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Xiaohan Kang, Juan José Jaramillo, and Lei Ying

Department of Electrical and Computer Engineering
Iowa State University, Ames IA 50011

{xkang,jjjarami,leiying}@iastate.edu

Abstract. We study admission control mechanisms for wireless access
networks where (i) each user has a minimum service requirement, (ii)
the capacity of the access network is limited, and (iii) the access point is
not allowed to use monetary mechanisms to guarantee that users do not
lie when disclosing their minimum service requirements. To guarantee
truthfulness, we use auction theory to design a mechanism where users
compete to be admitted into the network. We propose admission control
mechanisms under which the access point intelligently allocates resources
based on the announced minimum service requirements to ensure that
users have no incentive to lie and the capacity constraint is fulfilled. We
also prove the properties that any feasible mechanism should have.

Keywords: Auctions, truth-telling, admission control, resource
allocation.

1 Introduction

Resource allocation has been one of the most important issues in the design of
communication networks. Given a wireless access network, in which the users
have various QoS requirement and the access point has limited resource, admis-
sion control mechanisms are vital to achieve stability, fairness and efficiency of
the system. In this paper, we consider a wireless access network with multiple
users and a single access point. We assume that the access point network is a
public network, and is not allowed to charge users for accessing the network. We
study the case when the QoS requirements are private, and users are allowed
to selfishly disclose any value that would give them better service. Then the
problem is to design an admission control mechanism such that the true QoS of
the users can be collected without the use of any pricing scheme, and as many
users are admitted as possible. A natural choice is to set up a game with the
users, such that the selfish users are incentivized to tell the truth. Originated in
economics theory, auction mechanisms have been found very useful in this kind
of situation, since they are designed to entice selfish bidders tell the truth when
allocating limited resources.
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Various auction mechanisms have been well-studied. Myerson [1] has obtained
the optimal auction mechanism in closed form mathematical expression. His re-
sult, however, only works for limited utility functions without constraint over
the resource. The well-known VCG mechanism has been proved to guarantee
truth-telling while achieving the social optimum [2]. The challenge of design-
ing an effective auction mechanism in the proposed setting is the access point
is not allowed to charge the users, so the auction mechanism has to be non-
monetary. For example, using a simple example, it will be shown that the VCG
mechanism cannot be easily adopted in our scenario due to the non-monetary
requirement. Credit schemes that were developed to incentivize cooperation in
wireless networks could also be adapted to guarantee users do not lie about
their true requirements, but they would also require secure mechanisms to avoid
tampering with the virtual money [7], [8], [9], [10], [11], [12], [13]. Recently, Hou
and Kumar have proposed a bidding game between users and access point that
maximizes the total utility, but in the iterative process the users are forced to
bid specific values instead of bidding selfishly [4]. In this paper, we seek to design
auction mechanisms that are truthful and do not use any money-based scheme
for general utility functions.

Our contributions are therefore fourfold.

i. We model the admission control problem as an auction mechanism design
with resource constraint, where the payment is related to the allocated ser-
vice rate.

ii. We use a simple example to demonstrate that a direct adoption of VCG
auction mechanism does not work in the non-monetary setting.

iii. Third, we come to two theorems that help us understand the essence of
strategy-proof mechanisms. The first theorem (Theorem 2) shows the impos-
sibility of a reasonable truth-telling mechanism to be based on probabilistic
decisions, and the second theorem (Theorem 3) shows that the truthful-
ness of a mechanism is equivalent to the existence of a lowest winning bid
regardless of one’s own bid.

iv. We propose our mechanism and show that it has the desired properties and
admits at least half of the optimal number of users with high probability in
an asymptotic sense.

This paper is organized as follows. Section 2 gives the model of this problem and
the set of assumptions. Section 3 illustrates the failure of VCG in our setting.
Section 4 analyzes the problem and characterizes the properties for feasible auc-
tion mechanisms. Section 5 gives our proposed mechanism and shows feasibility
and the performance bound. Section 6 concludes this paper.

2 Model

Consider a multiple access network with n users and a single access point (AP),
where only one user can transmit at any given time. Let N = {1, 2, · · · , n} be
the set of all users. The service rate of the AP is assumed to be 1. Each user is
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assumed to have an arrival rate λi = 1 and a quality of service (QoS) qi, which
indicates the fraction of packages that has to be delivered successfully and is
only known to user i. We refer to ti = 1 − qi as the maximum allowed drop
rate of user i and suppose that the range of ti is Ti = [ai, bi] ⊂ [0, 1]. We let
T = T1 × T2 × · · · × Tn and T−i = T1 × T2 × · · · × Ti−1 × Ti+1 × · · · × Tn where
× denotes the Cartesian product.

In order to decide which users to serve and the QoS the AP should provide, the
AP sets up an auction, in which each user, or bidder, bids a requested drop rate
si ∈ Ti, which can be different from the true drop rate ti, and the AP decides the
set of users that get admitted and assigns drop rate xi to user i. By Myerson’s
revelation principle [1], we only consider direct revelation mechanisms, i.e., the
mechanisms in which users submit bids in the form of drop rate values rather
than in the form of any other strategies. Then the mechanism can be described
by the outcome functions (p, x), where p and x are the set of functions

p(s) = (pφ(s), φ ⊂ N )
x(s) = (xi,φ(s), φ ⊂ N )

with pφ : T → IR being the probability that only the subset of users φ of N get
admitted and xi,φ : T → IR being the actually assigned drop rate for user i if
the subset φ is admitted. For convenience we set xi,φ(s) to be the assigned drop
rate by mechanism (p, x) if i ∈ φ and pφ(s) > 0, and 1 otherwise, i.e., all packets
of user i are dropped, which is equivalent to not admitting user i.

The utility function for user i, given the true drop rate ti and the assigned
drop rate xi, is ui(ti, xi). It is assumed that ui is non-increasing with xi when
xi ≤ ti, and equals 0 when xi > ti.

Given mechanism (p, x), the utility for user i with true drop rate ti, bidded
drop rate si and others bidding s−i is

Ui(p, x, ti, si, s−i) =
∑

φ:i∈φ
ui(ti, xi,φ(s))pφ(s) . (1)

Throughout the paper we evaluate the utility of one user by examining each of
the possible bid vectors of other users.

We now present some definitions we will use throughout the paper.

Definition 1 (Incentive compatibility - IC). A mechanism (p, x) is incen-
tive compatible if for any utility function, any i ∈ N , any t ∈ T and any si ∈ Ti,
we have

Ui(p, x, ti, ti, t−i) ≥ Ui(p, x, ti, si, t−i) (2)

where U(·) is defined in (1). That is any possible true drop rate vector t is a
Nash equilibrium, in which any user has no incentive to lie if all the other users
bid their true drop rates.

Definition 2 (Weak-incentive compatibility - weak-IC). A mechanism
(p, x) is weakly-incentive compatible if for any utility function, for any i ∈ N
and any si ∈ Ti, we have
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Ui(p, x, ti, ti, t−i) ≥ Ui(p, x, ti, si, t−i), ∀t ∈ T ∗ (3)

for some T ∗ ⊂ T with L(T \T ∗) = 0, where L(·) is the Lebesgue measure.

Definition 3 (Feasibility). A mechanism (p, x) is feasible if it satisfies

i. Probability constraint (P):
For any φ ⊂ N and any t ∈ T ,

∑

ψ⊂N
pψ(t) = 1 and pφ(t) ≥ 0 . (4)

ii. Capacity constraint (CC):
For any i ∈ N , any t ∈ T , and any φ ⊂ N with pφ(t) > 0,

∑

j∈φ
(1 − xj,φ(t)) ≤ 1 and xi,φ(t) ≥ 0 . (5)

iii. Individual rationality (IR):
For any φ ⊂ N with pφ(t) > 0, any t ∈ T , and any i ∈ φ,

xi,φ(t) ≤ ti . (6)

iv. Incentive compatibility (IC) in (2).

Note that IC is also known as strategy-proofness or truthfulness.

Definition 4 (Weak-determinism - weak-D). A mechanism (p, x) is weakly-
deterministic if for any t ∈ T and any i ∈ N ,

(∀j ∈ N , j �= i⇒ tj �= ti) ⇒
∑

φ:i∈φ
pφ(t) ∈ {0, 1} .

That is, for a given bid vector t, if user i is the only one who bids ti, then either
the user always gets admitted, or the user never gets admitted.

Definition 5 (Determinism - D). A mechanism (p, x) is deterministic if
there exists a function ψ : T → P(N ) such that for any t ∈ T ,

pφ(t) =

{
1 if φ = ψ(t)
0 otherwise

where P(A) is the power set of A. Determinism implies that the winning set is
always unique. We call ψ(·) the winning set function.

Note that for a deterministic mechanism (p, x) we can have the payment denoted
as

xi(t) =

{
xi,ψ(t)(t) if i ∈ ψ(t)
1 otherwise

. (7)
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Definition 6 (Anonymity). A mechanism (p, x) is anonymous if for any t ∈
T , any π ∈ Γn, and any φ ⊂ N ,

p(π(t)) = π(p(t))
xφ(π(t)) = π(xφ(t))

where Γn is the set of all permutations of n indices. That is, the outcome of the
auction does not depend on the identity of the bidders.

Definition 7 (Monotonicity). A mechanism (p, x) is monotonic if for any
i ∈ N , any t−i ∈ T−i, and any si, s′i ∈ Ti with si < s′i,

∑

φ:i∈φ
pφ(t−i, si) ≤

∑

φ:i∈φ
pφ(t−i, s′i) .

That is, given that others’ bids are fixed, a user’s chance of getting admitted
should not decrease when the user bids higher.

We are interested in feasible auction mechanisms that are weakly-deterministic,
anonymous and monotonic. Feasibility implies that the decision is in the ca-
pacity region, no user is forced to participate, and no one has incentive to lie
about his type. Weak-determinism, anonymity and monotonicity are properties
we consider desirable for a fair mechanism.

3 VCG Auctions without Money

In this section we show why a simple VCG algorithm is not suitable for our
problem.

3.1 VCG Auctions

In this section we temporarily turn our attention to deterministic mechanisms
(p, c), where p : T → {0, 1}n is the indicator function of users’ admittance and
c : T → IRn is the payment, which can be money.

We say that a mechanism (p, c) is called a VCG mechanism [5] if

p ∈ argmax
p′

∑

i

θi(ti)p′i(t)

and for any i ∈ N , there exists hi : T−i → IR such that

ci(t) = hi(t−i) −
∑

j �=i
θj(tj)pj(t)

where θi(·) is the valuation function of user i in [5].
It has been proved that the VCG mechanism satisfies IC in (2) [5]. Usually

the functions hi’s are chosen according to the Clarke pivot rule, that is,

hi(t−i) = max
p′

∑

j �=i
θj(tj)p′j(t)
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and it can be shown that with Clarke pivot rule, IR is always satisfied and hi ≥ 0
[5]. Intuitively, user i pays an amount equal to the total damage that the user
causes to the other users. Then the utility for user i given bid vector t is

ui(p, c, t) = θi(ti)pi(t) − ci(t) .

Notice that the utility function is quasi-linear with payment function c [6].

3.2 Adaptation of VCG Auctions to Money-Free Scenario

In this subsection we apply a simple VCG auction mechanism in this money-free,
capacity-constrained scenario and show why it is not suitable.

Let us consider the deterministic mechanism above. Let θi(ti) = ti and use
the Clarke pivot payment

ci(t) = max
p′

∑

j �=i
tjp

′
j(t) −

∑

j �=i
tjpj(t)

then we have 0 ≤ ci(t) ≤ ti. We consider the drop rate as the payment for those
admitted users, that is,

xi(t) =

{
ci(t) if pi(t) = 1
1 otherwise

then this drop rate is well defined and is no larger than ti. The utility function
for user i would be

ui(p, x, t) =

{
ti − xi if pi(t) = 1
0 otherwise

and is quasi-linear with x.
However, one may wonder if CC in (5) is still satisfied, since xi(t) ≤ ti for

pi(t) = 1. The answer is no. To see this, we consider the following simple example.

Example 1. Let n = 3 and t = (0.6, 0.6, 0.2), then the optimal decision should
be φ = {1, 2}, that is, the first two users are admitted. If either of the first two
users is removed, the optimal decision will be admitting the other of the two
only, so the harm is 0. If user 3 is removed, nothing changes, so the harm is still
0, then we have the payment

c(t) = {0, 0, 0}
and the drop rate

x(t) = {0, 0, 1}
which violates CC because the QoS’s of the first two users are then both 1, which
cannot be supported by the AP simultaneously.

In summary, even though the simple VCG auction satisfies P, IR, IC, and
maximizes the number of admitted users, it does not fulfill the CC constraint.
Therefore the simple VCG algorithm is not a feasible mechanism for our scenario.
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3.3 Further Analysis of the Failure of VCG

The failure comes from the interaction between the allocation results and the
payment. As we mentioned above, to make a VCG algorithm work, the utility
function has to be quasi-linear, where the payment is the linear part which can be
freely chosen after allocation decision is made. This kind of behavior resembles
money. Without money, however, the choice of drop rate has a feedback effect
on the allocation decision, which leads to a violation on the capacity constraint.

Hence the lack of monetary payments makes VCG auction mechanisms not
feasible. Thus, we must come up with better solutions in our setting.

4 Analysis of the Problem

In this section we analyze feasible strategy-proof mechanisms in non-monetary
scenarios. We start with a mechanism (p∗, x∗), which is inspired by the uniform-
price auction [2]. We then show the flaws of (p∗, x∗) and prove the general prop-
erties of feasible strategy-proof non-monetary auction mechanisms.

4.1 The First Mechanism

We now propose the mechanism (p∗, x∗), and prove that this mechanism satisfies
the capacity constraint and weak-IC in (3), and admits at least half of the
maximal possible number of users. After that we point out the flaws of the
weak-IC concept.

Given bid vector t ∈ T , the mechanism (p∗, x∗) is described as follows.

Step i. Let α be a rearrangement of the indices such that tα(1) ≥ tα(2) ≥
· · · ≥ tα(n). If several users bid the same, just arrange them randomly.
Introduce a pseudo-bidder with tn+1 = 0 and α(n+ 1) = n+ 1.

Step ii. Find the largest index m∗ with 1 ≤ m∗ ≤ n such that m∗ · (1 −
tα(m∗+1)) ≤ 1. The winning set is ψ∗(t) = {α(1), α(2), · · · , α(m∗)}.

Step iii. Set the payment x∗i (t) = x∗(t) = tα(m∗+1) if i ∈ ψ∗(t).

The idea of the mechanism is basically that we start from the higher bidders
and try to admit as many users as possible, with payment equal to the highest
losing bid.

Notice that the rearrangement α and the winning set ψ∗ here might not be
unique if several users bid the same value, in which case both of them will be
probabilistic functions instead of deterministic functions. However, when there
are no two users bidding the same value, α and ψ∗ are deterministic functions.

Given the bids t ∈ T and a corresponding rearrangement α, we let

σi(t) = tα(i), 1 ≤ i ≤ n+ 1

and
σ(t) = (σ1(t), σ2(t), · · · , σn+1(t))
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where σ(t) is the unique sorted vector of t with σ1(t) ≥ σ2(t) ≥ · · · ≥ σn+1(t),
regardless of the possible different choices of α. Then the index chosen in step ii
is a function of the bids given by

m∗(t) = max{m ∈ N|m · (1 − σm+1(t)) ≤ 1}

where m∗(t) is always well-defined because

1 · (1 − tα(2)) ≤ 1 .

Similarly, the payment for those admitted users is also determined by

x∗(t) = tα(m∗(t)+1) .

Example 2. Let the bid vector be t = (t1, t2, t3, t4) = {0.5, 0.6, 0.7, 0.6}.

Step i. The rearrangement could be α = (α(1), α(2), α(3), α(4), α(5)) =
(3, 2, 4, 1, 5). (α could also be (3, 4, 2, 1, 5)) So tα(1) ≥ tα(2) ≥ tα(3) ≥
tα(4) ≥ tα(5) = 0 and the sorted vector of t is σ(t) = (0.7, 0.6, 0.6, 0.5).

Step ii. 2 · (1 − 0.6) = 0.8 ≤ 1 and 3 · (1 − 0.5) = 1.5 > 1, so m∗(t) = 2 and
the winning set is ψ∗(t) = {2, 3} since α = (3, 2, 4, 1, 5). (ψ∗(t) would
be {3, 4} if α = (3, 4, 2, 1, 5).)

Step iii. The payment for either of the two winners is x∗(t) = tα(3) = t4 = 0.6.
(Note that if α = (3, 4, 2, 1, 5), then x∗(t) would still be 0.6.)

Lemma 1. The mechanism (p∗, x∗) satisfies the P, CC, IR and weak-IC
constraints.

The proof of Lemma 1 is deferred to Appendix A.1. Note that (p∗, x∗) does
not satisfy feasibility because it is not IC. To see this, just consider two users
bidding the same drop rate. The chance of getting admitted is half for either
user. However the chance of either user increases to 1 when he raises his bid by
a small amount and the other user keeps the original bid.

We now show that (p∗, x∗) admits at least half of the maximal possible number
of users.

Theorem 1 (Scalability of (p∗, x∗)). For any true value of drop rate t ∈ T ,
if there exists some feasible mechanism that admits M users, then (p∗, x∗) can
admit at least 
M2 � users.

The proof of Theorem 1 is deferred to Appendix A.2.
The problem about (p∗, x∗) is that it is only weakly-IC but not IC. This

means that if equal bids happen, although with low probability, users might
have incentive to lie. For example, in a two-user case, if both users bid the same
value, each of them would have half chance of getting admitted. But if one of
them increases his bid by a small amount, he would win with the same payment
and probability 1. Thus indistinguishable bids make (p∗, x∗) fail for IC.
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4.2 Impossibility for Probabilistic Decisions of Equal Bids

We now show that to fulfill strict IC with some assumptions mentioned above, a
weak-deterministic mechanism has to be deterministic. That is, if several users
bid exactly the same value, then the only choice for guaranteeing truth-telling
is to admit either all or none of them.

Theorem 2 (Impossibility). For a mechanism (p, x) that satisfies P, IR, IC,
anonymity and monotonicity, (p, x) is weakly-deterministic if and only if (p, x)
is deterministic. That is, (p, x) admits either all or none of the equal bids.

The proof of Theorem 2 is omitted due to the page limit and can be found in
[16].

We should note that (p∗, x∗) is weakly-deterministic because users might be
randomly admitted when bidding the same. Then by Theorem 2, to achieve
IC we need to design deterministic mechanisms, that is, mechanisms with only
deterministic outcomes.

4.3 Lowest Winning Bid Theorem

We further show that any deterministic mechanism with IC must be illustrated
by a lowest winning bid function.

Definition 8 (Lowest winning bid mechanism). A deterministic mecha-
nism (p, x) is a lowest winning bid mechanism if there exists some function
z : T−i → Ti such that for any t−i ∈ T−i,

{
if si ≥ z(t−i) then i ∈ ψ(t−i, si) and xi(t−i, si) = z(t−i)
if si < z(t−i) then i /∈ ψ(t−i, si) and xi(t−i, si) = 1

where ψ(·) is the winning set function of (p, x) defined in the definition of deter-
minism (Definition 5).

The function z(·) is called the lowest winning bid function of (p, x).

Theorem 3 (Lowest winning bid). A deterministic mechanism satisfies IC
if and only if it is a lowest winning bid mechanism.

The proof of Theorem 3 is omitted due to the page limit and can be found in
[16].

The lowest winning bid theorem shows us what a deterministic truth-telling
mechanism should look like. Notice that no other assumptions are needed for this
theorem, so it remains valid in a general setting. More importantly, this theorem
gives us an efficient approach to design deterministic truth-telling mechanisms.

Although Theorem 3 does not work for (p∗, x∗) due to weak-determinism, we
do have the following similar result.

Lemma 2 (Infimum winning bid function for (p∗, x∗)). Under mechanism
(p∗, x∗), knowing others’ bid t−i, the infimum of user i’s winning bids is given
by

z̄∗(t−i) = min{σj(t−i)|j(1 − σj(t−i)) ≤ 1} . (8)
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The proof of Lemma 2 is deferred to Appendix A.3.
Note that z̄∗(t−i) is not the lowest winning bid for user i because bidding this

value does not guarantee winning.

5 Our Proposed Mechanism

Now we introduce the mechanism (p∗∗, x∗∗), which is a truth-telling mechanism
based on the previous (p∗, x∗). We first construct (p∗∗, x∗∗) by the so-called
lifting trick. After that we show that (p∗∗, x∗∗) is feasible, and has very close
performance to (p∗, x∗) in an asymptotic sense.

5.1 Lifting Trick

Let

z∗∗(t−i) =

⎧
⎪⎨

⎪⎩

z̄∗(t−i) + a(1 − max
j �=i
tj �=1

tj) if tk �= 1 for some k ∈ N

1 otherwise
(9)

where 0 < a < 1 is a constant. Recall that z̄∗(·) here is the infimum winning bid
function of (p∗, x∗) in (8). We note that (p∗∗, x∗∗) is a deterministic mechanism
based on the lowest winning bid function z∗∗ in (9) and by Theorem 3 we know
that (p∗∗, x∗∗) satisfies IC. Pictorially, we lift one corner of the infimum winning
bid function z̄∗, so that bidding the new function guarantees winning.

Example 3. Take a = 0.1 in (9). Again, let the bid vector be t = (t1, t2, t3, t4) =
{0.5, 0.6, 0.7, 0.6}. By (8) we can calculate the infimum winning bid under (p∗, x∗)
for each user:

z̄∗(t−1) = z̄∗(0.6, 0.7, 0.6) = 0.6 ,
z̄∗(t−2) = z̄∗(0.5, 0.7, 0.6) = 0.6 ,
z̄∗(t−3) = z̄∗(0.5, 0.6, 0.6) = 0.6 ,
z̄∗(t−4) = z̄∗(0.5, 0.6, 0.7) = 0.6 .

Then the lowest winning bid under (p∗∗, x∗∗) for each user is

z∗∗(t−1) = z̄∗(t−1) + a(1 − max
j �=1

tj) = 0.63 ,

z∗∗(t−2) = z̄∗(t−2) + a(1 − max
j �=2

tj) = 0.63 ,

z∗∗(t−3) = z̄∗(t−3) + a(1 − max
j �=3

tj) = 0.64 ,

z∗∗(t−4) = z̄∗(t−4) + a(1 − max
j �=4

tj) = 0.63 .

Since only user 3’s bid is higher than or equal to his lowest winning bid, we have
the winning set ψ∗∗(t) = {3} and x∗∗3 (t) = 0.64.
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5.2 Properties of (p∗∗, x∗∗)

Lemma 3. (p∗∗, x∗∗) is feasible, and 0 ≤ z∗∗(t−i) ≤ 1 for any t−i ∈ T−i.

The proof of Lemma 3 is deferred to Appendix A.4.
Now we show that (p∗∗, x∗∗) has very close performance to (p∗, x∗) in an

asymptotic sense. Assume that the drop rate vector t is drawn from a distribution
with joint probability density function f : T → IR+. Then, we have the following
theorem.

Theorem 4. If the distribution function f is bounded by K, the probability that
(p∗∗, x∗∗) behaves differently from (p∗, x∗) is at most aK.

The proof of Theorem 4 is deferred to Appendix A.5.
We notice from Theorem 4 that the probability of different behaviors between

the two mechanisms is of order O(a).

6 Conclusion

In this paper, we studied the problem of designing a strategy-proof non-monetary
auction mechanism for wireless networks. The motivation is to let the users tell
the truth when bidding their resource requirements, and to admit as many users
as possible. We gave a general model for this problem and showed that due
to the lack of monetary payments in this scenario, a simple adoption of VCG
mechanism would violate the capacity constraint. We analyzed the problem and
found some properties that any strategy-proof auction mechanism should satisfy.
Finally we proposed a feasible mechanism which is truthful even with equal bids,
and showed that it could admit at least half of the maximal number of users
with high probability in an asymptotic sense.

As possible topic for future work, discrete pricing models might be consid-
ered rather than continuous pricing models. Also, the assumption of weak-
determinism could be weakened, and more specific utility functions could be
considered for better performance. Furthermore, the lower bound of the number
of admitted user might be improved.
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A Appendix

A.1 Proof of Lemma 1

i. Probability constraint (P)
The probability constraint is obviously satisfied. For those t such that the
winning set ψ∗(t) is determined,

∑
φ⊂N pφ(t) = pψ∗(t)(t) = 1. For those t

such that there areM possible winning sets, the probability for each of them
would be 1

M and
∑

φ⊂N pφ(t) = M · 1
M = 1.

ii. Capacity constraint (CC)
For any t ∈ T , for any φ ⊂ N with pφ(t) > 0,

∑

i∈φ
(1 − x∗i,φ(t)) = m∗(t) · (1 − x∗(t))

= m∗(t) · (1 − tα(m∗(t)+1)

)

≤ m∗(t) · 1
m∗(t)

= 1 .

Also x∗i,φ(t) ≥ 0. Thus, (p∗, x∗) satisfies CC.
iii. Individual rationality (IR)

For any t ∈ T , any φ ⊂ N with pφ(t) > 0, and any i ∈ φ,

x∗i,φ(t) = x∗(t) = tα(m∗(t)+1) ≤ ti .

iv. Weak-incentive compatibility (weak-IC)
We only consider the set of distinguishable bid vectors

TD = {t ∈ T |ti �= tj∀i �= j}

that is, the set of bid vectors with no equal bids from any two users. For
t ∈ TD and i ∈ N , the result of user i bidding si would be

p∗i (t−i, si) =

⎧
⎪⎨

⎪⎩

1 if si > x∗(t)
1
2 if si = x∗(t)
0 if si < x∗(t)

with payment x∗i (t−i, si) = x∗(t) if admitted. Note that p∗i (t−i, si) = 1
2 when

si = x∗(t) since there is only one other user who bids x∗(t).
We first consider the case of i ∈ ψ∗(t). We then have ti > x∗(t). If si >

x∗(t), then user i still gets admitted with the same payment. If si < x∗(t),
then user i gets rejected. If si = x∗(t), then user i either gets admitted with
the same payment, or get rejected, both of which have probability 1/2. So
user i cannot get better utility in the first case.
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We then consider the case of i /∈ ψ∗(t). Now we have ti < x∗(t). If
si > x∗(t), then user i gets admitted with payment x∗(t) higher than true
value ti. If si < x∗(t), the user i still does not get admitted. If si = x∗(t),
then user i either gets admitted with payment too high to accept, or does
not get admitted at all, both of which have probability 1/2. So user i cannot
get better utility in the second case.

Thus, for any t ∈ TD, no user has incentive to lie. As T \TD has measure
zero, we have weak-IC.

�

A.2 Proof of Theorem 1

Suppose (p∗, x∗) admits only m users, that is,

m∗(t) = m

and (p̄, x̄) has a chance of admitting at least 2m + 2 users given bid vector t,
that is,

∃φ ⊂ N , |φ| ≥ 2m+ 2, p̄φ(t) > 0 .

Then we have
∑

i∈φ
(1 − x̄i,φ(t)) ≥

∑

i∈φ
(1 − ti) (10)

≥
2m+2∑

i=1

(1 − σi(t))

≥
2m+2∑

i=m+2

(1 − σi(t))

≥ (m+ 1)(1 − σm+2(t))
> 1 (11)

where the inequality (10) comes from IR and (11) comes from the definition of
the mechanism.

Thus (p̄, x̄) admits at most 2m+ 1 users. This is equivalent to the statement
that if some feasible mechanism admits M users, (p∗, x∗) can at least admit 
M2 �
users. �


A.3 Proof of Lemma 2

This can be checked by directly going through the process of (p∗, x∗). If ti >
z̄∗(t−i), we can see that x∗(t) = z̄∗(t−i) < ti, so user i wins. If ti < z̄∗(t−i), we
have x∗(t) ≥ ti, so user i loses. If ti = z̄∗(t−i), user i wins with some probability
between 0 and 1, which depends on the number of users bidding z̄∗(t−i). �


A.4 Proof of Lemma 3

P comes from determinism. IR comes from the definition of lowest winning bid
mechanisms. IC comes from Theorem 3. So only the proof of CC requires some
more effort.
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By the construction of z∗∗(·) in (9), we have for any t−i ∈ T−i with tk �= 1 for
some k ∈ N\{i}, z∗∗(t−i) > z̄∗(t−i). Then by Lemma 2, we note that (p∗∗, x∗∗)
is stricter than (p∗, x∗), that is, for any t ∈ T , if user i gets admitted in (p∗∗, x∗∗),
then user i also gets admitted in (p∗, x∗). Let ψ∗∗(t) be the winning set function
of (p∗∗, x∗∗). Fix t ∈ T , for any ψ with p∗ψ(t) > 0, we have

∑

i∈ψ∗∗(t)

(1 − x∗∗i (t)) =
∑

i∈ψ∗∗(t)

(1 − z∗∗(t−i)) (12)

≤
∑

i∈ψ∗∗(t)

(1 − z̄∗(t−i)) (13)

≤
∑

i∈ψ
(1 − z̄∗(t−i)) (14)

=
∑

i∈ψ
(1 − x∗i,ψ(t)) (15)

≤ 1 (16)

where (12) comes from the definition of (p∗∗, x∗∗), (13) and (14) comes from the
fact that (p∗∗, x∗∗) is stricter than (p∗, x∗), (15) comes from the definition of
(p∗, x∗), (16) is because (p∗, x∗) satisfies CC.

If all bids in t−i are 1, then z∗∗(t−i) = z̄∗(t−i) = 1. Otherwise, for any
t−i ∈ T−i with some entry not equal to 1,

z∗∗(t−i) = z̄∗(t−i) + a(1 − max
j �=i
tj �=1

tj)

≤ max
j �=i
tj �=1

tj + a(1 − max
j �=i
tj �=1

tj)

≤ max
j �=i
tj �=1

tj + (1 − max
j �=i
tj �=1

tj)

≤ 1 .

Since z∗∗(t−i) ≥ z̄∗(t−i) ≥ 0, we get 0 ≤ z∗∗(t−i) ≤ 1. �


A.5 Proof of Theorem 4

Let T be the vector of random variables with values taken in T , and as usual
let Ti and T−i be the corresponding components. Note that T ⊂ [0, 1]n. Then
the probability that (p∗∗, x∗∗) and (p∗, x∗) have different results is

D = Pr (z̄∗(T−i) < Ti < z∗∗(T−i) for some i)

≤
n∑

i=1

Pr (z̄∗(T−i) < Ti < z∗∗(T−i))
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=
n∑

i=1

∫

Bi

f(t)dt

≤
n∑

i=1

L(Bi)K

where
Bi = {t ∈ T |z̄∗(t−i) < ti < z∗∗(t−i)}

and L(·) denotes the Lebesgue measure. Then

L(Bi) =
∫

Bi

1dt

=
∫

T−i

∫ z∗∗(t−i)

z̄∗(t−i)

1dtidt−i

≤
∫

[0,1]n−1
(z∗∗(t−i) − z̄∗(t−i))dt−i

=
∫

[0,1]n−1
a(1 − max

j �=i
tj)dt−i

= a− a

∫

[0,1]n−1
max
j �=i

tjdt−i

= a− a
n− 1
n

=
a

n
.

Thus
D ≤ aK .

�
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