
P. Sénac, M. Ott, and A. Seneviratne (Eds.): MobiQuitous 2010, LNICST 73, pp. 90–101, 2012. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012 

Adaptation Support for Agent Based Pervasive Systems 

Kutila Gunasekera1, Shonali Krishnaswamy1,  
Seng Wai Loke2, and Arkady Zaslavsky1,3 

1 Faculty of Information Technology, Monash University, Australia 
{kutila.gunasekera,shonali.krishnaswamy}@monash.edu 

2 Department of Computer Science & Computer Engineering, La Trobe University, Australia 
S.Loke@latrobe.edu.au 

3 Luleå University of Technology, Sweden  
arkady.zaslavsky@ltu.se 

Abstract. Pervasive computing systems execute in dynamic highly variable 
environments and need software that are context-aware and can adapt at 
runtime. Mobile agents are viewed as an enabling technology for building 
software for such environments due to their flexibility, migratory nature and 
scalability. This paper presents a novel approach which aims to further enhance 
this advantage by building compositionally adaptive mobile software agents 
that are also context-driven, component-based and have the ability to exchange 
their components with peer agents.  We present the formal underpinnings of our 
approach and a decision making model which assists agent adaptation. We also 
describe our current implementation and experimental results to evaluate the 
benefits of the proposed approach. 

1   Introduction 

As we move towards the era of invisible computers envisioned by Weiser [1], 
computers are becoming smaller and increasingly pervasive in day-to-day 
environments. Pervasive computers now have to execute in diverse and rapidly 
changing environments where low powered devices and wireless communication 
media are de rigueur. The miniaturization and portability of devices have also 
contributed to these devices having lower computing capacity in comparison to their 
stationary counterparts.  

Developments in pervasive computing have been primarily driven by advances in 
hardware and communication technologies, whereas application development for such 
environments has lagged behind considerably. Pervasive applications need to be 
adaptive and versatile to survive rapidly changing environments and requirements. 
How to build such applications is a current challenge in pervasive computing research 
[2]. Self-adaptive software, autonomic computing and mobile software agents [3] are 
amongst some of the approaches seen as attractive options for pervasive application 
development. Flexibility, scalability and ability to reduce complexity by delegation 
are some of the desirable features that mobile agents bring to pervasive computing 
applications [4]. Pervasive applications are also likely to require mobility - a salient 
feature of mobile agents – in order to support mobile users as well as to migrate when 
faced with intermittent connectivity and device resource constraints. The ability of a 
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statically defined agent to survive in an uncertain environment is limited. Thus, 
adaptive agent systems are being investigated to overcome this limitation [5]. 

Our research explores the use of compositionally adaptive software agents to build 
applications for pervasive environments. In our proposed approach, agents are 
lightweight, mobile and can autonomously adapt based on contextual input [6]. We 
aim to provide adaptations in agent capabilities in a manner that accommodates 
dynamic changes, with flexibility that is unprecedented compared to earlier work. 
This we see as important in pervasive environments where actual resources available 
at a particular location cannot be determined a priori, so that dynamic uptake and 
exchange of capabilities become useful. Context-awareness is another major 
requirement in pervasive applications [2] as they should be able to sense changes in 
the environment and adapt accordingly. For example, an application may need to 
monitor the power level of its current device and migrate to another node if the level 
falls below a threshold. Adaptation decisions are affected by multiple criteria such as 
resource availability, application semantics and user preferences. This paper discusses 
a multi-attribute cost model to assist agents in making dynamic adaptation decisions 
based on contextual and user given criteria. We formally define our cost model and 
present preliminary evaluation results which illustrate the benefits of the model. In 
particular, we show that an agent, using our cost model, and having access to 
contextual information about parameters of the model, can make accurate estimates of 
performance with different agent capabilities, and so, can make effective adaptation 
decisions at run-time. 

The rest of the paper is structured as follows. In section 2 we present a conceptual 
overview of our compositionally adaptive agents. Section 3 describes the formal 
underpinnings of the approach and the adaptation cost model. A brief introduction to 
our prototype implementation is given next, followed by experimental evaluations in 
section 5 and some related work in section 6. Finally, we conclude in section 7. 

2 Conceptual Overview 

We propose a novel approach to develop smart pervasive applications through the use 
of dynamic compositionally adaptive mobile software agents [6]. The proposed 
VERSAG (VERsatile Self-adaptive AGents) agents are context-driven, adapt by 
acquiring new software components at runtime, and execute on dynamic 
heterogeneous environments. An agent’s component-based structure allows it to have 
different architectures embedded within during its lifetime, and its useful functionality 
is provided in the form of reusable software components termed Capabilities. Two 
salient features are the ability of agents to acquire new behaviours from peer agents 
without depending on designated component providers, and an agent’s ability to adapt 
itself based on contextual input. An agent’s high-level task is to execute an itinerary 
assigned to it where an itinerary specifies a list of locations it has to traverse and 
activities to execute at each location. To carry out an activity, the agent may need 
multiple capabilities. It decides when and from where the necessary capabilities are 
acquired and may load necessary capabilities in advance, or load them at a later 
location based on criteria such as capability availability, number of locations a 
particular capability is required at, network cost and resource constraints at locations.  
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Fig. 1. A hypothetical scenario showing VERSAG agents deployed in a pervasive environment. 
The capabilities contained in each agent are shown beside it within braces, and the subscript 
corresponds to an activity that the capability can carry out. 

Figure 1 illustrates a hypothetical scenario of how this approach can be useful in a 
pervasive computing environment. A human user requests his personal agent A, which 
resides on his PDA, to do a task. This task is converted into an itinerary as shown. 
The agent first does activity a using capability Ca. Then, discards its capabilities and 
migrates without carrying anything. On the desktop PC, it asks nearby agents for 
capabilities to do activity b. Agents B and C respond with C”b and C’b. A selects C’’b 
which is nearer, executes it, and then discards it before moving to the laptop. Once on 
the laptop, A searches for Cc to do activity c. D and C respond and D’s response is 
selected because it is more suitable for resource-constrained devices. 

If the agent has a choice of capabilities to select from, it needs to be able to select 
those which minimize execution cost. Time required to carry out the activity, 
generated network load and reliability, memory/CPU requirements, component 
accuracy, security, probability of reuse, monetary costs and user preferences are some 
of the many possible criteria which make up the cost. While many of these criteria are 
interrelated, it is neither necessary nor realistic to consider each one before a decision 
making step. Thus, this research limits itself to supporting the following main criteria: 
time, network load, maximum memory needs, CPU usage and level of accuracy of 
execution. Which costs should be minimized for a given situation can be explicitly 
specified by the user or inferred from environmental conditions.  

Specific adaptation actions of an agent include stopping and starting a capability, 
discarding a capability, acquiring a new capability, migrating to a different location or 
terminating itself. Two other forms of adaptation an agent could undertake are 
changing its base implementation to support migration to a different platform or 
changing the order of visits in its itinerary. These two forms of adaptation are outside 
the scope of this research and are therefore deferred for further investigation. 

3   The Formal Model 

Having provided an overview of our proposal, in this section we formally define the 
key concepts that underpin our approach. We also describe how an agent executes an 
activity at a particular location and the adaptation cost model. 
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Definition 1: Adaptive agent 
Let I be an agent’s itinerary, O = {move, terminate, get_c, drop_c, start_c, stop_c} be 
the set of operations an agent can perform, with *_c operations performed on 
capabilities and, C be the set of capabilities that the agent is carrying.  Then an agent 
A can be defined as a tuple of the form (I, O, C). 

Definition 2: Capability 
A capability is a central concept in our approach and provides an agent with 
application specific behaviours. Let U be a set of unique identifiers, F be the set of 
functionalities that the capability contains, Y = {primitive, compound} be a set of 
capability types,  E be the set of environments on which the capability can execute 
and M represent meta-data about the capability such as owner, version, security 
certificates, algorithms/units used and optimizations. Then, a capability is a tuple of 
the form (u, F, y, E, M) where u ∈ U and y ∈ Y. Functionality of a capability could 
range from a simple database query execution to providing the agent with a new 
architecture such as the BDI model. 

Definition 3: Capability Specification 
A capability specification (spec) is used to identify capabilities that can fulfil a given 
set of functions and can execute in a given set of environments. Let F represent the set 
of functions the capability contains and E define the set of environments on which the 
capability can execute. A capability spec is then a tuple of the form (F, E).  

Given a capability spec cs = (Fs, Envs) and a capability c = (u, F, y, Env, M), 
capability c will match the spec cs if and only if Fs ⊆ F and Envs ⊆ Env. That is, for a 
capability to match a capability spec, the spec’s full set of functionalities and 
supported environments must be supported by the capability. 

Definition 4: Activity 
An activity is the unit of work an agent has to carry out at a particular location. 
Multiple capabilities may need to be executed in sequence to carry out the activity. 
Let CS be a set of capability specs and O be a set of operations 
{get_c, drop_c, start_c, stop_c}. A tuple  (cs, o) where cs ∈ CS and o ∈ O represents 
application of an operation on a capability. An activity A is defined as a finite 
sequence (cs1, o1), (cs2, o2), …, (csn, on) where csi ∈ CS, oi ∈ O, i∈ {1, 2, .., n} and n is 
the number of capabilities in the activity. 

A location is a place an agent can visit and contains the necessary runtime 
environment for the agent to exist. Various computational resources are available at a 
location. A capability can only use resources available at its current location. Cost 
elements are used to represent different types of costs incurred during itinerary execution 
and have integer values. Constraints place limits on cost elements and can be associated 
with a location, an itinerary, an itinerary step, a capability or an agent. Relative 
constraints are generally user specified and used to indicate relative weights of cost 
elements. Absolute constraints place limits on permissible value ranges for cost elements. 

Definition 5: Relative constraint 
A relative constraint r is a finite sequence of the form (q1, w1), …, (qi, wi), …, (qn, wn) 

where qi ∈ Q the set of cost elements and w ∈ ℤ represents the weight of that cost 
element. 
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Definition 6: Absolute constraint 
An absolute constraint places an upper and lower limit on a cost element. It is a tuple 
of the form (q, min, max) where q ∈ Q the set of cost elements, min < max and min, 

max ∈ ℤ represent the lower and upper limits of the cost element. For example, (time, 
0, 10) means the “time” cost element must have a value between 0 and 10. 

Definition 7: Itinerary 
An itinerary consists of a sequence of itinerary steps the agent has to carry out. An 
itinerary step is a tuple (l, A, R) where l is a location, A an activity and R a set of 
constraints. Let L be the total set of locations and A the set of activities. Then, an 
itinerary is defined as a finite sequence  (l1, a1, R1), …, (li, ai, Ri), …,(ln, an, Rn)  where 
li ∈ L, ai ∈ A and  i∈ {1, 2, .., n}. Activity ai ≠ ∅  while constraints can be empty. 

While an itinerary is defined as above, it is expected that users would be issuing 
high-level commands to the system, which would be converted to detailed itineraries 
for agents to execute.  

We next describe an agent’s activity execution process. The following discussion 
assumes that the agent first migrates to the relevant location and then searches for and 
acquires capabilities required at that location. Therefore the activity fails if suitable 
capabilities could not be found. Figure 2 provides an algorithmic description of this 
process. 

 

1 Let CS = {cs1, cs2…, csm} be the set of capability specs which can 
be used to carry out activity a 

2 Search for capability instances matching CS 
3 Combine capability instances to form groups of capabilities  

G = {g1, g2 …, gp} where each gi can fulfil activity a 
If G = ∅ 

Fail 
End if 

4 Build set of constraints CONS = {r1, r2 …, rn} from explicit and 
implicit constraints identified through context sensing. 

5 Sort G in increasing order of cost By applying the adaptation cost 
model. 

6 For each gi in G 
Acquire capability instances of gi by applying operation get_c() 
If acquisition successful 
   Break loop 
End if 

End for 
If a completed group is not available 

Fail 
End if 

7 Execute capabilities in correct sequence to fulfil activity 

Fig. 2. Activity execution algorithm of an agent 

Step 1: Identify sequences of capability specifications that can accomplish the given 
activity. It is possible that more than one such sequence exists. Activity to capability 
spec group mappings may be contained in the itinerary, stored with the agent or 
available from an external source. 
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Step 2: For each capability spec, search for matching capability instances in the 
agent’s local repository and from peer agents. The search mechanism itself is 
implementation specific and is expected to be changeable. 

Step 3: Combine received capability descriptions to build groups that can accomplish 
the given activity. If no groups can be formed, the activity has to fail. Group 
formation needs to take into account limitations of capability instances and their 
compatibility with each other. 

Step 4: The agent senses environmental conditions at the current location and 
identifies applicable implicit constraints. These are combined with the explicitly 
specified constraints to build the complete set of constraints. 

Step 5: Apply the adaptation cost model to sort the capability groups according to 
cost. Constraints, capability group details and available capability descriptions are 
used as input to the selection process. Groups that don’t meet absolute constraints are 
removed. 

Step 6: Select the least cost capability group and acquire the relevant capability 
instances (if they are not already with the agent). If acquisition fails due to any reason, 
acquire the next best capability group. 

Step 7: Execute the acquired capabilities in correct sequence. 
The adaptation cost model of step 5 above is illustrated in Figure 3. 

1 Let Q = {q1, q2, … qk} be the set of cost elements 
relative constraint {(q1, w1), … (qm, wm)} where m ≤ k 
Cons = {con1,con2,… conn} be absolute constraints where n ≤ k  
G = {g1, g2, … gp} be the set of alternative groups 

2 For each coni in Cons with cost element qi 
    For each gj in G 
        Estimate cost in terms of qi for gj  
        If estimated cost does not satisfy coni 
            Remove gj from G 
        End if 
    End for 
End for 
If G = ∅ 
    Fail activity 
End if 

3 From relative constraint, build normalized priority vector ܲൈଵ 
4 For each gi in G 

    For each qj part of a relative constraint 
        If cost estimate of gi not available 
            Estimate cost in terms of qj for gi  
        End if 
    End for 
End for 

5 Build utility matrix ܷൈ from group cost estimates 
6 Calculate utility vector ܸൈଵ ՚ ܷൈ ൈ ܲൈଵV  

Sort ܸ in decreasing order of utility 
Fig. 3. Adaptation cost model 
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The input to the cost model consists of cost criteria, relative constraint (provides 
weights of each criterion), absolute constraints and a list of available groups. Step 2 
evaluates each capability group against the absolute constraints and discards groups 
that fail to meet the necessary constraints. If no groups remain at the end of this step, 
the process fails. Step 3 normalizes the weights from the relative constraint to build a 
normalized priority vector of the cost elements. In step 4, for remaining groups, costs 
are estimated for elements that are part of the relative constraints. Step 5 builds a 
utility matrix from these estimated costs. Given that there are p alternative groups 
remaining and k different cost criteria, the utility matrix is an p x k matrix where 
element uij is the reciprocal of the estimated cost value of group gi for cost criterion qj 

(except for “accuracy” criterion which is used as it is). The reciprocal of the cost 
value is used as an indicator of the benefit or “utility” that can be gained by selecting 
a particular group. Thus, lower the estimated cost, higher the utility gained. In step 6, 
by multiplying this utility matrix with the priority vector, which indicates the relative 
importance of each cost element, we obtain a vector which provides aggregate utilities 
for each group. The group with highest utility is the one that has lowest cost and is to 
be selected by the agent.  

4 Implementation Details 

This section presents the prototype implementation of the VERSAG concepts and 
theory previously discussed. It is built on top of the JADE agent toolkit [7] with an 
OSGi [8] based capability model. Figure 4 illustrates the structure of an agent. The 
agent, as previously mentioned is itinerary-driven at its core with the kernel driving 
this behavior. The capability repository stores the agent’s application specific 
capabilities. The itinerary service holds the agent’s itinerary and provides methods to 
interpret itinerary commands. The capability execution service provides the means to 
load, run and stop capabilities that are available in the repository. The capability 
exchange service (not in figure) fulfils the dual roles of a capability requestor and 
provider. In its provider role it listens for capability requests from peer agents and 
respond as appropriate. The requestor role gives an agent the ability to request 
capabilities from peers. The base JADE agent is the framework’s point of contact 
with the underlying agent platform and provides access to services such as mobility 
and communication. Capabilities themselves are agent-platform agnostic and can  
 

 

 

Fig. 4. Structure of a JADE based VERSAG agent 
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execute wherever a suitable execution environment is made available. Since the 
context service and adaptation service are implemented as capabilities, it is possible 
for a VERSAG agent to switch to different implementations of these services or be 
stripped of them to become a lightweight itinerant agent. An agent’s reference 
architecture and more design details are described in [6].  

This implementation limits itself to considering time, network load, maximum 
memory needs, CPU usage and level of accuracy as the cost criteria to be considered 
before adaptation. Itinerary execution time is often a crucial factor that needs to be 
minimized. It is also desirable to reduce network load, especially in wireless 
networks. Hence, these two are the primary cost elements supported. For a mobile 
agent, it is difficult to make design-time assumptions about the computational 
resources that would be available during its lifetime, as it traverses devices with 
different enabling opportunities. Thus, it is desirable if the agent can dynamically 
adapt itself to work with available computational resources. A VERSAG agent is able 
to achieve this by dynamically changing its constituent components. For example, an 
agent maybe required to execute an activity on a resource-constrained device, which 
has limited memory, processor and battery capacity. Available resources may be 
further limited by having to share them with a number of other agents. Memory and 
CPU cycles are two key resources that have to be thus shared. However, due to 
differences in computer architectures, hardware and system software, it is difficult to 
provide estimates of CPU or memory requirements of a software component in a 
useful platform-independent manner. Therefore, we use a CPU usage ranking which 
can be used as a relative indicator of a capability’s processing needs. For memory, the 
maximum required heap memory size in the Java Virtual Machine is used as a 
criterion. In certain applications, it is desirable to generate an approximate result 
using fewer resources rather than a more accurate output which is considerably more 
resource-intensive. The cost element of accuracy is incorporated into the decision 
making model to reflect this requirement. Thus, an agent may decide to select a less 
accurate capability over a more accurate one in order to reduce overall costs. 

5 Experimental Evaluation 

This section describes experimental evaluations carried out to verify the performance 
of the agent adaptation cost model. The experiments were conducted with two main 
goals: to check whether an agent correctly selects the least cost alternative from 
among many, and to check whether the generated estimates are representative of the 
actual costs. We describe two sets of experiments: one using network load and the 
other using time consumed as the main cost criterion. No absolute constraints are 
specified in both cases. Three separate workloads representing a simple agent GUI, an 
information retrieval task and a file sorting task were used. Time based tests were 
conducted over a high-speed LAN and an IEEE 802.11g wireless network while a 3G 
wireless broadband link was also used for load based tests. The three test computers 
used each had comparable computational capacity and were running Windows XP, 
Vista and Ubuntu Linux. All had Java SDK 1.6.0 and JADE version 3.7 with the 
LEAP add-on was used. We first describe the formulae used by the prototype to 
estimate costs followed by the experimental results. 
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The total network load generated when executing an itinerary step consists of the 
load due to execution of the capabilities as well as the load generated when the agent 
searches for and acquires the relevant capabilities. Given that an alternative group has 
n capabilities, the total network cost of selecting that group is made up of the load 
generated during adaptation decision making (ܤ௦), load generated during the 
actual acquisition of the capabilities (ܤ) and any network load generated during 
capability execution (ܤ௫). The total cost can be expressed as shown in equation 1. 

௧௧ܤ ൌ ௦ܤ  ሺܤ  ௫ሻܤ
ୀଵ . (1)

Further, ܤ   is made up of request size (ܤ), capability size (ܤ) and the 
overhead of each request (ܤ௩ௗ) as shown in equation 2. It is assumed that the size 
of a capability request and overhead of each request is constant for a given network. ܤ ൌ ܤ  ܤ  ௩ௗܤ2 . (2)

The network cost of capability execution (ܤ௫) is functionality and implementation 
specific and it is expected that a fixed value or a formula to estimate the same will be 
provided with the capability’s meta-data. For the experimental workloads used, 
network traffic generated during execution was nil. 

For an alternative that has n capabilities; the time to sequentially acquire the 
capabilities and execute the itinerary step can be expressed as follows: 

ܶ ൌ ܶ௦   ൫ ܶ_  ܶ_௦  ܶ௦௧௧_  ܶ ൯
ୀଵ . (3)

Here ܶ௦  is the time taken for the decision making process, ܶ_
 the time to 

request a capability, ܶ_௦ the time to receive a capability in response,  ܶ௦௧௧_  the 
time to start execution of the capability, and ܶ  the time to execute it at location 
loc. The time T, to move B bytes over a network link with latency λ and bandwidth 
bw can be represented as ܶ ൌ ߣ    :Using this in equation 3 we get .ݓܾ/ܤ

ܶ ൌ ܶ௦   ቆ2ߣ  ሺܤ   ܤ  ݓ௩ௗሻܾܤ2  ܶ௦௧௧_   ቇܶ
ୀଵ  .

 

(4)

Every prototype agent is equipped with a context-sensing capability which measures 
network parameters. While it could measure bandwidth and latency, for our experiments 
request size, overhead, load and time for decision making were estimated manually 
using trial runs and supplied to this context-sensing capability. For the wireless network, 
the context-sensing capability measured the average latency as 1ms and average 
bandwidth available to the agents as 13.5Mb/sec. For the LAN, latency was negligible 
and average available bandwidth was 81.3Mb/sec. Based on our trial runs it was 
concluded that ܤ௦  can be estimated as ሺ3900 ൈ .݊  .ሻݏݐ݊݁݃ܽ ݎ݁݀݅ݒݎ ݂
Similarly, request size and message overhead were estimated to be 224 and 2000 bytes 
respectively while decision making time (ܶ௦) was estimated to be 300 
milliseconds. It is expected that in real-life situations the context-sensing capability 
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makes these estimations. Of the needed capability meta-data, capability size was 
measured by the peer agent. Time to start a capability and execution time were also 
estimated in trial runs and added to its meta-data. During the experiments, Wireshark 
was used to measure the actual network load generated and code was instrumented to 
log actual time consumption. 

Based on experimental data, the error between estimated and actual values was 
calculated as a percentage of the estimated value. For the load based experiments, 
mean percentage error was 7.17% with a maximum of 13.5%. For time based 
experiments, higher error percentages could be observed when the estimates were less 
than 2 seconds whereas it was less than 10% when the estimate was larger than 2 
seconds. In figures 5 and 6 we compare the estimated and actual costs for the two sets 
of experiments. They clearly illustrate that our estimates are representative of the 
actual cost, an indication that the strategies used to estimate time and network load are 
accurate. Since they are used by the cost model to make adaptation decisions, it is 
essential that the estimates are accurate. 

a) b) 

Fig. 5. Comparison of Actual and Estimated Loads for the tests, sorted in ascending order of 
estimate size. Two graphs are plotted for clarity, each graph containing 9 tests. 

 

Fig. 6. Comparison of average Actual and Estimated time consumption. The first 6 tests were 
on a LAN environment and the following 6 conducted over a WLAN. 
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Table 1. Predicted utility values and actual costs for the three workloads, each with two 
available alternatives a and b are shown. Load and time values shown are averages. 

  Network Load  (KB)  Time (ms) 
Workload Alternative Utility Actual  Utility Actual  

1 a 0.021 731.0  0.78 709 
1 b 0.971 17.8  0.22 1089 
2 a 0.214 3495.9  0.75 1306 
2 b 0.786 913.5  0.25 2919 
3 a 0.4995 11.2  0.90 638 
3 b 0.5004 11.4  0.10 1378 

 
In Table 1, we compare predicted utility values for the three workloads with actual 

measured values. Columns 3 and 4 are for the first set of experiments with network 
load as the constraint. For the first two workloads the agent correctly predicts higher 
utility values while in workload 3, the utilities are identical to three decimal places 
and the actual difference between the two workloads less than 200 bytes. In columns 
5 and 6, time is the constraint and we see that all predictions are accurate. The results 
clearly indicate that the cost model is able to correctly select the least cost alternative 
for the agent to fulfil its goals. 

While our experimental results validate the accuracy of the model, prediction 
accuracy is dependent on multiple factors. Primary among these are the meta-data 
provided by capability developer which includes time to start and execute a capability 
and network traffic generated by the executing capability. These are in turn likely to 
depend on other factors such as the runtime environment and data being processed. 
We expect that a capability’s temporal and traffic generation behaviours will be tested 
on a standard environment and used to build the meta-data which in term could either 
be constant values or formulae for use by the adaptation cost model. These then need 
to be adapted by the agent to suit its current environment. Non-deterministic nature of 
the environment, especially the network, is another primary factor which can affect 
the prediction accuracy. 

A major feature of our approach is the ability to simultaneously aggregate multiple 
criteria for decision making. The accuracy of cost aggregation has been separately 
tested using synthetic data and is not reported here. Our twin aims were to check 
whether the predictions are representative of the actual costs and whether the 
alternative with lowest cost is correctly selected. As per the experimental results, it is 
evident that the proposed approach achieves these two aims and can be beneficial for 
adaptation decision making in pervasive environments. 

6 Related Work  

We briefly list some previous research where mobile agents were applied to pervasive 
computing scenarios. GAMA (Generic Adaptive Mobile Agent architecture) [9] 
builds compositionally adaptive mobile agents from ground up for use in ubiquitous 
computing environments. The open source JADE agent platform [7] also provides 
rudimentary support for runtime adaptation of agent functionality. Preuveneers and 
Berbers [10] describe a non-agent solution to mitigate service disconnections in 
mobile ad hoc networks with dynamically migrating services. Further related research 
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is listed in [6].  Our approach aims to overcome various limitations found in these and 
to provide a flexible component based solution to build intelligent adaptive agents 
suited for pervasive environments. 

7 Conclusions 

Building software for pervasive computing environments is a current challenge in 
pervasive computing research. Our goal was to build an approach to address this 
challenge while making use of desirable features provided by the agent paradigm. To 
this end, we proposed a novel context-driven component based mobile agent 
framework. As contributions of this paper, we presented the formal underpinnings of 
the approach and described a multi-criteria decision making model which assists the 
agents make context and user preference driven adaptation decisions at runtime. A 
prototype implementation of this novel approach was also described.  

Experimental evaluations were carried out using three different workloads on 
wired and wireless networks. The results confirm that our estimation strategies for 
time and network load are accurate and allow agents to effectively select the least cost 
alternative to carry out its given task when multiple options are present. We are 
currently engaged in further evaluations and intend to verify the scalability of our 
approach in environments with large numbers of agents and alternatives. As future 
work, we also plan to implement a case-study scenario to demonstrate the benefits of 
our approach in real-life pervasive computing applications. 

References 

1. Weiser, M.: The Computer for the 21st Century. Scientific American (1991) 
2. Niemelä, E., Latvakoski, J.: Survey of requirements and solutions for ubiquitous software. 

In: 3rd International Conference on Mobile and Ubiquitous Multimedia, pp. 71–78. ACM, 
College Park (2004) 

3. Cardoso, R.S., Kon, F.: Mobile Agents: A Key for Effective Pervasive Computing. In: 
ACM OOPSLA 2002 Workshop on Pervasive Computing, Seattle (2002) 

4. Zaslavsky, A.: Mobile agents: can they assist with context awareness? In: IEEE 
International Conference on Mobile Data Management, pp. 304–305. IEEE Press, Los 
Alamitos (2004) 

5. Marín, C.A., Mehandjiev, N.: A Classification Framework of Adaptation in Multi-Agent 
Systems. In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), 
vol. 4149, pp. 198–212. Springer, Heidelberg (2006) 

6. Gunasekera, K., Krishnaswamy, S., Loke, S.W., Zaslavsky, A.: Runtime Efficiency of Adaptive 
Mobile Software Agents in Pervasive Computing Environments. In: ACM International 
Conference on Pervasive Services (ICPS 2009), pp. 123–132. ACM, London (2009) 

7. Jade - Java Agent DEvelopment Framework, http://jade.tilab.com/ 
8. About the OSGi Service Platform: Technical Whitepaper. OSGi Alliance, pp. 1–19 (2007) 
9. Amara-Hachmi, N., Fallah-Seghrouchni, A.E.: Towards a Generic Architecture for Self-

Adaptive Mobile Agents. In: European Workshop on Adaptive Agents and Multi-Agent 
Systems, Paris (2005) 

10. Preuveneers, D., Berbers, Y.: Pervasive Services on the Move: Smart Service Diffusion on 
the OSGi Framework. In: Sandnes, F.E., Zhang, Y., Rong, C., Yang, L.T., Ma, J. (eds.) 
UIC 2008. LNCS, vol. 5061, pp. 46–60. Springer, Heidelberg (2008) 


	Adaptation Support for Agent Based Pervasive Systems
	Introduction
	Conceptual Overview
	The Formal Model
	Implementation Details
	Experimental Evaluation
	Related Work
	Conclusions
	References




