds
that rank{Sj = Γi−1 ∪ Q̃i−1 ∪ Uj} = n. Hence OPTi = OPTi−1 − 1 and the lemma
follows.

Lemma 3. At Step 11 of Algorithm DDE it is possible to find a vector set Γ̂ ∈ M(Bî)
that satisfies rank(Γ̂ ∪ Uj) = n for all cj ∈ C.

Proof: At the end of iteration î of the algorithm, for each client cj ∈ C it holds that
Maxrank(Bî, Uj) = n. The definition of Maxrank implies that for each client cj ∈ C
there exists a vector set Γ j ∈ M(Bî) such that rank(Γ j ∪Uj) = n. By using standard
network coding techniques (see e.g., [10, 12]) we can find a set of vectors Γ̂ ∈ M(Bî)
that satisfy the demands of all clients, provided that the field size q is larger than the
number of constraints (k).

We summarize our results with the following theorem:

Theorem 2. Algorithm DDE computes, in polynomial time, the optimal solution to the
data exchange problem.

Proof: Follows from Theorem 1 and the fact that OPT0 is equal to the optimal solution
OPT .

The computational complexity of the algorithm is comparable to that of the standard
network coding algorithms such as due to Jaggi et al. [10].

4 Conclusions

We studied the problem of direct information exchange between a group of wireless
clients with the goal to minimize the total number of transmissions between clients. We
presented deterministic algorithm that provides an optimal solution in polynomial time.

There are many open problems for future research. One direction is to explore the
two related issues of providing incentives to guarantee continued cooperation between



Deterministic Algorithm for Coded Cooperative Data Exchange 289

clients and fairness to clients in terms of transmission load during data exchange. An ad-
ditional interesting aspect of data exchange which can be considered is the energy cost
associated with each transmission. This is of particular importance in networks with
heterogeneous terminals that have different power consumption and battery options.
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