
P. Sénac, M. Ott, and A. Seneviratne (Eds.): ICWCA 2011, LNICST 72, pp. 33–43, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

How Network Reverse Engineering Differs from
Software Reverse Engineering

Hui Zhou and Wencai Du

College of Information Science & Technology, Hainan University
Renmin Ave No.58, Haikou, China, 570228

h.zhou.china@gmail.com, wencai@hainu.edu.cn

Abstract. Software reverse engineering has undergone many milestones and
stepped from research to industry quickly in recent ten years. By analogy,
researchers have found that it is also possible to apply reverse engineering to
computer networks. The goal of network reverse engineering is to annotate a
living map of the networks, which exhibits node role, link connectivity,
topology dynamics, and bandwidth usage. It is necessary, but also challenging,
to employ reverse engineering to computer network. We present an
comparatively analysis on the reverse engineering of both software and network
from five fundamental perspectives: source, analysis, presentation, validation,
and prediction. The comparison indicates that both software and network
communities would benefit from the collaborative effort on reverse
engineering.

Keywords: Network reverse engineering, software reverse engineering.

1 Introduction

Software reverse engineering is, in practice, one of the most important endeavors in
software engineering. This stems from the fact that software systems are complex and
often poorly specified and documented. As a result, software practitioners need to spend
a substantial amount of time understanding the source code from a structural and
behavioral perspective, before carrying out any maintenance task. In this context, most
reverse engineering processes follow the same pattern: a program is analyzed through
static or dynamic analysis and the collected low-level program information is
transformed into a higher level, more abstract presentation. The presentation helps
engineers better understand the rationale of the code and thus facilitate future refactoring.

From networking standpoint, reverse engineering is the process of analyzing a
target network so as to identify the design of network and create presentations.
Specifically, we take “design” to mean how its components, e.g. node, link and
internal networks, are assembled and configured, as well as runtime properties
including link available bandwidth, node congestion status, and end-to-end packet
transmission delay.

It has become obviously necessary to employ reverse engineering to computer
networks, and there have been a few experimental studies on this [1]. However,

34 H. Zhou and W. Du

network reverse engineering is a challenging task. The key reason is that the design of
the Internet can’t provide explicit support for end nodes to obtain information about
the network internals. A network typically consists of many small networks; such
networks are under different administrative control, so there is no single place from
which one can obtain a complete picture of the specified target network. Furthermore,
the Internet is so heterogeneous that an approach found to be useful in a certain
networks may not be effective elsewhere [2].

To reverse engineer the computer networks, we not only need to study network
technology, but also need to understand software engineering. We argue that a
collaborative effort of software and network domains would achieve significantly
more than the isolated efforts of individuals. This paper tries to answer questions like
“how does the reverse engineering of software and network differ?” and “can they
benefit from each other?” To do so, we analyze both software reverse engineering and
network reverse engineering from five basic perspectives: source, data analysis,
presentation, validation, and prediction.

This paper is organized as follows. Section 2 first summarizes the recent progress
on computer network reverse engineering. Section 3 analyzes the reverse engineering
techniques of both software and networking, and then Section 4 concludes the paper
with a short discusses.

2 Related Works

The field of software reverse engineering and its closely related fields, such as
program comprehension or software analysis, have undergone many successes over
the past 20 years. In addition, software reverse engineering environment has been
equipped with various intelligent tools: extractors, analyzers, and repositories [3].
During the same time, along another thread, network community has introduced quite
a few measurement systems to gathering and presenting the information of network
properties [4]. The theories, protocols, techniques, tools, overlay framework, and the
released data archives have initially make up the main body of network reverse
engineering.

The reverse engineering of computer network mainly starts from measurement.
Specifically, a router can be configured to passively record the information about its
own performance, e.g. the number of packets received/sent by each of its network
interface cards (NICs). A typical example is network traffic monitoring. Fig. 1
illustrates the bytes sent through the USENET bulletin board system, averaged over
two-week intervals [5].

Furthermore, the measurement literature can further be classified according to
different targets: node, link, topology, and packet pattern. Learning the role that a
node plays is the first step to understand the network. Basically, each node has one of
the following roles: client host; access router that aggregates the traffic from clients;
and backbone router that transmits a large volume of traffic. The role problem has
been frequently addressed, e.g. Rocketfuel [6] uses IP prefixes, DNS information, and
topological ordering to identify role. In addition, many tools search for the bottleneck
node with diverse heuristics [7].

 How Network Reverse Engineering Differs from Software Reverse Engineering 35

Besides node, link is another important component. Generally, a link is the IP
connection between two nodes that are only one IP-hop away from each other. Much
research has been done to capture the usability, delay, and bandwidth capacity of a
single link. Recently, the research community extends the study of link to end-to-end
path, which can be regarded as a line of connected links. Measuring the properties of
a path is very meaningful since it enables us to better understand how packets flow
between nodes. For example, variation in the transmission delay of path is both a
problem for time-critical traffic and a key indication of network congestion.
Typically, tools use Internet control message protocol (ICMP) [8] timestamps to
estimate the delay variation.

Finally, topology auto-discovery has strongly driven the study of active probing
measurement. Network community has examined five categories of topologies: the
graphs of connections between autonomous systems (ASs) [6], the point-of-presence
(POP) topologies that interpret the structure of backbone using geography
information, the IP-level topologies whose nodes are IP addresses and whose links are
connections between the IP addresses, the router-level topologies that resolve IP
aliases and group the IP addresses in the unit of router, and the connectivity of
physical components, including routers, switches, and bridges. In particular, the
router-level topology has attracted more interest than the others because it establishes
the basis of AS and POP topologies, gives a more operational picture than the IP
topology. As an example, Fig. 2 gives the result of a topology discovery work; the
target network is Abilene backbone, i.e. an educational IPv6 network in America [9].

3 Comparative Analysis

We comparatively analyzed the reverse engineering of software and network from
five basic perspectives: source, data analysis, presentation, validation, and prediction.
The following analysis isn’t exhaustive since we can’t cover every aspect, but it offers
a skeletal picture on the differences of software reverse engineering and network
reverse engineering, and highlights the challenges faced by the network community.

3.1 Source

The source of software reverse engineering is code and code-related files such as log.
Generally, software reverse engineering depends on performing some analysis of the
source code in order to produce one or more models of the system under analysis.
Generally, source code is written by software engineers according to the well-
designed specification of programming languages, e.g. ASM, Pascal, C/C++, and
Java. A language often comes with a specification, to which compiler developer and
software engineer must conform. Furthermore, the coding process is supported by
various integrated development environments. As a result, no matter how well
(or bad) the code is organized, software reverse engineering tools is built on a solid
basis, i.e. the tools do understand the exact meaning of each line of code.

36 H. Zhou and W. Du

Fig. 1. USENET traffic monitoring information [4]

Fig. 2. The discovered topology of Abilene backbone [9]

Unlike the source of software reverse engineering, the one of network reverse
engineering mainly comes from measurement, and it is highly volatile. The volatility
can be perceived in almost every parameter that we attempt to measure. For example,
the round-trip time (RTT) of a pair of nodes is an important metric of network
performance. Generally, RTT can be used as an indicator of end-to-end transmission
quality. Here we attempt to measure the RTT of a short path, i.e. two directly

 How Network Reverse Engineering Differs from Software Reverse Engineering 37

connected computers C1 and C2. First, C1 sends an ICMP echo-request packet to C2.
When C2 receives the packet, it immediately sends an ICMP echo-reply packet back
to C1. In each active probe, the time from sending out an ICMP echo-request to
receiving the corresponding echo-reply is regarded as a candidate of RTT. As shown
in Fig. 3, the RTT is ever-changing with network traffic and time.

3.2 Data Analysis

To analyze the source code, a software reverse engineering tool will first scan the
source code. In most cases, reverse engineering tool assumes that the target source
files won’t undergo any change during the scan, which is done once and for all. In a
very limited time interval, the source of software is safe to be regarded as static, while
network is always a moving target. As a result, network tools must continuously
collect the information about the designated network, in a never-ending style.

Fig. 3. Round-trip time of two directly connected computers

38 H. Zhou and W. Du

Moreover, as to network reverse engineering, analyzing the data source is
challenging since it generally contains too much noises. But the analysis is valuable
since it often provide insight into the network. For example, Faloutsos et al. discover
some surprisingly simple power-laws of the network topologies [10]. These power-
laws hold for three topologies between November 1997 and December 1998, despite a
45% growth of its size during that period. As shown in Fig. 4, log-log plot of the out-
degree dv versus the rank rv in the sequence of decreasing out-degree.

Fig. 4. The rank plots on dataset Intel-98 [10]

3.3 Presentation

After analyzing the source, software reverse engineering tools generally use UML
diagrams to visualize the result. Historically, a rich set of diagrams have been
introduced by the software research community, and then been applied by the
industry. The diagrams, especially the class, activity and sequence diagrams, do
provide an abstract and easy-to-understand picture of design, and lead to the
prosperity of software modeling.

Software reverse engineering presentation tools support two significant features:
design-code linkage and reuse. Specifically, in some reverse engineering tools, source
code can be modified by changing the UML diagrams in the presentation. In this way,
not only the code can be reorganized, but also some coding functions can be
generated by changing the presentation. Besides design-code linkage, the presentation
outputted by one tool generally can be reused by many others. For example, the UML
diagrams of Java code from Eclipse plug-in can easily be loaded into Rational Rose
since the presentations of both systems are UML-compatible.

Suppose that the presentation of software reverse engineering is a snapshot, the one
of network reverse engineering can be regarded as a video. The parameters of target
network can undergo changes as time passes, and thus lead to high dynamics. As
shown in Fig. 5, the IP conversations of LAN captured by Sniffer Pro, which is a

 How Network Reverse Engineering Differs from Software Reverse Engineering 39

network packet sniffing tool installed in one node [11]. Since the target network is
ever-changing, the presentation must trace the changes and output pictures that match.

Compared with software reverse engineering, the network reverse engineering
tools can’t support large-scale reuse since there isn’t a universal accepted presentation
standard. It is also hard to establish such a standard because each reverse engineering
tool is built to study a specific question and work in a specific network environment.

Fig. 5. IP conversations captured by Sniffer Pro in 9:00 – 9:06 PM

3.4 Validation

Usually, every reverse engineering tool needs to validate the correction of its result.
Validation is necessary since it enables us to make sure that the data analysis and
presentation is correct. However, validating the result of network reverse engineering
is a challenging task. Almost all network reverse engineering tools use measurement,
instead of the exact value, as data source to perform analysis and presentation. Thus,
different reverse engineering algorithms and tools may obtain different result even if
the target is the same. A step further, the key problem becomes: does the
measurement exactly match the real network situation?

Now suppose that we are validating the available bandwidth of a path, which is
defined as the minimum link available-bandwidth of all links along the path [7].
Therefore, the validation requires the information of all link available-bandwidth of
target paths. But if the path crosses multiple administrative areas, or it is long enough
(e.g. consist of more than six links), it becomes hard to obtain all link available-
bandwidth at a specific time [1].

To validate the available bandwidth of a path, researchers have introduced many
inspiring techniques. It seems that comparing the estimation result with closely
estimated bulk TCP throughput over the same path is a good idea [12]. However,
available-bandwidth and bulk TCP throughput are indeed different. The former gives
the total spare capacity in the path, independent of which transport protocol attempts

40 H. Zhou and W. Du

to capture it. While the latter depends on TCP’s congestion control. Fig. 6 typically
shows the measurement result of the available bandwidth of an end-to-end path,
which starts from Hainan University and ends at Chinese Academy of Sciences. In
particular, Cprobe [13] and BNeck [7] are installed on hosts inside Hainan, Pathload
[14] is installed in both end points, while TCP throughput is tested by maximized the
parallel TCP connections of Iperf [15]. It is apparent that there isn’t a curve that can
exactly match the other. Furthermore, since this end-to-end path traverses the
confidential networks of several ISPs, we can’t even validate which curve matches the
exact situation.

Fig. 6. Available-bandwidth measured by different tools

As a result, we are not able to completely validate end-to-end available bandwidth.
Furthermore, it is very hard to make sure the data we collect reflects the exact
network status, even if we have success experience on a limited number of networks.
The same problem is faced by almost all measurement techniques that rely on active
probing. And this thus makes the network reverse engineering more challenging than
its software counterpart.

3.5 Prediction

Recently, there is a growing need of reverse engineering tools to support the
prediction of changes in source. For example, through analyzing the history of the
lines of code, managers can predict the code scale of a Java program in the next
development iteration [3]. Surprisingly, though network contains much more noise
than stationary software source code, many useful rules have been extracted, and used
to predict the macro-behavior of networks.

Diurnal Patterns of Activity: It has been recognized for more than thirty years that
network activity patterns follow daily patterns, with human-related activity beginning

 How Network Reverse Engineering Differs from Software Reverse Engineering 41

to rise around 8-9AM local time, peaking around 11AM, showing a lunch-related
noontime dip, picking back up again around 1PM, peaking around 3-4PM, and then
declining as the business day ends around 5PM. The pattern often shows activity in
the early evening hours, rising around say 8PM and peaking at 10-11PM, diminishing
sharply after midnight. Originally, this second rise in activity was presumably due to
the “late night hacker” effect, in which users took advantage of better response times
during periods of otherwise light load.

Self-Similarity: Longer-term correlations in the packet arrivals seen in aggregated
Internet traffic are well described in terms of self-similar processes [16]. “Longer-
term” here means, roughly, time scales from hundreds of milliseconds to tens of
minutes. The traditional Poisson or Markovian modeling predicts that longer-term
correlations should rapidly die out, and consequently that traffic observed on large
time scales should appear quite smooth. Nevertheless, a wide body of empirical data
argues strongly that these correlations remain non-negligible over a large range of
time scales. While on longer time scales, non-stationary effects such as diurnal traffic
load patterns (see previous item) become significant. On shorter time scales, effects
due to the network transport protocols—which impart a great deal of structure on the
timing of consecutive packets—appear to dominate traffic correlations [17].

Heavy-Tailed Distributions: When characterizing distributions associated with
network activity, expect to find heavy tails. By a heavy tail, we mean a Pareto
distribution with shape parameter a<2. These tails are surprising because for a<2 the
Pareto distribution has infinite variance [17].

An important example is the application of best path selection. The availability of
multiple paths between sources and receivers enabled by content distribution, multi-
homing, and overlay or virtual networks suggests the need for the ability to select the
“best” path for a particular data transfer. A common starting point for this problem is
to define “best” in terms of the throughput that can be achieved over a particular path
between two end hosts for a given sized TCP transfer [12].

4 Conclusions

Can we reverse engineer the computer networks? Network reverse engineering is the
process of annotating a map of the designated network with properties such as: client
populations, features and workloads; network ownership, capacity, connectivity,
geography and routing policies; patterns of loss, congestion, failure and growth; and
so forth. Naturally, the urgent need of exploring network internals gives birth to the
network reverse engineering. The key challenge of network reverse engineering goes
with the birth of Internet: the design of network doesn’t provide explicit support for
end nodes to gain the information of network internals. The measurement approach
has led to many techniques, tools, and data, but it can’t achieve the goal alone.

Is the reverse engineering of software and network the same? From a general
perspective, the reverse engineering of both fields are the same in that it analyzes a
subject system to (1) identify the system’s components and their interrelationships
and (2) create representations of the system in another form or a higher level of
abstraction. Both software reverse engineering and network go through a roughly

42 H. Zhou and W. Du

common process: reading source, carrying out analysis, creating presentation,
validating result, predicting changes, and mining knowledge.

Is the reverse engineering of software and network different? Indeed, software
reverse engineering and its network counterpart are not the same things. They come
from different background, aiming at solving different problems, and have been
supported by two lines of methods, techniques, tools, applications, and so forth.
Specifically, their data sources come in two totally different forms, their analysis
require different knowledge and techniques, their presentation are based on sharply
different abstract models, their validation meets two domains of challenges, and
finally their prediction and data mining focuses on different emphases.

Can we benefit from the collaborative effort? Both software and network fields
have made an incredible number of contributions, and have learnt from each other at
various points. For example, RichMap uses snapshot concept to optimize its models
and fasten its presentation. Another example is that the patch dissemination system
can also optimize its delivery strategies according to the traffic load measured by
networking system [18]. We believe that both software and network communities can
strongly benefit from the collaborative effort on reverse engineering computer
networks, more than the hints illustrated by RichMap.

Acknowledgment. We gratefully acknowledge the financial support of the Project
211 supported coordinately by the State Planning Commission, Ministry of Education
and Ministry of Finance, China.

References

1. Zhou, H., Wang, Y.: RichMap: Combining the Techniques of Bandwidth Estimation and
Topology Discovery. Journal of Internet Engineering 1(2), 102–113 (2008)

2. Zhou, H., Wang, Y., Wang, X., Huai, X.: Difficulties in Estimating Available-bandwidth.
In: Proceedings of IEEE International Conference on Communications, pp. 704–709
(2006)

3. Kienle, H.: Building Reverse Engineering Tools with Components. Ph.D. Thesis,
Department of Computer Science, University of Victoria, Canada, 325 p (2006)

4. Labovitz, C., et al.: Internet inter-domain traffic. In: Proc. ACM SIGCOMM (2010)
5. Thompson, K., Miller, G., Wilder, R.: Wide-area Internet Traffic Patterns and

Characteristics. IEEE Network,10–23 (1997)
6. Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP Topologies with

Rocketfuel. IEEE/ACM Trans. Networking 12(1), 2–16 (2004)
7. Zhou, H., Wang, Q., Wang, Y.: Measuring Internet Bottlenecks: Location, Capacity, and

Available Bandwidth. In: Proceedings of International Conference on Computer Network
and Mobile Computing, pp. 1052–1062 (2005)

8. Postel, J.: Internet Control Message Protocol. IETF RFC 792 (September 1981)
9. Abilene Network, http://www.internet2.edu/abilene

10. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet
Topology. In: Proceedings of ACM SIGCOMM, Cambridge, USA (1999)

11. Sniffer Pro., http://www.netscout.com/
12. He, Q., Dovrolis, C., Ammar, M.: On the Predictability of Large Transfer TCP

Throughput. Computer Networks 51(14), 3959–3977 (2007)

 How Network Reverse Engineering Differs from Software Reverse Engineering 43

13. Carter, R., Crovella, M.: Measuring Bottleneck Link Speed in Packet-switched Networks.
Performance Evaluation 27(28), 297–318 (1996)

14. Jain, M., Dovrolis, C.: End-to-end Available Bandwidth: Measurement Methodology,
Dynamics, and Relation with TCP Throughput. IEEE/ACM Trans. Networking 11(4),
537–549 (2003)

15. Tirumala, A., Qin, F., Dugan, J., Ferguson, J., Gibbs, K.: Iperf - The TCP/UDP Bandwidth
Measurement Tool

16. http://dast.nlanr.net/Projects/Iperf/
17. Zhang, Y., Duffield, N., Paxson, V., Shenker, S.: On the Constancy of Internet Path

Properties. In: Proceedings of ACM SIGCOMM conference on Internet measurement,
pp. 197–211 (2001)

18. Paxson, V.: End-to-end Internet Packet Dynamics. In: Proceedings of ACM SIGCOMM
(1997)

19. Gkantsidis, C., Karagiannis, T., Vojnovi, M.: Planet Scale Software Updates. ACM
SIGCOMM Computer Communication Review 36(4), 423–434 (2006)

	How Network Reverse Engineering Differs from Software Reverse Engineering
	Introduction
	Related Works
	Comparative Analysis
	Source
	Data Analysis
	Presentation
	Validation
	Prediction

	Conclusions
	References

