
P. Sénac, M. Ott, and A. Seneviratne (Eds.): ICWCA 2011, LNICST 72, pp. 207–215, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

An Effective Evolutionary Computational Approach for
Routing Optimization in Networks with Shared Risk

Link Groups

Xubin Luo and Qing Li

Southwestern University of Finance and Economics,
Chengdu, Sichuan, 610051, China
{xbluo,liqt}@swufe.edu.cn

Abstract. In this work, we study a routing optimization problem in networks
with shared risk link groups (SRLGs). Specifically, a path between a source and
a destination is determined such that the combined path cost and the weight of
SRLGs to which the links of the path belong is minimized. We develop
evolutionary computation based algorithms to solve the problem. The
performance of the proposed algorithms is evaluated via extensive simulation
and is compared with the solutions obtained by integer linear programming and
the heuristic algorithm in [1].

Keywords: routing, shared risk link group (SRLG), evolutionary algorithm,
combined cost.

1 Introduction

A shared risk link group (SRLG) is used to represent a set of links that are affected by
a single failure (e.g., a failure in the physical layer such as a cable cut). The failure of
any SRLG that a connection traverses will disrupt the service provided to the
connection. A cost is also incurred on a link when it is used to provide the service to
the connection. An link in a path introduces two component costs, one is the risk of
an SRLG failure and the other is the link cost. The failure of an SRLG can be
measured by a risk factor, e.g., the probability of failure. If the probability of failure of
an SRLG i is ip , the probability of no SRLG failure along a path can be calculated as

(with standard independence assumptions) (1)i ipΠ − where i is any SRLG that the

path traverses, which can be expressed as a summation, ln(1)ii
p−∑ , on the

logarithmic scale. When provisioning a connection service for a client, it is important
for the network to minimize both the risk and cost of a route (where the cost can be
monetary cost, delay, etc), i.e., the accumulative risk and cost on the route of the
connection should be minimized. However, it may not be possible to minimize the
two potentially conflicting objectives simultaneously. The problem is then to
determine a path that minimizes a combined cost in a network with SRLGs and finds a
tradeoff between the two objectives.

208 X. Luo and Q. Li

The solution to this problem can be used to calculate a risk bounded and delay
bounded path for a connection, or to design algorithms that find a pair of low-cost
SRLG-diverse paths between a source and a destination for survivable service
provisioning. In SRLG diverse routing, a demand requires two paths in the network,
one working path and one protection path, so that the service to the demand can be
honored in case of a single network failure, such as a fiber cut. The diverse routing
problem in networks is to find a pair of paths between a source and a destination
such that no single failure in the network may cause both paths to fail. The diverse
routing problem in networks with generally defined SRLG failures has been proved
to be NP -complete [2] where an SRLG may include an arbitrary group of links. In
addition, finding a pair of least cost SRLG-diverse routes is also NP -complete [2].
This problem can be solved in polynomial time under some special definition of
SRLGs [3, 4]. In many cases, it is desirable for service providers to make sure that
both the working path and backup path are risk-bounded and cost bounded to provide
certain degree of quality of service and protection.

In work [1], an ILP formulation and a heuristic algorithm for the minimum
combined cost routing problem were presented. The heuristic is a Bellman-Ford style
algorithm. Instead of keeping routing information of the optimal path alone, the
algorithm maintains at each node the routing information for the best k routes from
the source to the node, where k is a tunable parameter. The reason to keep k routing
entries at each node is that, unlike the single-metric minimum cost routing, given an
optimal path from the source node src to the destination node dest , a subpath on the
end-to-end optimal path may not be optimal for the two end nodes of the subpath
when the combined path cost is considered. By maintaining multiple routing entries
at a node, the algorithm has a better chance of obtaining the optimal path from the
source.

In this work, we develop evolutionary computation based algorithms to solve the
minimum combined cost routing problem that minimizes the combined link and SRLG
cost. The performance is evaluated via extensive simulation and compared with
existing solutions. A genetic algorithm (GA) is a type of evolutionary computation
based search technique that finds true or sub-optimal solutions for optimization
problems [5]. An individual solution is usually represented by a string, called a
chromosome. The chromosome can be decoded to obtain a solution. A typical
genetic algorithm imitates the evolutionary process of genetic population over
generations. The objective of a genetic algorithm can be expressed as finding a string
such that a function of the string is maximized or minimized. A fitness function is
defined to evaluate how good the solution of each individual chromosome is with
regard to our optimization objective. A GA starts by initializing a set of
chromosomes which is called the initial population. Then the current population
produces the next generation of population by mating, mutation, and survivor
selection. It borrows from Darwin’s Theory of Evolution, i.e., natural selection acts
to preserve and accumulate minor advantageous genetic mutations. By preserving
those individuals with higher fitness, a GA is expected to converge at optimal
solutions or sub-optimal solutions. The flow of a typical genetic algorithm is shown in
Figure 1.

 An Effective Evolutionary Computational Approach for Routing Optimization 209

Algorithm 1. Flow of a Typical Genetic Algorithm
1: Initialize population: create an initial population and evaluate each

individual’s fitness w.r.t. the problem.
2: while the stopping condition is not met do
3: while the number of offsprings is not enough do
4: Select a pair of parent chromosomes;
5: Do mating between the parents (crossover) and produce offspring(s);
6: Randomly select N chromosomes, mutate them, and add them into the

new population;
7: end while
8: Evaluate all the individuals in the new population;
9: Select the survivors based on their fitness and put them into the next

generation. Those individuals that are not selected are discarded.
10: end while
11: return the solution represented by the best individual in the last generation.

Genetic algorithms are popular in solving graph theory problems such as travel

salesman’s problem (TSP) [6, 7, 8]. At the same time, GAs have also been applied to
solve service provisioning problems in WDM optical networks. Reference [9] studies
the traffic grooming problem in a ring network with a static traffic model and [10,
11, 12] extends the work to deal with dynamic traffic models. A genetic algorithm is
also developed to solve the traffic grooming problem in WDM optical mesh network
in [13]. In [14, 15, 16], a genetic algorithm is applied to solve the optimal logical
topology design problem in WDM optical networks. The routing and wavelength
assignment problem (RWA) in WDM optical networks is studied in [17, 18, 19, 20].
The authors of [21, 22] study the problem of optimal placement of wavelength
converters in WDM ring networks using genetic algorithms.

The rest of this paper is organized as follows. The formal definition of the
problem under study is given in Section 2. Section 3 presents the details of our
algorithm. Performance evaluation and results are reported in Section 4. Section 5
concludes the paper.

2 Problem Definition

We formally define the routing optimization problem as follows. Consider a
network (,)v ςΕ = where v is the set of vertices and ς is the set of links in the
network, each of which is associated with a link cost ()c e . A set of SRLGs are

given as { }|1iR r i R= < < , where ir is the i -th shared risk link group. Each SRLG
has a set of links that are included in this risk group, which can be represented as

1 2{ , , ..., }i mr l l l= . A cost ()ic r that captures the group’s risk factor is associated

with each SRLG. A path Ρ is represented as { }1 2 3 1 1, , , ..., , ..., ,i i n nv v v v v v v+ −Ρ =
where 1(,)i iv v + is a link on Ρ (which is denoted as 1(,)i iv v + ∈Ρ or il ∈ Ρ), and 1v
and nv are the source and destination, respectively. We say a path Ρ travels through
an SRLG ir (represented as irΡ →) when there exists at least one link such that

210 X. Luo and Q. Li

il r∈ and l ∈ Ρ . Given a source node src and a destination node dest , the
objective of this route optimization problem is to find a path Ρ from src to dest ,
such that the combined link cost and SRLG cost are minimized. More specifically,
the objective is to find a path 2 3 1 1(, , ,..., , , ,)i i nsrc v v v v v dest+ −Ρ = such that

:
() () (1) ()

i i
ir r l

C w c r w c l
Ρ→ ∈Ρ

Ρ = ⋅ + − ⋅∑ ∑ is minimized where 0 1w≤ ≤ .

3 Proposed Algorithm

One important aspect of genetic algorithms is to define the encoding and decoding
rules for the chromosomes. Another important aspect is to define the fitness function
or evaluation function. For our routing optimization problem, a chromosome is
defined as a string of node identities. We choose to have each individual in the
population representing a valid path for a connection request. That is, each
chromosome should represent a connected path and this path should start from the
source node ()src of the request and end at the destination node ()dest . Therefore a

chromosome is defined as follows:

1 2, , ,..., ,kC src n n n dest=

and the fitness function is defined as:

 lg() l srf C S Sα β= ⋅ + ⋅ (1)

where lS is the total cost of the links on the path, lgsrS is the total weight of SRLGs

that the path is associated with, and α and beta determine how much weight the link
cost and SRLG cost, respectively, take in the combined cost.

Using this fitness function, we penalize the path that has high total link cost and/or
high total SRLG weight. In the survivor selection, we try to preserve the
chromosomes with small fitness values. Thus in the evolutionary process the
algorithm is more likely to converge to a solution that is optimal or is close to the
optimal.

Yet another important issue in our genetic algorithm is the generation of
offsprings. Since we require each chromosome to represent a valid solution, we can
not simply do random mating and mutation as many other genetic algorithms do.
Our approach is detailed as follows:

For mating we pick two chromosomes as the parents if the corresponding two paths
share at least one common node (not including the source and destination nodes). For
example

1 2, , ,..., ,..., , ,
a

a a a a
kC src n n n n dest=

1 2, , , , , , , .
b

b a a b
kC src n n n n dest= ∗∗∗ ∗∗∗

In addition to nodes src and dest , aC and bC share a common node n .
Through mating we generate two offspring chromosomes, 1

cC and 2
cC , by swapping

the segments of the two chromosomes at the common node n :

 An Effective Evolutionary Computational Approach for Routing Optimization 211

1
1 2, , ,..., , , , ,C

b

a a b
kC src n n n n dest= ∗∗∗

2
1 2, , , , ,..., , .C

a

b b a
kC src n n n n dest= ∗∗∗

If there is more than one common node between the two paths, the algorithm
randomly picks one and the segment swapping is performed.

It is worth noting that it is possible to have loops in the paths corresponding to
the generated chromosomes due to the crossover. As a result, some chromosomes
may grow bigger and bigger in the long run. We can add an additional step to
remove the loops in the path. We choose not to spend time on checking and
removing those loops, but to let the selection scheme deal with the problem. Note
that those big chromosomes are inferior to those short ones in surviving the selection
process.

For the mutation of a chromosome, the algorithm randomly picks two nodes
(suppose they are in and jn) on the path and replaces the sub-path between in and

jn with a detour route between these two nodes. A random path between these two

nodes is generated as the detour route. To avoid producing loops in this process, this
detour should exclude any node on the original path except the two end nodes (in and

jn in this case). The detailed algorithm for the mutation process is described in

Algorithm 2, which calls Algorithm 3 to generate the random path.

Algorithm 2. Mutation with Detour Routing (C)
Require: 1 1 1, ,..., , ,..., , ,..., , .i i j j kC src n n n n n n dest− +=
1: Pick two nodes in and jn randomly, such that the path is divided into three

parts:
,

/
, ,, ,

ii j jsrc n n n n destC P P P=

2: Call subroutine (, ,)i jRandomPath n n FN , to route a random path
'

,n ni jP between nodes in and jn . This random path, should exclude the
nodes in , isrc nP and ,jn destP (except in and jn)

3 Mutate C to
,

/
, ,, ,

ii j jsrc n n n n destC P P P=
4 return /C

Subroutine (, ,)i jRandomPath n n FN (Algorithm 3) is designed to find a random

path between a pair of nodes. Certain nodes in the graph can be excluded from this
random path, by specifying those nodes in a forbidden set FN . The basic idea of this
algorithm is, starting from the source node, to randomly select a next node to append
to the path, until it reaches the destination node at a certain point. In this algorithm,
the last node in the path is the current node (represented as CurNode in Algorithm 3),
and we randomly select a next node (represented as next in Algorithm 3) to append to
the path. We select from all the nodes that are reachable from the current node through
a single link, but excluding the nodes in the forbidden set FN . In some cases, it is
possible that there is no available node to select from, i.e., the path reach a deadend at

212 X. Luo and Q. Li

the current node. In this case, we remove the last node from the path and set the
immediate upstream node as the current node. Meanwhile, to avoid loops in the path,
all the nodes that have already been visited are inserted into the forbidden set F N , so
that no node will be visited more than once by the path. By visited, we mean that the
node has (ever) been selected as a part of the path, although it is possible that the
node is removed later from the path.

Algorithm 3. (, ,)i jRandomPath n n FN

Require: src is the source node, dest is the destination node, and FN is a
forbidden set that constains the nodes that should be excluded from the path.

1: ,CurNode src path src← ← .
2: while the path has not reached the destination node dest do
3: FN FN CurNode← ∪ ;
4: Set _next node ← all the nodes that can be reached from CurNode through a

single link;
5: Remove from next nodes any node that belongs to FN ;
6: if _next node NULL≠ then

7: Randomly pick a node next from _next node ;

8: Append path by link (,)CurNode next ;

9: else
10: Remove the last node from path ;

11: If there is no more node in path ,terminate with failure;

12: CurNode ← the last node of path;
13: end if
14: end while
15: if CurNode is the destination node , return path ;

16: else return failure

Another key point in the genetic algorithm is the generation of the initial

population. We can generate the k-shortest paths(KSP) or k random paths (KRP) from
the source node to the destination node as the initial population.

Finally, for the stopping condition that determines when to stop the iterations of
the evolutionary process in the main algorithm 1, one way is to set a fixed number
for the iterations. But in the simulations we find that it is hard to set a proper
value for this number. Instead, we deem the chance of further improvement is very
slow and stop the iteration, if the best solution in the population is not improved
over the last 3 generations. In this way the number of iterations can be automatically
adapted with the progress of the evolutionary and the complexity of the problem. Still,
we set a upper limit on the number of iterations. Once the number of iterations reaches
that limit, we terminate the iteration no matter whether there is improvement on the
solution or not.

 An Effective Evolutionary Computational Approach for Routing Optimization 213

4 Performance Evaluation

In this section, we evaluate the proposed algorithms using a topology with 100 nodes
and 455 bidirectional links, which is generated by Waxman’s random network
topology generator [23]. Different options in this genetic algorithm are implemented
and compared through extensive simulations. Specifically, we simulated the k-shortest
paths as the initial population (KSPIP) and the k random paths as the initial
population (KRPIP). The performance is compared with the ILP formulation (ILP)
and the heuristic algorithm (k-Heuristic) with k set to be 3 in [1]. For the comparison,
we relax the constraints of Eqns. (9-10) in the ILP formulation in [1] to consider the
same minimum combined cost routing problem as the problem considered in this
work. In the simulation, both α and β in the combined cost are set to be 0.5 for

all these four approaches considered in the simulation.
Two types of SRLGs (localized and non-localized SRLGs) are generated and studied.

The first method randomly picks a node, and then randomly picks the links that are
within N hops from the selected node to be included in an SRLG. If we want to generate
an SRLG with certain number of link but there are not enough links within within N hops
from the selected node, N will be automatically increased by 1 so that we get enough
links. This method produces N-hop localized SRLGs. We set the N to be 5 in our
simulation. The second method randomly picks links in the topology to be included in an
SRLG. This method produces non-localized SRLGs. In both cases, the weight of an
SRLG is proportional to its size, i.e., the number of links in the group multiplied by a
constant (50 in our simulation). The size of an SRLG (number of links in a SRLG) is
uniformly distributed in [8, 12]. For each case simulated, 10 SRLG sets of fixed size are
generated. For each SRLG set,100 source-destination pairs are randomly generated. So
the total number of simulation instances for a case is 1000. The proposed algorithms and
ILP are then run to find the paths. The performance figures are based on the average
performance of all the instances with the same settings.

For each case simulated, 10 SRLG sets of fixed size are generated. For each
SRLG set, 100 source-destination pairs are randomly generated. Therefore the total
number of simulation instances for a case is 1000. The performance figures are
based on the average performance of all the instances with the same settings.

As we can see from Figure 1 for the localized SRLG case and 2 for the non-
localized SRLG case, firstly, KSPIP and KRPIP are performing very closely, which
means the initial population does not really have much influence on the final
solution of the genetic approach in both cases. We also observe that, in the non-
localized SRLG case (Figure 2), the solutions obtained by KSPIP and KRPIP are
close to, but not as good as the solutions obtained by ILP and the k-heuristic.
However, in the localized SRLG case the genetic approaches perform as well as the
k-heuristic algorithm. Obviously the genetic algorithm works better in the localized
SRLG case, which can be reasoned that the segment mutation and crossover on the
chromosomes works better for the localized SRLGs. Meanwhile, Figure 3 shows that
the time needed to obtain a solution with genetic algorithm, in localized SRLG
case, does not grow as fast as ILP and k-heuristic. Both KSPIP and KRPIP take
less time than ILP and k-heuristic when the number of SRLGs in the topology is
160, although the genetic algorithm consumes more time when the number of

214 X. Luo and Q. Li

SRLGs is 20. The reason behind this is, for the ILP approach the computation time
usually grows exponentially as the complexity of the network is growing. As for the
k-heuristic, one major component of the algorithm is to compare the SRLGs
associated with the routing entries on a node, and the complexity compare two sets
of SRLGs is 2(| |)O R where n is the number of SRLGs in the topology. For the

genetic algorithm the complexity to evaluate a chromosome is 2(| |)O R . Therefore

the time consumed by both the ILP and k-heuristic grows faster than the genetic
algorithm in this work as the number of SRLGs in the network increases. Thus, the
genetic algorithm in our work can provide a tradeoff between the cost and the time
when the complexity of the network is high. In the meantime, we can see that with k-
shortest paths as the initial population, KSPIP consumes less time than KRPIP which
uses the k random paths as the initial population. This is reasonable since generally the
k-shortest paths are more close to the optimal solution region than the pure random
paths, thus it take less time for KSPIP to converge.

5 Conclusions

In this work, we have studied a routing optimization problem in networks with shared
risk link groups (SRLGs) to deter- mine a path between a source and a destination
such that the combined path cost and the weight of SRLGs to which the links of the
path belong is minimized. The path cost is measured as the sum of cost of links on the
path while the weight of SRLGs is calculated as the sum of the weight of individual
SRLGs along the path. We have developed evolutionary computation based
algorithms to solve the problem and compared the performance with previous heuristic
algorithm proposed in [1]. Our simulation studies showed that, when the complexity
of the problem is high, the proposed algorithm consumes less time to obtain the
solution than the heuristic algorithm. In the localized SRLG cases, the genetic
algorithm can obtain solutions as good as the ones obtained by the integer linear
programming and the heuristic algorithm in [1] but consumes less time when the
number of SRLGs in the topology is large.

References

1. Luo, X., Wang, B.: Multi-constrained routing in networks with shared risk link groups. In:
IEEE Broadnets, 3rd International Conference on Broadband Communication, Networks
and Systems, San Jose CA (October 2006)

2. Hu, J.Q.: Diverse Routing in Optical Mesh Networks. IEEE Transactions on
Communications 51(3), 489–494 (2003)

3. Datta, P., Somani, A.K.: Diverse Routing for Shared Risk Resource Groups (SRRG)
Failures in WDM OpticalNetworks. In: BROADNETS 2004, San Jose CA, October 2004,
pp. 120–129 (2004)

4. Luo, X., Wang, B.: Diverse Routing in WDM Optical Networks with Shared Risk Link
Group (SRLG) Failures. In: Proceedings of the 5th IEEE International Workshop on
Design of Reliable Communication Networks (DRCN), Island of Ischia (Naples), Italy
(October 2005)

5. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, New York
(2003)

 An Effective Evolutionary Computational Approach for Routing Optimization 215

6. Nagata, Y., Kobayashi, S.: Analyses of genetic algorithms for traveling salesman problems
for effective searches. In: 32nd ISCIE International Symposium on Stochastic Systems
Theory and Its Applications, pp. 44–45 (2000)

7. Nagata, Y., Kobayashi, S.: An analysis of edge assembly crossover for the traveling
salesman problem. In: Proc. 1999 International Conference on Systems, Man and
Cybernetics, pp. III-628–III-633 (1999)

8. Nagata, Y., Kobayashi, S.: Edge assembly crossover: High-power genetic algorithm for the
traveling salesman problem. In: Proc. 7th International Conference on Genetic Algorithms,
pp. 450–457 (1997)

9. Xu, S.C., Wu, B.X.: Traffic grooming in unidirectional WDM ring networks using genetic
algorithms. Computer Communications 25(13), 1185–1194 (2002)

10. Xu, Y., Xu, S.C., Wu, B.X.: Strictly nonblocking grooming of dynamic traffic in
unidirectional SONET/WDM rings using genetic algorithms. Computer Networks 41(2),
227–245 (February)

11. Liu, K.H., Xu, Y.: A new approach to improving the grooming performance with dynamic
traffic in SONET rings. Computer Networks 46(2), 181–195 (2004)

12. Jiao, Y.G., Zhou, B.K., Zhang, H.Z., Guo, Y.L.: Heuristic Algorithms for Grooming of
Arbitrary Traffic in WDM Ring Networks. Photonic Network Communications 8(3), 309–
318 (2004)

13. Jiao, Y.G., Zhou, B.K., Zhang, H.Z., Guo, Y.L.: Grooming of Arbitrary Traffic in Optical
WDM Mesh Networks Using a Genetic Algorithm. Photonic Network
Communications 10(2), 193–198 (2005)

14. Gazen, C., Ersoy, C.: Genetic algorithms for designing multihop lightwave network
topologies. Artificial Intelligence in Engineering 13(3), 211–221 (1999)

15. Borella, A., Cancellieri, G., Chiaraluce, F.: Design techniques of two-layer architectures
for WDM optical networks. International Journal of Communication Systems 14(2), 171–
188 (2001)

16. Zheng, J., Zhou, B., Mouftah, H.T.: Virtual Topology Design and Reconfiguration of
Virtual Private Networks (VPNs) over All-Optical WDM Network. Photonic Network
Communication 7(3), 255–266 (2004)

17. Banerjee, N., Mehta, V., Pandey, S.: A genetic algorithm approach for solving the routing
and wavelength assignment problem in WDM networks. In: International Conference on
Networks (ICN 2004), French Caribbean (2004)

18. Bisbal, D.: Dynamic routing and wavelength assignment in optical networks by means of
genetic algorithms. Photonic Network Communications 7(1), 43–58 (2004)

19. Le, V.T., Ngo, S.H., Jiang, X., Horiguchi, S., Guo, M.: A genetic algorithm for dynamic
routing and wavelength assignment in WDM networks. In: Proc. Inter. Symp. Parallel and
Distributed Processing and Applications, HongKong (December 2004)

20. Ali, M., Ramamurthy, B., Deogun, J.S.: Routing and wavelength assignment with power
considerations in optical networks. Computer Networks 32(5), 539–555 (2000)

21. Chan, T.M., Kwong, S., Man, K.F.: Solving the Converter Placement Problem in WDM
Ring Networks using Genetic Algorithms. Computer Journal 46(4), 427–448 (2003)

22. Vijayanand, C., Kumar, M.S., Venugopal, K.R., Kumar, P.S.: Converter placement in all-
optical networks using genetic algorithms. Computer Communications 23(13), 1223–1234
(2000)

23. Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected Areas in
Communications 6(9), 1617–1622 (1988)

	An Effective Evolutionary Computational Approach for Routing Optimization in Networks with Shared Risk Link Groups
	Introduction
	Problem Definition
	Proposed Algorithm
	Performance Evaluation
	Conclusions
	References

