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Abstract. In this work, we study a routing optimization problem in networks 
with shared risk link groups (SRLGs). Specifically, a path between a source and 
a destination is determined such that the combined path cost and the weight of 
SRLGs to which the links of the path belong is minimized. We develop 
evolutionary computation based algorithms to solve the problem. The 
performance of the proposed algorithms is evaluated via extensive simulation 
and is compared with the solutions obtained by integer linear programming and 
the heuristic algorithm in [1].  
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1   Introduction 

A shared risk link group (SRLG) is used to represent a set of links that are affected by 
a single failure (e.g., a failure in the physical layer such as a cable cut). The failure of 
any SRLG that a connection traverses will disrupt the service provided to the 
connection. A cost is also incurred on a link when it is used to provide the service to 
the connection. An link in a path introduces two component costs, one is the risk of 
an SRLG failure and the other is the link cost. The failure of an SRLG can be 
measured by a risk factor, e.g., the probability of failure. If the probability of failure of 
an SRLG i  is ip , the probability of no SRLG failure along a path can be calculated as 

(with standard independence assumptions) (1 )i ipΠ −  where i  is any SRLG that the 

path traverses, which can be expressed as a summation, ln(1 )ii
p−∑  , on the 

logarithmic scale. When provisioning a connection service for a client, it is important 
for the network to minimize both the risk and cost of a route (where the cost can be 
monetary cost, delay, etc), i.e., the accumulative risk and cost on the route of the 
connection should be minimized. However, it may not be possible to minimize the 
two potentially conflicting objectives simultaneously. The problem is then to 
determine a path that minimizes a combined cost in a network with SRLGs and finds a 
tradeoff between the two objectives. 
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The solution to this problem can be used to calculate a risk bounded and delay 
bounded path for a connection, or to design algorithms that find a pair of low-cost 
SRLG-diverse paths between a source and a destination for survivable service 
provisioning. In SRLG diverse routing, a demand requires two paths in the network, 
one working path and one protection path, so that the service to the demand can be 
honored in case of a single network failure, such as a fiber cut. The diverse routing 
problem in networks is to find a pair of paths between a source and a destination 
such that no single failure in the network may cause both paths to fail.  The diverse 
routing problem in networks with generally defined SRLG failures has been proved 
to be NP  -complete [2] where an SRLG may include an arbitrary group of links. In 
addition, finding a pair of least cost SRLG-diverse routes is also NP  -complete [2]. 
This problem can be solved in polynomial time under some special definition of 
SRLGs [3, 4]. In many cases, it is desirable for service providers to make sure that 
both the working path and backup path are risk-bounded and cost bounded to provide 
certain degree of quality of service and protection. 

In work [1], an ILP formulation and a heuristic algorithm for the minimum 
combined cost routing problem were presented. The heuristic is a Bellman-Ford style 
algorithm.  Instead of keeping routing information of the optimal path alone, the 
algorithm maintains at each node the routing information for the best k  routes from 
the source to the node, where k is a tunable parameter. The reason to keep k  routing 
entries at each node is that, unlike the single-metric minimum cost routing, given an 
optimal path from the source node src to the destination node dest , a subpath on the 
end-to-end optimal path may not be optimal for the two end nodes of the subpath 
when the combined path cost is considered. By maintaining multiple routing entries 
at a node, the algorithm has a better chance of obtaining the optimal path from the 
source. 

In this work, we develop evolutionary computation based algorithms to solve the 
minimum combined cost routing problem that minimizes the combined link and SRLG 
cost. The performance is evaluated via extensive simulation and compared with 
existing solutions.  A genetic algorithm (GA) is a type of evolutionary computation 
based search technique that finds true or sub-optimal solutions for optimization 
problems [5].  An individual solution is usually represented by a string, called a 
chromosome. The chromosome can be decoded to obtain a solution. A typical 
genetic algorithm imitates the evolutionary process of genetic population over 
generations. The objective of a genetic algorithm can be expressed as finding a string 
such that a function of the string is maximized or minimized. A fitness function is 
defined to evaluate how good the solution of each individual chromosome is with 
regard to our optimization objective. A GA starts by initializing a set of 
chromosomes which is called the initial population. Then the current population 
produces the next generation of population by mating, mutation, and survivor 
selection. It borrows from Darwin’s Theory of Evolution, i.e., natural selection acts 
to preserve and accumulate minor advantageous genetic mutations. By preserving 
those individuals with higher fitness, a GA is expected to converge at optimal 
solutions or sub-optimal solutions. The flow of a typical genetic algorithm is shown in 
Figure 1. 
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Algorithm 1. Flow of a Typical Genetic Algorithm 
1:  Initialize population: create an initial population and evaluate each 

individual’s fitness w.r.t. the problem. 
2:  while the stopping condition is not met do 
3:      while the number of offsprings is not enough do 
4: Select a pair of parent chromosomes; 
5: Do mating between the parents (crossover) and produce offspring(s); 
6: Randomly select N chromosomes, mutate them, and add them into the 

new population; 
7:  end while 
8:  Evaluate all the individuals in the new population; 
9: Select the survivors based on their fitness and put them into the next 

generation. Those individuals that are not selected are discarded. 
10:  end while 
11:  return the solution represented by the best individual in the last generation. 

 
Genetic algorithms are popular in solving graph theory problems such as travel 

salesman’s problem (TSP) [6, 7, 8]. At the same time, GAs have also been applied to 
solve service provisioning problems in WDM optical networks. Reference [9] studies 
the traffic grooming problem in a ring network with a static traffic model and [10, 
11, 12] extends the work to deal with dynamic traffic models. A genetic algorithm is 
also developed to solve the traffic grooming problem in WDM optical mesh network 
in [13]. In [14, 15, 16], a genetic algorithm is applied to solve the optimal logical 
topology design problem in WDM optical networks. The routing and wavelength 
assignment problem (RWA) in WDM optical networks is studied in [17, 18, 19, 20].  
The authors of [21, 22] study the problem of optimal placement of wavelength 
converters in WDM ring networks using genetic algorithms. 

The rest of this paper is organized as follows.  The formal definition of the 
problem under study is given in Section 2. Section 3 presents the details of our 
algorithm.  Performance evaluation and results are reported in Section 4.  Section 5 
concludes the paper. 

2   Problem Definition 

We formally define the routing optimization problem as follows. Consider a 
network ( , )v ςΕ = where v  is the set of vertices and ς  is the set of links in the 
network, each of which is associated with a link cost ( )c e . A set of SRLGs are 

given as { }|1iR r i R= < < , where ir  is the i -th shared risk link group. Each SRLG 
has a set of links that are included in this risk group, which can be  represented as 

1 2{ , , ..., }i mr l l l= .  A cost ( )ic r  that captures the group’s risk factor is associated 

with each SRLG. A path Ρ  is represented as { }1 2 3 1 1, , , ..., , ..., ,i i n nv v v v v v v+ −Ρ =  
where 1( , )i iv v +  is a link on Ρ  (which is denoted as 1( , )i iv v + ∈Ρ  or il ∈ Ρ  ), and 1v  
and nv are the source and destination, respectively. We say a path Ρ  travels through 
an SRLG ir   (represented as irΡ →  ) when there exists at least one link such that 
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il r∈   and l ∈ Ρ  . Given a source node src and a destination node dest , the 
objective of this route optimization problem is to find a path Ρ  from src to dest , 
such that the combined link cost and SRLG cost are minimized. More specifically, 
the objective is to find a path 2 3 1 1( , , ,..., , , , )i i nsrc v v v v v dest+ −Ρ =  such that 

:
( ) ( ) (1 ) ( )

i i
ir r l

C w c r w c l
Ρ→ ∈Ρ

Ρ = ⋅ + − ⋅∑ ∑  is minimized where 0 1w≤ ≤ . 

3   Proposed Algorithm 

One important aspect of genetic algorithms is to define the encoding and decoding 
rules for the chromosomes. Another important aspect is to define the fitness function 
or evaluation function. For our routing optimization problem, a chromosome is 
defined as a string of node identities. We choose to have each individual in the 
population representing a valid path for a connection request. That is, each 
chromosome should represent a connected path and this path should start from the 
source node ( )src  of the request and end at the destination node ( )dest . Therefore a 

chromosome is defined as follows: 

1 2, , ,..., ,kC src n n n dest=  

and the fitness function is defined as: 

                    lg( ) l srf C S Sα β= ⋅ + ⋅                                           (1) 

where lS  is the total cost of the links on the path, lgsrS   is the total weight of SRLGs 

that the path is associated with, and α and beta determine how much weight the link 
cost and SRLG cost, respectively, take in the combined cost. 

Using this fitness function, we penalize the path that has high total link cost and/or 
high total SRLG weight. In the survivor selection, we try to preserve the 
chromosomes with small fitness values. Thus in the evolutionary process the 
algorithm is more likely to converge to a solution that is optimal or is close to the 
optimal. 

Yet another important issue in our genetic algorithm is the generation of 
offsprings. Since we require each chromosome to represent a valid solution, we can 
not simply do random mating and mutation as many other genetic algorithms do. 
Our approach is detailed as follows: 

For mating we pick two chromosomes as the parents if the corresponding two paths 
share at least one common node (not including the source and destination nodes). For 
example 

1 2, , ,..., ,..., , ,
a

a a a a
kC src n n n n dest=  

1 2, , , , , , , .
b

b a a b
kC src n n n n dest= ∗∗∗ ∗∗∗  

In addition to nodes src and dest , aC   and bC    share a common node n . 
Through mating we generate two offspring chromosomes, 1

cC  and 2
cC  , by swapping 

the segments of the two chromosomes at the common node n : 
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1
1 2, , ,..., , , , ,C

b

a a b
kC src n n n n dest= ∗∗∗  

2
1 2, , , , ,..., , .C

a

b b a
kC src n n n n dest= ∗∗∗  

If there is more than one common node between the two paths, the algorithm 
randomly picks one and the segment swapping is performed. 

It is worth noting that it is possible to have loops in the paths corresponding to 
the generated chromosomes due to the crossover. As a result, some chromosomes 
may grow bigger and bigger in the long run. We can add an additional step to 
remove the loops in the path. We choose not to spend time on checking and 
removing those loops, but to let the selection scheme deal with the problem. Note 
that those big chromosomes are inferior to those short ones in surviving the selection 
process. 

For the mutation of a chromosome, the algorithm randomly picks two nodes 
(suppose they are in   and jn  ) on the path and replaces the sub-path between in   and 

jn  with a detour route between these two nodes. A random path between these two 

nodes is generated as the detour route. To avoid producing loops in this process, this 
detour should exclude any node on the original path except the two end nodes ( in  and 

jn   in this case). The detailed algorithm for the mutation process is described in 

Algorithm 2, which calls Algorithm 3 to generate the random path. 
 
Algorithm 2. Mutation with Detour Routing (C ) 
Require: 1 1 1, ,..., , ,..., , ,..., , .i i j j kC src n n n n n n dest− +=  
1:  Pick two nodes in   and jn   randomly, such that the path is divided into three 

parts: 
,

/
, ,, ,

ii j jsrc n n n n destC P P P=  

2: Call subroutine ( , , )i jRandomPath n n FN , to route a random path 
'

,n ni jP between nodes in   and jn  . This random path, should exclude the 
nodes in , isrc nP    and ,jn destP  (except in   and jn  ) 

3  Mutate C to 
,

/
, ,, ,

ii j jsrc n n n n destC P P P=  
4  return /C  

Subroutine ( , , )i jRandomPath n n FN  (Algorithm 3) is designed to find a random 

path between a pair of nodes. Certain nodes in the graph can be excluded from this 
random path, by specifying those nodes in a forbidden set FN  . The basic idea of this 
algorithm is, starting from the source node, to randomly select a next node to append 
to the path, until it reaches the destination node at a certain point. In this algorithm, 
the last node in the path is the current node (represented as CurNode  in Algorithm 3), 
and we randomly select a next node (represented as next in Algorithm 3) to append to 
the path. We select from all the nodes that are reachable from the current node through 
a single link, but excluding the nodes in the forbidden set FN . In some cases, it is 
possible that there is no available node to select from, i.e., the path reach a deadend at  
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the current node. In this case, we remove the last node from the path and set the 
immediate upstream node as the current node. Meanwhile, to avoid loops in the path, 
all the nodes that have already been visited are inserted into the forbidden set F N , so 
that no node will be visited more than once by the path. By visited, we mean that the 
node has (ever) been selected as a part of the path, although it is possible that the 
node is removed later from the path. 

 
Algorithm 3. ( , , )i jRandomPath n n FN  

Require: src is the source node, dest is the destination node, and FN  is a 
forbidden set that constains the nodes that should be excluded from the path. 

1:  ,CurNode src path src← ← . 
2:  while the path has not reached the destination node dest do 
3:   FN FN CurNode← ∪ ; 
4: Set _next node ←  all the nodes that can be reached from CurNode  through a 

single link; 
5: Remove from next nodes any node that belongs to FN  ; 
6: if _next node NULL≠  then 

7: Randomly pick a node next  from _next node ; 

8: Append path by link ( , )CurNode next ; 

9: else 
10: Remove the last node from path ; 

11:  If there is no more node in path ,terminate with failure; 

12: CurNode ←  the last node of path; 
13: end if 
14:   end while 
15:   if CurNode  is the destination node , return path  ; 

16:  else return failure 

 
Another key point in the genetic algorithm is the generation of the initial 

population. We can generate the k-shortest paths(KSP) or k random paths (KRP) from 
the source node to the destination node as the initial population. 

Finally, for the stopping condition that determines when to stop the iterations of 
the evolutionary process in the main algorithm 1, one way is to set a fixed number 
for the iterations.  But in the simulations we find that it is hard to set a proper 
value for this number.  Instead, we deem the chance of further improvement is very 
slow and stop the iteration, if the best solution in the population is not improved 
over the last 3 generations. In this way the number of iterations can be automatically 
adapted with the progress of the evolutionary and the complexity of the problem. Still, 
we set a upper limit on the number of iterations. Once the number of iterations reaches 
that limit, we terminate the iteration no matter whether there is improvement on the 
solution or not. 
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4   Performance Evaluation 

In this section, we evaluate the proposed algorithms using a topology with 100 nodes 
and 455 bidirectional links, which is generated by Waxman’s random network 
topology generator [23]. Different options in this genetic algorithm are implemented 
and compared through extensive simulations. Specifically, we simulated the k-shortest 
paths as the initial population (KSPIP) and the k random paths as the initial 
population (KRPIP). The performance is compared with the ILP formulation (ILP) 
and the heuristic algorithm (k-Heuristic) with k set to be 3 in [1]. For the comparison, 
we relax the constraints of Eqns. (9-10) in the ILP formulation in [1] to consider the 
same minimum combined cost routing problem as the problem considered in this 
work. In the simulation, both α  and β  in the combined cost are set to be 0.5 for 

all these four approaches considered in the simulation. 
Two types of SRLGs (localized and non-localized SRLGs) are generated and studied. 

The first method randomly picks a node, and then randomly picks the links that are 
within N hops from the selected node to be included in an SRLG. If we want to generate 
an SRLG with certain number of link but there are not enough links within within N hops 
from the selected node, N will be automatically increased by 1 so that we get enough 
links. This method produces N-hop localized SRLGs. We set the N to be 5 in our 
simulation. The second method randomly picks links in the topology to be included in an 
SRLG. This method produces non-localized SRLGs. In both cases, the weight of an 
SRLG is proportional to its size, i.e., the number of links in the group multiplied by a 
constant (50 in our simulation).  The size of an SRLG (number of links in a SRLG) is 
uniformly distributed in [8, 12]. For each case simulated, 10 SRLG sets of fixed size are 
generated. For each SRLG set,100 source-destination pairs are randomly generated. So 
the total number of simulation instances for a case is 1000. The proposed algorithms and 
ILP are then run to find the paths. The performance figures are based on the average 
performance of all the instances with the same settings. 

For each case simulated, 10 SRLG sets of fixed size are generated. For each 
SRLG set, 100 source-destination pairs are randomly generated.  Therefore the total 
number of simulation instances for a case is 1000.  The performance figures are 
based on the average performance of all the instances with the same settings. 

As we can see from Figure 1 for the localized SRLG case and 2 for the non-
localized SRLG case, firstly, KSPIP and KRPIP are performing very closely, which 
means the initial population does not really have much influence on the final 
solution of the genetic approach in both cases. We also observe that, in the non-
localized SRLG case (Figure 2), the solutions obtained by KSPIP and KRPIP are 
close to, but not as good as the solutions obtained by ILP and the k-heuristic. 
However, in the localized SRLG case the genetic approaches perform as well as the 
k-heuristic algorithm.  Obviously the genetic algorithm works better in the localized 
SRLG case, which can be reasoned that the segment mutation and crossover on the 
chromosomes works better for the localized SRLGs. Meanwhile, Figure 3 shows that 
the time needed to obtain a solution with genetic algorithm, in localized SRLG 
case, does not grow as fast as ILP and k-heuristic.  Both KSPIP and KRPIP take 
less time than ILP and k-heuristic when the number of SRLGs in the topology is 
160, although the genetic algorithm consumes more time when the number of 
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SRLGs is 20.  The reason behind this is, for the ILP approach the computation time 
usually grows exponentially as the complexity of the network is growing. As for the 
k-heuristic, one major component of the algorithm is to compare the SRLGs 
associated with the routing entries on a node, and the complexity compare two sets 
of SRLGs is 2(| | )O R  where n is the number of SRLGs in the topology. For the 

genetic algorithm the complexity to evaluate a chromosome is 2(| | )O R . Therefore 

the time consumed by both the ILP and k-heuristic grows faster than the genetic 
algorithm in this work as the number of SRLGs in the network increases. Thus, the 
genetic algorithm in our work can provide a tradeoff between the cost and the time 
when the complexity of the network is high. In the meantime, we can see that with k-
shortest paths as the initial population, KSPIP consumes less time than KRPIP which 
uses the k random paths as the initial population. This is reasonable since generally the 
k-shortest paths are more close to the optimal solution region than the pure random 
paths, thus it take less time for KSPIP to converge. 

5   Conclusions 

In this work, we have studied a routing optimization problem in networks with shared 
risk link groups (SRLGs) to deter- mine a path between a source and a destination 
such that the combined path cost and the weight of SRLGs to which the links of the 
path belong is minimized. The path cost is measured as the sum of cost of links on the 
path while the weight of SRLGs is calculated as the sum of the weight of individual 
SRLGs along the path. We have developed evolutionary computation based 
algorithms to solve the problem and compared the performance with previous heuristic 
algorithm proposed in [1]. Our simulation studies showed that, when the complexity 
of the problem is high, the proposed algorithm consumes less time to obtain the 
solution than the heuristic algorithm. In the localized SRLG cases, the genetic 
algorithm can obtain solutions as good as the ones obtained by the integer linear 
programming and the heuristic algorithm in [1] but consumes less time when the 
number of SRLGs in the topology is large.  
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