
Efficient Stream Processing in the Cloud

Dung Vu1, Vana Kalogeraki2, and Yannis Drougas3

1 Department of Computer Science and Engineering,
University of California-Riverside, USA

dungv@cs.ucr.edu
2 Department of Informatics, Athens University of Economics and Business, Greece

vana@aueb.gr
3 Environmental Systems Research Institute, Redlands, USA

drougas@esri.com

Abstract. In the recent years, many emerging on-line data analysis ap-
plications require real-time delivery of the streaming data while dealing
with unpredictable increase in the volume of data. In this paper we pro-
pose a novel approach for efficient stream processing of bursts in the
Cloud. Our approach uses two queues to schedule requests pending ex-
ecution. When bursts occur, incoming requests that exceed maximum
processing capacity of the node, instead of being dropped, are diverted
to a secondary queue. Requests in the secondary queue are concurrently
scheduled with the primary queue, so that they can be immediately exe-
cuted whenever the node has any processing power unused as the results
of burst fluctuations. With this mechanism, processing power of nodes
is fully utilized and the bursts are efficiently accommodated. Our exper-
imental results illustrate the efficiency of our approach.

Keywords: Stream Processing, Peer-to-Peer, Distributed Systems.

1 Introduction

Over the years, we have experienced the proliferation of distributed stream pro-
cessing systems that deal with large volume and high-rate data streams. A num-
ber of stream processing systems have been developed, including Aurora [2],
STREAM [3], TelegraphCQ [1] and Cougar [4]. These systems are characterized
by continuous, large-volume, high-rate data streams that are generated by geo-
graphically distributed sources and processed concurrently and asynchronously
by one or more processing components (e.g., filtering operations aggregation
operators, or top-K querying) to perform various tasks such as IP network traf-
fic monitoring and analysis for detecting DoS attacks, location tracking, text
mining, financial data analysis, multimedia delivery, and outlier detection in
sensor networks [3,1]. More recently, the cloud computing model promotes the
development of an infrastructure comprising large groups of servers that enables
the sharing of computational, storage and network resources rather than hav-
ing dedicated servers and personal commodity machines to run the applications.

X. Zhang and D. Qiao (Eds.): QShine 2010, LNICST 74, pp. 265–281, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011

266 D. Vu, V. Kalogeraki, and Y. Drougas

Such an infrastructure has important flexibility, scalability and economical ad-
vantages. This model has been applied successfully by a number of companies
such as Amazon, IBM and Google [15] [16].

In such an environment, burst management becomes an important challenge
to provide real-time delivery of the streaming data while dealing with the sharing
of the computing resources and the unpredictable increase in the volume of data.
Data streams that arrive in bursts may create overloads at the processing and
networking resources, causing losses of critical data and severely affecting the
application performance. The problem is challenging because of the sharing of
the same computing and network resources by multiple competing applications,
combined with the short duration and unpredictability of the occurrence of the
bursts. In [5] the authors report, that, to guarantee the application response time
for an increase from 90% to 100% of bursts in storage systems, the corresponding
resource capacity needs to increase from 4 to 7 times. Even a small burst increase
from 99.9% to 100%, which is only accounted for the last 0.1% of the bursts,
the capacity needs to increase by a factor of 2.4 times. As a result, attempts to
accommodate 100% of bursts is very expensive and sometimes inpractical.

We believe that careful scheduling of the execution of the data streams on
the system resources can maximize the probability that the timing requirements
of the applications are met and furthermore reduce resource costs. Scheduling
policies that decide the processing ordering of the data streams on the system
resources where bursts occur, can greatly assist in compensating for delays. How-
ever, scheduling distributed streaming applications brings additional challenges.
The scheduling algorithm must be distributed since the streaming applications
invoke components concurrently and asynchronously on multiple nodes and the
occurrence of a burst is not confined into a single node, rather it affects multi-
ple nodes running components of the streaming applications. Furthermore, the
scheduling algorithm should adapt dynamically to changes in the application be-
havior and maintain accurate resource measurements, since the burst produced
by one application can cause queuing delays experienced in the execution of
other distributed streaming applications in the system.

In this paper we address the problem of scheduling distributed data streams
to efficiently accommodate bursts in distributed stream processing systems. Our
main idea is to dynamically control the execution of the applications and delay
the processing of bursty data streams when resource capacities are exceeded.
Our approach is as follows: we implement a primary and a secondary queue at
the Scheduler component of each node, to store data streams pending execution.
Requests in the primary queue are scheduled to meet their timing requirements
while the ones in the secondary queue are served with best effort. When the rate
of the incoming requests exceeds a node’s processing capacity and the Scheduler’s
primary queue is full, requests of the excess rate, instead of being dropped, are
diverted to the secondary queue. When there is space in the primary queue due
to temporarily reduced rates, requests from the secondary queue are brought
back to the primary queue and scheduled for execution. The advantage of our
approach, is that, by selectively delaying the execution of the bursty applications,

Efficient Stream Processing 267

Fig. 1. The architecture of our distributed stream processing system

we can effectively reduce the effects of the bursts. With this mechanism, the effect
of the bursts is confined only to the bursty applications while missed application
deadlines are reduced to a minimum. Furthermore, by considering queuing delays
when scheduling the requests on the system resources, applications that are
projected to miss their deadlines are dropped early on. Detailed experimental
results of our proposed mechanism over our distributed stream processing system
Synergy [6] demonstrate the efficiency and benefits of our approach.

2 System Model and Problem Formulation

2.1 Scheduling Model

Each application appq is represented as an acyclic graph that consists of a se-
quence of the services to be invoked. The services are distributed across multiple
peers in the system; the distributed stream processing application is executed
collaboratively by the peers of the system that host the corresponding services.
The execution of an application in the system is triggered by a user request; this
will trigger the instantiation of all the services that comprise the application.
The instantiation of a service on a node is called component. A component op-
erates on collections of tuples generated by a data source, called data units (or
application data units - ADUs). Examples of data units are sequences of picture
or audio frames (for example, in a multimedia application), or sets of measured
values (for example, in a sensor data analysis application). The size of a data

268 D. Vu, V. Kalogeraki, and Y. Drougas

unit depends on the application. Upon the issue of a user request, our system
discovers and instantiates the appropriate components on the system nodes to
perform the processing required by the application.

The streaming applications are aperiodic and their arrival times is not known
a priori. Each application appq is characterized by the following parameters: (i)
Deadline Dq is the time interval, starting from the time the user submits the
request, within which the application must complete execution. (ii) Rate rq rep-
resents the delivery rate of the data units of the application as requested by
the user. (iii) Projected Execution Time Proj Execq is the estimated amount
of time required for the distributed streaming application to complete. The pro-
jected execution time of the application includes the processing times of the
components comprising the application, the queuing times at the Schedulers’
queues and the corresponding communication times. The difference between the
Deadlineq and the Proj Execq is called the Laxityq of the application and rep-
resents a measure of urgency of the application. Upon reception of a data unit
at a node, the data unit is inserted into the Scheduler’s queue waiting to be pro-
cessed. The order imposed on the data units on the Scheduler’s queue depend
on the scheduling algorithm implemented in the system.

Each component is characterized by the following parameters: (i) Processing
time τci is the processing time required for component ci to execute locally on
the node and (ii) σci is the queuing time on the Scheduler’s queue. We denote as
(iii) rci the incoming rate of the component ci and (iv) selci be the selectivity of
component ci; this represents the ratio of output rate to input rate for the com-
ponent. (v) Finally, we let uci

j represent the resource requirements of component
ci for resource j (where resource j can represent CPU, memory or bandwidth).
Note that the resource requirements and component selectivity characteristics
can be provided by the user prior to application execution or acquired through
profiling at run-time with low-overhead.

We have implemented our approach in Synergy, our peer-to-peer stream pro-
cessing system [6]. Synergy is middleware whose goal is to support the execution
of distributed stream processing applications with QoS requirements. Each node
in Synergy consists of the following modules: (i) a discovery module, that runs
over the Pastry DHT, which is responsible for discovering components at run-
time with low-overhead, (ii) a composition module is responsible for running a
component composition algorithm to dynamically select components to config-
ure and instantiate distributed stream processing applications, (iii) a monitoring
module that is responsible for maintaining current resource availability, and, (iv)
a routing module that routes data streams between Synergy nodes. We have ex-
tended Synergy with a scheduling component that implements our scheduling
approach (described in this paper). Synergy’s architecture is shown in Figure 1.

2.2 Problem Formulation

The objective of our Scheduling approach is as follows: Given a number of Q
applications submitted into the system, our goal is to minimize the number

Efficient Stream Processing 269

of applications that miss their deadlines. We present our problem formulation
below:

The system must satisfy the following conditions: node and link capacity
constraints, flow conservation constraint, and deadline constraint.

To satisfy the node and link capacity constraints, the sum of the utilization
uci

j of resource j (1 ≤ j ≤ J) made by all components ci in a node n must not
exceed the total resource availability Un

j of resource j on that node as follows:

∀n ∈ N ,
∑

ci∈n

rci · uci

j ≤ Un
j , 1 ≤ j ≤ J (1)

where rci and uci

j are the assigned rate and unit resource needs for component
ci respectively.

To satisfy the flow conservation constraint, the output rate of a component ci
is computed based on the input rate of the component and the selectivity of the
component selci. The selectivity of each component depends on the service of
the component. Let O(ci) be the set of downstream components of component
ci. Thus, the flow conservation constraint is given by:

∀ci,
∑

cj∈O(ci)

rcj = selci · rci (2)

To satisfy the deadline constraint, the application q must finish execution before
its deadline Dq. Let Cq

j be a subset of components for application q. The exe-
cution time of the application Cq

j is the sum of the processing times τci of each
component ci invoked by the application, the queuing time σci experienced by
each component ci waiting at the Scheduler’s queue for other components in the
same node to execute, and the corresponding communication times δci between
two adjacent components ci and ci+1. Since the end-to-end execution time of
the application must be smaller than its deadline, the deadline constraint for
the application q is:

∀q ∈ Q , ∀Cq
j ∈ Cq,

∑

ci∈Cq
j

τci +
∑

ci∈Cq
j

δci +
∑

ci∈Cq
j

σci ≤ Dq (3)

Let rci be processing rate of component ci, then the processing time τci of
component ci is: τci = 1

rci
. Then, the deadline constraint becomes as follows:

∀q ∈ Q, ∀Cq
j ∈ Cq,

∑

ci∈Cq
j

(
1
rci

+ δci + σci

)
≤ Dq (4)

Our goal is to find the excess load that exceeds the capacity of the primary
scheduling queue and divert this load to a secondary queue, so that we meet the

270 D. Vu, V. Kalogeraki, and Y. Drougas

node capacity and also minimize the effect on the currently scheduled data units
as follows:

– Find excess load.
– Delay the execution of the excess load. Whatever excess load exists,
– We schedule it later using the least-laxity scheduling algorithm so that we

minimize the deadline misses.

Let rMax
ci

be the maximum input rate that component ci can admit without
overloading, and rBurst

ci
be the burst rate that exceeds component ci’s maximum

allowed input rate. Then, rExcess
ci

= rBurst
ci

−rMax
ci

is the excess rate of component
ci. The number of missed data units of a component is directly related to its
excess rate. In addition, the excess rate of a component has direct impact on
drops of other components in the node. This will be further discussed in section
2.3. Our scheduling algorithm aims to reduce data unit drops by minimizing the
effects of excess rate of individual components.

2.3 Laxity-Based Scheduling

In this section, we discuss our Least-Laxity Scheduling (LLS) scheduling tech-
nique under bursty input rates. LLS has been successfully employed in dis-
tributed real-time systems such as in [7]. In least-laxity scheduling, each data
unit is associated with a laxity value that represents a measure of urgency for
the data units; these will be ordered in the scheduler’s queue based on their
laxity values. We compute the laxity value Lq of an application q as the differ-
ence between the deadline and the end-to-end projected execution time of the
application:

Lq = Deadlineq − Proj Execq (5)

The application with the smallest laxity value has the highest priority in the
system. The laxity value for each data unit of the application is computed ini-
tially at the sources and is adjusted as it gets propagated in the distributed
system, based on actual processing and network conditions. The purpose of this
ordering of the data units is to allow for compensation for delays that were in-
troduced at previous nodes. Especially in the presence of multiple distributed
stream applications, the introduction of a new application may cause existing
applications to experience higher delays due to queuing. If a data unit is delayed
at the node’s queue, its laxity value will diminish and thus its priority will in-
crease. Streaming applications with negative laxity values are estimated to miss
their deadlines, thus they are dropped from the queue. This approach allows us
to implement a distributed scheduling algorithm that executes across multiple
nodes and dynamically adapts to the current load conditions.

In least laxity scheduling, two data units belonging to different streaming
applications arriving at the same node and having the same laxity value will
be treated the same. When two data units have the same laxity value, their
relative order in the queue is their arrival order. We finally note that out-of-
order transmission of data units of the same application may potentially happen

Efficient Stream Processing 271

in the case that a packet of a flow was delayed enough locally at a queue that
its laxity value became smaller than the laxity value of an earlier data unit from
the same application. Data units with smaller laxity values are still treated as
more urgent. When data units of the same flow arrive at the destination, they
can be post-ordered based on their id-numbers.

3 Our Two-Queue Scheduling Approach

In this section we present the operation of our approach. Our solution accommo-
dates bursts by dividing the data units to be processed into two separate queues:
A primary queue Q1 and a secondary queue Q2. Data units in Q1 are scheduled
based on their timing requirements. The ones in Q2 are only guaranteed best-
effort service: Data units in Q2 will only be serviced when there are resources
available on the node. This way we avoid over-penalizing the rest of the data
units that are already scheduled for execution: Should there be enough idle time
after the burst, they will also be processed.

The primary queue Q1 is characterized by its predefined maximum size,
max(Q1). Data units in Q1 are scheduled to be executed by their deadline. On
the contrary, data units are put in Q2 when the system is considered to be over-
loaded (Q1 is full). Data units in Q2 are executed in a best-effort manner. This
means that they will be processed on the earliest slack of the system. max(Q1)
is defined based on the average processing time and the average laxity of the the
data units on the node. More formally:

max(Q1) =
1

|Cn|
∑

i∈n

1
rci

· 1
τci

where Cn is the set of components running on node n and τci is the average
processing time of component ci. The computation of max(Q1) is based on the
same logic as in [5]. The average input rate rci of each component ci is con-
stantly monitored during system operation. The average processing time τci for
a component ci is extracted through profiling.

Under stable conditions, when there is no burst, the combined rates of all
streaming applications do not exceed the system capacity. In this case, the ADUs
are processed and propagated only through primary queues from source to the
destination. No ADUs enter the secondary queue.

When a burst occurs, this means that the combined incoming rates of all
streaming applications exceeds system capacity. As a result, the primary queues
of overloaded nodes have become full. The excess load is then diverted to the
secondary queues and kept there in least laxity order. If at any time during exe-
cution the laxity values become negative, the corresponding ADUs are dropped.

This way, incoming requests with excessive rates will be kept at the secondary
queue Q2 to wait for a chance to run while their deadlines are not yet missed. The
primary queue Q1 is never empty as long as the secondary still has requests. This
is, because, requests in the secondary queue Q2 are moved back to the primary

272 D. Vu, V. Kalogeraki, and Y. Drougas

queue as soon as one or more slots are available. New incoming requests still
have a chance to be directed to the primary queue.

ADUs in the primary queue have a higher probability of meeting their response
time requirements. Therefore, they have lesser risk of deadline miss. Scheduling
for this queue would be chosen to best support the secondary queue. The sec-
ondary queue however always uses LLS, since data units are more likely to miss
their deadlines. After the burst occurs, the data units stored in Q2 are pushed
back to Q1 and processed in a timely manner.

4 Performance Evaluation

4.1 Experimental Setup

We have implemented our approach as a scheduler component in our Synergy
distributed stream processing system [6] and evaluated its performance. Synergy
runs on top of the FreePastry library [8], an open source implementation of the
Pastry DHT which is used for component discovery and collecting statistics. Our
system is deployed on a 10/100 LAN network of Debian Linux 2.6.20 worksta-
tions consisting of Intel Pentium 4 2.66GHz and Intel Xeon 3.06GHz processors,
whose main memory varied from 1GB to 2GB of RAM. Our system is written
in Java and was developed with Eclipse using Java 1.6.0. We used the timing
function provided by the JVM 1.6.0 with time granularity of 1msec, which is
adequate for our experiments. We run a series of experiments to evaluate the
performance and demonstrate the working of our approach.

4.2 Experimental Results

In the first set of experiments our goal was to evaluate the performance of our
approach under different burst intensities. To model the fluctuating nature of
bursts, we designed a burst pattern that has two bursts with a period of nor-
mal rate after each burst. Our experimental system employs 6 unique services
instantiated as unique components on the processing nodes. Each component
is replicated and available at multiple nodes. Each experiment instantiates con-
currently 11 applications. Each application submits a unique service request
structured as a DAG; each service request invokes 4 to 6 service components
which are located on different nodes. To generate the service request, the source
component of an application dispatches a stream of data units which is 250 bytes
long. The normal rate required by each service request ranges from 8 Kpbs to
45 Kbps, which is, 80% of the maximum request service rate, as can be obtained
through profiling. We run a series of experiments with different burst intensities
from no bursts 0% (normal rate) to 100% burst. Results are averaged over 5
runs with 90% confident interval where possible.

To demonstrate the working and benefits of our approach we have imple-
mented two additional scheduling approaches as follows: (a) First Come First
Served (FCFS): orders the data units on the scheduler’s queue based on the
order in which they arrive at the node, (b) Earliest Deadline First (EDF):

Efficient Stream Processing 273

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100

%
 p

er
ce

nt
ag

e
of

 d
el

iv
er

ed
 d

at
a

un
its

% burst intensity

FCFS-LLS
EDF
LLS

LL2Q

Fig. 2. Percentage of delivered data units on time, under various burst intensities

uses the deadline of the data units to decide the ordering; the data unit with
the smallest deadline is ordered first. To demonstrate the advantages of our two-
queue approach, we have compared the following strategies: FCFS-LLS uses
the FCFS scheduler for the primary queue and the LLS scheduler for the sec-
ondary queue, while the LLS-LLS (LL2Q) strategy uses the LLS scheduler for
both queues. We have also compared our two-queue scheduling approach with
an approach that uses a single queue for scheduling. In particular, the LLS ap-
proach uses a single queue where the data units are ordered based on the least
laxity scheduling algorithm, while the EDF scheduling approach uses a single
queue where the data units are ordered based on the EDF scheduling.

On-time Delivery: In this experiment we measure the percentage of data units
that are delivered on time as a function of burst intensity. Our approach that
employs two-queues for scheduling leads to over 90% of data units that are
delivered, as shown in figure 2. As the figure indicates, especially the FCFS-LLS
scheduling has the highest percentage. An interesting observation that we notice
is that the two-queue approach LLS-LLS performs better than single queue LLS.
The reason for this is that the single queue LLS experiences a large number of
context switching by which data units are frequently switched in the queue for
the incoming data units which have smaller laxities. The longer the single queue,
the worse the problem is, and as a result this significantly affects the system
performance. In the two-queue approach, the problem is less since the primary
queue’s size is smaller, just enough to keep requests that their response time
are guaranteed. When FCFS is used as the primary queue’s order, there is no
problem of context switching.

Dropped Data Units: The percentage of dropped data units as the results of
deadline missing is shown in figure 3. As the figure indicates, both two-queue
scheduling approaches perform better than any single-queue approach, especially
with higher burst intensities.

274 D. Vu, V. Kalogeraki, and Y. Drougas

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

%
 P

er
ce

nt
ag

e
of

 m
is

se
d

da
ta

 u
ni

ts

% burst intensity

FCFS-LLS
EDF
LLS

LL2Q

Fig. 3. Percentage of data units with missed deadlines, under various burst intensities

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 20 40 60 80 100

A
ve

ra
ge

 d
el

ay
 (

m
se

c)

% burst intensity

FCFS-LLS
EDF
LLS

LL2Q

Fig. 4. Average end-to-end delay, in msec, under various burst intensities

Average End-to-End Delay: In the next experiment we measure the end-
to-end delay experienced by the data units in the system. Figure 4 shows the
average end-to-end delay of data units with different scheduling approaches.
Both two-queue scheduling approaches decrease the average delay and are not
affected by the burst intensity. With LLS the data units with the least laxity
are given top priority. If they are deliverable, it means that their laxities are still
positive and their delays are small accordingly. The two-queue approach with
LLS even enhances the delay. Since data units are in the primary queue, with
small size and given a top priority, will not wait long for processing. When they
are processed, their delays are still small. This is one of interesting features of
the two-queue approach.

Efficient Stream Processing 275

 80

 85

 90

 95

 100

 0 20 40 60 80 100

%
 D

at
a

U
ni

ts
 e

nt
er

ed
 P

rim
ar

y
qu

eu
e

an
d

de
liv

er
ed

 o
n

tim
e

% burst intensity

Data units Entered Primary Queue
Data units Delivered

Fig. 5. Percentage of data units inserted and delivered on-time in the primary queue

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

%
 D

at
a

U
ni

ts
 e

nt
er

ed
 P

rim
ar

y
qu

eu
e

an
d

m
is

se
d

D
ea

dl
in

e

% burst intensity

Total Data units missed
Data units delivered out-of-order

Fig. 6. Percentage of data units of the primary queue with missed deadlines and the
corresponding percentage of data units delivered out of order

Performance of the two queues approach: In this set of experiments we
illustrate the working of our approach by showing separately the behavior of each
of the queues. Figure 5 shows the percentage of the data units of the primary
queue that enter the primary queue and those that are delivered on-time. Note
that there is some percentage of data units of the primary queue that are not
delivered on time. As the burst intensity increases the percentage of data unit
delivery drops. There are two reasons for this: As figure 6 shows, the out-of-
order delivery accounts for about 50% of the misses. Furthermore, some data
units that enter the primary queue and are then delivered, they could come
from the secondary queues in the upstream nodes. The problem of out-of-order
delivery could be easily mitigated by post-ordering at the destination based on

276 D. Vu, V. Kalogeraki, and Y. Drougas

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

%
 D

at
a

un
its

 e
nt

er
ed

 S
ec

on
da

ry
 q

ue
ue

 a
nd

 d
el

iv
er

ed
 O

n
tim

e

% burst intensity

Data units entered Secondary queue
Data units delivered

Fig. 7. Percentage of data units inserted and delivered on-time in the secondary queue

0%

2%

4%

6%

8%

10%

12%

 0 20 40 60 80 100 120 140 160 180

P
er

ce
nt

ag
e

of
 m

is
se

d
da

ta
 u

ni
ts

Time (sec)

Start of burst End of burst

Start of burst

End of burst

Bursty applications
Non-bursty applications

Fig. 8. EDF: Percentage of missed data units for bursty and non-bursty applications

their ID-numbers. Figure 7 shows about 4% of workload are diverted to the
secondary queue, and half of this load are on-time deliverable.

Mitigating effects of bursty applications: In the next set of experiments we
explored how the approach handles a mix of bursty and non-bursty applications.
Using the same double peak burst pattern as in the first experiment, however,
9 applications, accounted for 70% of total workloads, have 100% burst intensity
while the remaining applications, or 30% of total workloads have no bursts.
This set of experiments demonstrates how our system handles both bursty and
non-bursty applications.

Efficient Stream Processing 277

0%

2%

4%

6%

8%

10%

12%

 0 20 40 60 80 100 120 140 160 180

P
er

ce
nt

ag
e

of
 m

is
se

d
da

ta
 u

ni
ts

Time (sec)

Start of burst End of burst

Start of burst

End of burst

Bursty applications
Non-bursty applications

Fig. 9. FCFS-LLS: Percentage of missed data units for bursty and non-bursty
applications

0%

2%

4%

6%

8%

10%

12%

 0 20 40 60 80 100 120 140 160 180

P
er

ce
nt

ag
e

of
 m

is
se

d
da

ta
 u

ni
ts

Time (sec)

Start of burst End of burst

Start of burst

End of burst

Bursty applications
Non-bursty applications

Fig. 10. LL2Q: Percentage of missed data units for bursty and non-bursty applications

Figures 8, 9, 10, and 11 show the percentage of data unit misses of bursty and
non-bursty applications on different scheduling approaches as a function of time.
Figure 8 and 11 show non-bursty applications with single queue scheduling, both
EDF and LSS, are affected by the burst. This results into an increased number of
data unit misses as soon as the bursts occurs. Figure 9 and 10, on the other hand,
show data unit misses are low with FCFS-LLS and LL2Q (LLS-LLS) scheduling.
With an appropriate size, the primary queue does not give bursty applications
the chance to greedily occupy the processing queue due to their high rate. If
the queue is large, as in a single queue scheduling, the situation will get worse
with bursts. Data units from bursts application will overwhelm the queue and

278 D. Vu, V. Kalogeraki, and Y. Drougas

0%

2%

4%

6%

8%

10%

12%

 0 20 40 60 80 100 120 140 160 180

P
er

ce
nt

ag
e

of
 m

is
se

d
da

ta
 u

ni
ts

Time (sec)

Start of burst End of burst

Start of burst End of burst

Bursty applications
Non-bursty applications

Fig. 11. LLS: Percentage of missed data units for bursty and non-bursty applications

data units of none-burst application will be affected by a high miss rate together
with burst application since the system is unable to handle. This observation is
significant for critical application that need to maintain a required throughput
and not affected by bursts.

5 Related Work

Distributed stream processing systems have become increasingly popular in re-
cent years for the development of applications that are characterized by high-
rate, large-volume data streams. Examples include Aurora [2], STREAM [3],
TelegraphCQ [1] and Cougar [4].

We have developed Synergy, a distributed stream processing system in [6] and
have investigated various challenges related to dynamic rate allocation in [17],
decentralized media streaming and transcoding [10]. Following are recent works
(including ours) that propose solutions to accommodate bursts.

In [11], the authors propose a two-tie distributed control algorithm with the
goal of maximizing the entire system weighed throughput, achieve low end-to-
end latency, and stabilize the system coping with bursty workload. In the first
tie, Lagrange multipliers are used to maximize the resource utilization. In the
second tie, CPU and flow control algorithms are used to adjust input rates
with feedback from downstream components. With this mechanism, any exceed
input rate will be dropped. In our approach, in contrast, the exceed input rates
instead of being dropped, are diverted to a secondary queue and re-scheduled
to be processed later with best effort. To avoid context switching overhead and
decrease memory cache miss, in [11] a batch scheduling is employed to process
several data units at a time, however, this scheduling strategy does not address
bursts.

Efficient Stream Processing 279

In [12], the authors propose centralized and distributed load shredding ap-
proach to address bursts in distributed stream processing systems. A number of
shredding plans are generated in advance for certain load conditions, so that the
system can react to overload fast and in a lightweight manner. Under this ap-
proach, any input rates that exceed the maximum allowed rate in pre-configured
shredding plans will be dropped. Our approach, with two-queue scheduling, is
able to claim back data units that would otherwise be dropped, like in this
approach.

In [13], the authors propose a multi-parametric programming approach to
maximize the system utility in response to changing workloads. The approach
consists of an off-line and an on-line version. The off-line version transforms
the utility optimization problem into a linear function of CPU utilization, while
the on-line version produces optimal solutions based on workload variation in
polynomial time. This approach also shreds input rates that exceed the rate
establised by their solution.

Our previous work on burst management [14] presents a solution that ac-
commodates bursts by re-distributing the load among the processing nodes of
the system. Furthermore, our previous work does not differentiate between the
applications, and treats all of them the same. In this paper we present a to-
tally different approach to accommodate bursts using a two-queue scheduling
approach. In particular, this paper focuses on maximizing the potential of each
individual application (and of the system overall). The method we present con-
siders the urgencies of the applications and their resource requirements to decide
the scheduling ordering of the data streams on the system resources. This max-
imizes the probability that the deadlines of the most urgent applications (and
thus most important applications) will be met.

In [5], the authors propose two queues to handle bursty workload for stor-
age systems. Our work, on the other hand, studies the effect of employing a
secondary queue for distributed stream processing systems which, to the best
of our knowledge, has not been proposed before. This is a much more difficult
problem because: (1) stream processing applications are distributed and thus
the occurrence of a burst is not confined in one node, rather it can affect re-
mote nodes that run components of the same applications, and (2) distributed
stream processing applications have end-to-end deadlines which are affected by
all nodes running components of the applications. Our approach aims to meet
the end-to-end deadlines of the applications. Furthermore, in order to deal with
the unique requirements of the distributed stream processing systems, we have
made additional contributions: we have implemented several different scheduling
algorithms and we have studied the behavior of the two-queue structure under
these different scheduling strategies. In particular, we have implemented and
compared the following scheduling algorithms: least laxity scheduling, earliest
deadline first and first come first served.

280 D. Vu, V. Kalogeraki, and Y. Drougas

6 Conclusions

In this paper, we have investigated the problem of accommodating unpredicted
data bursts in streaming applications deployed over cloud computing infrastruc-
tures. Our approach takes into account the fluctuation nature of bursts and their
effects on existing applications, and employs two scheduling queues with differ-
ent scheduling policies. When bursts occur, any excess workload is diverted to
a secondary queue, where requests can be processed whenever the node has any
unused processing power. Our experimental results on our Synergy distributed
stream processing system show that our two-queue approach efficiently reduces
data unit drops, improves end-to-end delay compared to other popular single
queue approaches, and significantly mitigates the effects of bursts on non-bursty
applications.

Acknowledgements. This research has been supported by the European Union
through the Marie-Curie RTD (IRG-231038) Project and by AUEB through a
PEVE2 Project.

References

1. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.: Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain World. In: CIDR,
Asilomar, CA (January 2003)

2. Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Load
Shedding in a Data Stream Manager. In: VLDB 2003, Berlin, Germany, pp. 309–
320 (2003)

3. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani,
R., Srivastava, U., Widom, J.: STREAM: The Stanford Data Stream Management
System (March 2005)

4. Madden, S., Gehrke, J.: Query Processing in Sensor Networks. IEEE Pervasive
Computing, vol 3(1) (March 2004)

5. Lu, L., Varman, P., Doshi, K.: Graduated QoS by Decomposing Bursts: Don’t Let
the Tail Wag Your Server. In: ICDCS 2009, Montreal, QC, Canada, pp. 12–21
(June 2009)

6. Repantis, T., Gu, X., Kalogeraki, V.: Synergy: Sharing-Aware Component Com-
position for Distributed Stream Processing Systems. In: van Steen, M., Henning,
M. (eds.) Middleware 2006. LNCS, vol. 4290, pp. 322–341. Springer, Heidelberg
(2006)

7. Kalogeraki, V., Melliar-Smith, P.M., Moser, L.E.: Dynamic Scheduling of Dis-
tributed Method Invocations. In: IEEE Real-Time Systems Symposium (RTSS),
Orlando, FL (December 2000)

8. FreePastry (2006), http://freepastry.org/FreePastry
9. Drougas, Y., Kalogeraki, V.: RASC: Dynamic Rate Allocation for Distributed

Stream Processing Applications. In: International Parallel and Distributed Pro-
cessing Symposium (IPDPS), Long Beach, CA (March 2007)

10. Chen, F., Kalogeraki, V.: RUBEN: A Technique for Scheduling Multimedia Appli-
cations in Overlay Networks. In: Globecom 2004, Dalas, TX (November 2004)

http://freepastry.org/FreePastry

Efficient Stream Processing 281

11. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive Control
of Extreme-scale Stream Processing Systems. In: ICDCS 2006, Lisboa, Portugal
(2006)

12. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying FIT: Efficient Load Shedding Tech-
niques for Distributed Stream Processing. In: VLDB 2007, Vienna, Austria, pp.
159–170 (September 2007)

13. Chen, Y., Lu, C., Koutsoukos, X.: Optimal Discrete Rate Adaptation for Dis-
tributed Real-Time Systems. In: Real Time Systems Symposium (RTSS), Tucson,
AZ (December 2007)

14. Drougas, Y., Kalogeraki, V.: Accommodating Bursts in Distributed Stream Pro-
cessing Systems. In: 23rd International Parallel and Distributed Processing Sym-
posium (IPDPS), Rome, Italy (May 2009)

15. Amazon Elastic Computer Cloud (Amazon EC2), http://aws.amazon.com/ec2/
16. IBM Cloud Computing, http://www.ibm.com/ibm/cloud/
17. Drougas, Y., Kalogeraki, V.: RASC: Dynamic Rate Allocation for Distributed

Stream Processing Applications. In: International Parallel and Distributed Pro-
cessing Symposium (IPDPS), Long Beach, CA (March 2007)

http://aws.amazon.com/ec2/
http://www.ibm.com/ibm/cloud/

	Efficient Stream Processing in the Cloud
	Introduction
	System Model and Problem Formulation
	Scheduling Model
	Problem Formulation
	Laxity-Based Scheduling

	Our Two-Queue Scheduling Approach
	Performance Evaluation
	Experimental Setup
	Experimental Results

	Related Work
	Conclusions
	Acknowledgements.

	References

