Context Acquisition and Acting in Pervasive
Physiological Applications*

Andreas Schroeder, Christian Kroif3, and Thomas Mair

Ludwig-Maximilians-Universitit, Miinchen, Germany
{schroeda, kroiss}@pst.ifi.lmu.de

Abstract. Physiological computing means using physiological sensors in com-
puting. This is a natural and promising continuation of pervasive computing: as
smart devices begin to permeate the environment, they can be used to collect in-
formation about the user’s emotional, cognitive and physical state to improve the
context-awareness of applications. Creating pervasive physiological computing
applications is hard, however. We propose a software framework that simplifies
the creation of these applications by providing a first design as well as support for
processing sensor data, distributing analysis results, and decision making under
the uncertainty that arise in physiological computing. We illustrate the presented
framework with the personalized affective music player, a context-aware physio-
logical application that plays music to guide the mood of a user into a pre-defined
direction.

Keywords: Pervasive Adaptation, Pervasive Computing, Physiological Comput-
ing, Software Engineering.

1 Introduction

The next step after pervasive computing [8]], that is to say, overcoming desktop-oriented
IT environments, is to include physiological information becoming available through
the entailed proximity of computer devices to the human. A plethora of physiological
sensors exist allowing computers to comprehend the user’s emotional, cognitive and
physical states. Approaches leveraging these source of inputs are known as physiolog-
ical computing [[1L7]], or affective computing [[12], when restricted to emotional state.
Context-aware interactive applications benefit from physiological computing by gain-
ing a better understanding of their users and thus offering improved services.

Creating pervasive physiological applications is no easy task, however. Data from
physiological sensors need to be handled appropriately: signal quality and noise, per-
sonal variance, and sometimes just the large amount of data makes this a non-trivial
issue. Algorithms and techniques for psychophysiological inference, that is to say, ex-
tracting a user’s emotional, cognitive and physical state from sensor data are still being
researched [7]]. Therefore, physiological computing applications need to adapt swiftly
to new insights in the domain as well as new emerging algorithms and techniques.

In this paper, we describe how a framework approach can support the development of
pervasive (i.e. especially context-aware) physiological applications (Sect.). We have

* This work has been partially supported by the EC project REFLECT, IST-2007-215893.

P. Sénac, M. Ott, and A. Seneviratne (Eds.): MobiQuitous 2010, LNICST 73, pp. 393-400l 2012.
(© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

394 A. Schroeder, C. Kroif3, and T. Mair

designed and implemented the component-based REFLECT framework that supports
the software engineers in designing and creating the analysis part (Sect. 4.1]) and the
decision making part (Sect. 4.2)) of a pervasive physiological application, as well as
testing and understanding support offered by the accompanying tooling (Sect. [4.3). We
use an implementation of the personalized affective music player [9] (Sect. B) as a
running example to motivate the framework support. Finally, we review related work in
Sect. 5] and conclude in Sect. [6l First of all however, we start with a discussion of the
challenges in pervasive physiological computing (Sect. 2).

2 From Sensing to Acting - A Software Engineering Perspective

From a bird’s eye view, a pervasive physiological system is a software agent that in-
teracts with the physical world and the user through sensors and actuators. The agent
translates input that it receives through sensors — often called percepts — to actions on
actuators that the agent controls [13]]. In a pervasive physiological computing setting,
the following challenges arise in addition to correctly interpreting percepts: Firstly, the
continuous and noisy character of the data data provided by physiological sensors must
be handled properly. Secondly, the results of interpreted data must be distributed to
other devices in the pervasive computing environment in order to share and combine
knowledge to create a more complete picture of the system’s physical context. Thirdly,
hidden or unknown parameters and incomplete knowledge in the physiological domain
may lead to seemingly inconsistent reactions of the environment and the user to actions
performed by the system.

Besides the algorithmic challenges, organizational challenges also arise when build-
ing pervasive adaptive applications. Software designs for pervasive adaptive applica-
tions must support different activities, namely 1) exploring and experimenting with new
algorithms and new techniques, 2) testing and validation of the system and its parts, and
3) rapid creation of software artefacts.

Exploration and experimentation and testing and validation must be supported since
the algorithms that will actually allow to extract knowledge about the emotional, cog-
nitive, and physical state of a human from basic sensors and features are still a field of
active research [7]]. A software design or software framework must therefore support al-
gorithm exchange and experimentation at low cost. Rapid creation of software artefacts
is crucial while still being in the process of understanding the application domain and
identifying the hard problems within it. Even later, while creating a product, being able
to swiftly create the software artefacts may turn out as crucial for reducing the product’s
time to market.

3 Affective Music Player Example

The affective music player (AMP) is a pervasive physiological application whose con-
cepts stem from [9]. It functions as a closed loop, repeatedly measuring the current
mood of the user and selecting music from the user’s own music database in order to in-
fluence the user towards a user-defined target mood. In this context, mood is understood
as a long lasting (i.e. minutes to days) affective state with no clear cause or origin [[16].

Context Acquisition and Acting in Pervasive Physiological Computing 395

0.” 1
1 Connector [
1 1

ProvidedPortinstance RequiredPortinstance

Manager

Container

JAN

0.* 0. 1
Component
1

1

ProvidedPort 0.” | RequiredPort 0.r 1 o
}—‘ |—1 .

Fig. 1. REFLECT component metamodel

Moods are different from emotions, which are short lasting (i.e. seconds to minutes)
affective processes related to an event in the environment or a thought [3]].

We built a fully functional prototype of the AMP using the REFLECT framework
which is described in the following sections. The AMP serves as a running example to
demonstrate the data handling and action selection support the REFLECT framework
provides.

4 Framework Support

Handling the challenges described in Sect. [2] without a good design is a daunting task;
every step in the process of creating a full system must be carefully thought through
from beginning to end with little or no guidance in the design and implementation pro-
cess. The framework approach followed in the REFLECT framework is one possibility
to guide this process.

The basic structure of the REFLECT framework is component-based (see Fig. [I).
That is to say, every entity that is created for the REFLECT framework is a compo-
nent or framed within the context of components: Functionality is encapsulated in com-
ponents, and function groups are arranged within component containers. Components
communicate to each other over required and provided ports, which describe the re-
quired and provided functionality, respectively. Thus, a component can offer different
functionality through different ports; additionally, a component can provide the same
functionality multiple times through multiple instances of a provided port. Similarly, a
required port can collect and bind a set of provided ports. Connectors track the binding
of ports. Finally, a single manager provides access to all components, connectors, and
containers. Using components as the basic underlying structure of a system encourages
a clear architecture with well-defined interfaces, which is beneficial for rapid develop-
ment as well as testing.

Fig. 2| shows the basic architecture of applications built on top of the REFLECT
framework. Sensors provide transient data that is stored in the context store, that is used
by analyser components to extract more abstract features that are stored again in the
data context (see Sect.[4.T). The application uses data available in the data context, may
make use of persistent data available in the data store (e.g. user preferences), and rater
components (see Sect.[4.2) to make decisions on how to control actuators.

396 A. Schroeder, C. Kroif3, and T. Mair

Application
‘ v
Analyser |- Rater
\ 4 iT A 4
.| Data Data
Sensor > Context Store Actuator

Fig. 2. REFLECT application structure

The REFLECT framework is implemented in Java and built on top of OSGi [2]]. It
makes use of Java annotations and internal domain specific languages for e.g. container
specifications. The implementation itself is focused on ease of use and leverages the
Eclipse OSGi tool support [11]] wherever possible.

4.1 Handling Sensor Data

Extracting meaningful features from sensor data often requires not only the latest sen-
sor reading, but a set of samples. In the REFLECT framework, this is supported by
data windows. These data windows are realized as flexible ring buffer and guarantees
to store all recent samples within a fixed time length, and discard old measurements
as soon as they exceed the data window time length. Often, a fragment of a data win-
dow with specified relative length needs to be created, e.g., to retrieve the last five
seconds of data input from a larger data window. The REFLECT framework offers
slices to create relative fragments of a data window. A slice is defined through start and
end points relative to the start and end of the underlying data window. For example,
to retrieve the last five seconds of input, a slice is specified as starting at end — 5s,
and ending at end, where end refers to the end of the underlying data window. Pro-
grammatically, start and end are referenced through positive and negative indexes, re-
spectively. Creating a slice with the last five seconds is done programmatically with
window.slice (-5, 0, TimeUnit.SECONDS) H A slice is live, that is to say,
new data added to the underlying data window lets the slice grow and/or shift.

For example, the affective music player infers mood from skin temperature and skin
conductance level — two psychophysiological measures known to be related to au-
tonomous nervous system activity [16]. Both skin temperature and skin conductance
measurements are stored in data windows in the data context. Both data sources are
known to be highly dependent on sensor placement and environment temperature, and
in addition, the amplitude of changes in skin temperature and skin conductance have a
high interpersonal variation [12]. Therefore, the sensor inputs need to be normalized,
which can be easily performed using the data window framework.

! Interestingly, zero must reference the data window start point when used as start parameter,
and also reference the data window end when used as end parameter. Otherwise, it would be
impossible to create slices both starting and ending with the underlying data window.

Context Acquisition and Acting in Pervasive Physiological Computing 397

ActionFacade O i RatingAlgorithm O
+rate(user, actions, goal) +rate(user, actions, state, goal) : ratedActions K

NeuralNetworkRating

1
DataStore Ol 1

+getEffects(action) KDERating _
+getEffects(action, user)

— — -

Action Effect _start TimedValue
1 0.* -time
o -end |-value
[o-*

1 1

Fig. 3. Rating framework

Including data windows as framework data structure offers several benefits. On the
one hand, it avoids the problem of blocking sensor processes when the feature extraction
components cannot keep up: As opposed to waiting queues, a data window cannot fill
up to its maximum capacity and block the sensor process. Instead, it will always present
the most recent data to the feature extraction algorithm using the data window.

In addition to this beneficial process separation, data windows offer a clear concept
for distributing data. The process of replicating the content of a data window that is fed
by either sensors, feature extraction algorithms or other processes, constitutes an easily
understandable and flexible data sharing concept. To put it another way, the process
separation offered by data windows allows to distribute processes almost transparently.
Within a REFLECT framework instance, a system assembly may specify to replicate
the content of a remote data window for local use.

The data context manages all data windows that exist in one framework instance and
offers a central point of access. Compared to a connection-oriented design in which a
data window may be accessed only by the data producer and its consumers, this design
simplifies the access to data windows for new data consumers, data window inspection,
and data distribution.

4.2 Selecting Actions

In a pervasive adaptive setting, the problem often arises that the effects of actions are a
priori unknown, and need to be learned over time. This is especially true when interact-
ing with humans: reactions may be highly personal, as it is the case with e.g. reactions
to music. These highly personal reactions must be caught and learned at run-time. The
REFLECT framework offers support for learning action effects and rating actions in
two respects: first, it records and stores the effects of executed actions. Secondly, it
offers a framework for rating actions based on past effects (see Fig.[3).

In order to record the effects of an action, it must be known a) what part of the en-
vironment is affected by the action, i.e. how the action effect can be measured, and b)

398 A. Schroeder, C. Kroif3, and T. Mair

e rating: Probatity Dansity Estimation ~

Fig. 4. Tool support for KDE inspection and graphical comparison of rankings

when the action is expected to make an effect. Specifying how action effects are mea-
sured is done by grouping actions into action types (e.g. actions consisting of playing a
single song are grouped into “a play song action type”), and the affected state features
are associated with action types. By specifying only the features that are affected by
action types, it is assumed that effects can be tracked uniformly in terms of changes
in the affected features. An effect is thereby reduced to pairs of timestamped start and
end values. In all applications we created so far, this simplification was feasible. Fig.[3|
shows the data model for effects that the framework offers: every effect is associated to
a user, as action effects may be highly personal.

Based on the recorded effects in the data store, a rating algorithm can evaluate a set
of actions for their fitness to reach a goal state specified by the application. Rating al-
gorithms can be defined using e.g. kernel density estimation techniques (KDE) [14113]]
and neural networks [313]. The idea in both approaches it to predict the future effect
of single actions based on the effects recorded. In the KDE approach, e.g, a Gaussian
kernel is fitted on each previously measured effect of an action to create a probability
density function for each action. Then, the score of an action is the probability that the
action guides the current state into an e-environment around the goal state.

The affective music player uses the action selection framework to select the next
song to play once the previous song has ended. It does so on the basis of the past
song effects which are recorded in terms of changes in skin conductance level and
skin temperature (see Sect.[4.I)). In order to select songs, the target mood is brought to
desired changes in skin conductance level and skin temperature, and the songs in the
user’s personalized play list are ranked in terms of their fitness to achieve the requested
changes in psychophysiology. The ranking of songs is done using a slight modification
of the KDE-based rating algorithm [9]].

4.3 Inspecting and Testing

Evaluating the quality of the action selection process can be quite difficult. This is espe-
cially true for algorithms like KDE or neural networks, which generally produce results
that are hard to interpret. Detailed manual inspection of the internal data and its evo-
lution during simulated runs are often needed. To facilitate this task, the REFLECT
framework is accompanied by a tool that provides several visualization options. The
tester can use the tool to browse the simulation run and inspect each step, i.e. the up-
dated state of the rating algorithm’s internal data and the generated ranking. While the

Context Acquisition and Acting in Pervasive Physiological Computing 399

visualization modules for the internal data have to be designed for each rating algo-
rithm (e.g. KDE, see Fig.[d] left), the visualization tool provides a general module for
comparing the action rankings generated by two different algorithms (see Fig.[] right).
It shows a graph consisting of two node columns that represent the aggregated rank-
ings. Edges between the two columns show how actions were ranked differently during
the simulation runs. The frequency of rank differences is visualized by different line
strength of the edges. This way, the user can easily get a qualitative measure of how
similar the action selectors behave.

5 Related Work

Several frameworks and middlewares were developed in the context of pervasive com-
puting. The context toolkit [6] proposes an interesting widget approach for the rapid
creation of context-aware pervasive applications. Transparent ad-hoc networking and
context information distribution through middleware support is proposed in [[17]. The
Aura architecture [15] offers a design for transparent content migration that allows con-
tent to follow its user.

While most approaches provide better support for transparent distribution of data,
all approaches define context in the sense that is understood in pure pervasive comput-
ing: the user’s physical location, time, devices, their interconnections and proximities,
and physical features of the environment such as lighting and temperature (e.g. [6] and
[[L7]). Although some definitions of context are so broad that they can include physi-
ological inputs (especially [6]), the specifics physiological computing brings about are
not considered. To the best of our knowledge, no framework or middleware exists that
specifically supports the design and implementation of pervasive physiological comput-
ing applications.

Rainbow [4] and KX [10]] are component-based approaches that use probes and
gauges to generate and aggregate streams of measurements for a running application.
Then, reconfiguration decisions are made by a controller. The probes, however, are
software entities used to provide measurement from legacy systems ([LO]) or generic
components ([4]) instead of physical sensors.

6 Conclusion

Physiological computing [[1L7] is a logical consequence of pervasive computing. Lever-
aging the physical proximity to the human body offered by smart devices pervading
our environment allows to create applications taking into account the user’s emotional,
cognitive and physical state.

We presented a component-based framework that aims at providing a clear design
blueprint, and offering support for processing of physiological data, distributing anal-
ysis results, and making decisions in the domain of physiological computing. By this,
we aim to simplify the creation of pervasive physiological computing applications.

The REFLECT framework has several limitations, however. First, it does not offer
transparent distribution of context information. Instead, each framework instance must

400 A. Schroeder, C. Kroif3, and T. Mair

specifically declare its interest in the data provided by a known remote instance. Fur-
thermore, the action rating support currently operates solely on continuous values, and
action effects are considered to be measurable by changes in a defined set of features.
Validation of the applicability of the framework in other applications than the person-
alized affective music player is needed. Finally, tool support for automated testing of
decision making algorithms is needed.

Looking further ahead, support pervasive physiological computing applications span-
ning groups of users, from small to large, may also prove a worthwhile extension of the
REFLECT framework. Currently, our framework is focussed on supporting single user
(or multiple, but sequential users) applications.

References

1. Allanson, J.: Electrophysiologically Interactive Computer Systems. IEEE Computer 35, 60—
65 (2002)

2. OSGi Alliance. OSGi Service Platform Release 4.2 (2009)

3. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford
(1995)

4. Cheng, S.-w., Huang, A.-c., Garlan, D., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-
based self-adaptation with reusable infrastructure. IEEE Computer 37, 46-54 (2004)

5. Damasio, A.D.: Descartes’ error: Emotions, reason, and the human brain. Putman, New York
(1994)

6. Dey, A. K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. Human-Computer Interaction 16(2), 97—
166 (2001)

7. Fairclough, S.H.: Fundamentals of physiological computing. Interacting with Comput-
ers 21(1-2), 133-145 (2009)

8. Hansmann, U.: Pervasive computing: the mobile world. Springer, New York (2003)

9. Janssen, J.H., van den Broek, E.L., Westerink, J.H.D.M.: Personalized affective music player.
In: 3rd Int. Conf. Affective Computing and Intelligent Interaction. IEEE, New York (2009)

10. Kaiser, G., Gross, P., Kc, G., Parekh, J.: An Approach to Autonomizing Legacy Systems. In:
Wshp. Self-Healing, Adaptive and Self-Managed Systems (2002)

11. McAfter, J., VanderLei, P., Archer, S.: OSGi and Equinox: Creating Highly Modular Java
Systems. Addison-Wesley Professional, Upper Saddle River (2010)

12. Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)

13. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education,
New Jersey (2003)

14. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London (1986)

15. Sousa, J.P., Garlan, D.: Aura: an Architectural Framework for User Mobility in Ubiquitous
Computing Environments. In: 17th World Computer Congress - TC2 Stream / 3rd Conf.
Software Architecture, Deventer, Netherlands, pp. 29-43. Kluwer, B.V., Dordrecht (2002)

16. Thayer, R.E.: The biopsychology of mood and arousal. Oxford University Press, New York
(1989)

17. Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable Context-Sensitive
Middleware for Pervasive Computing. IEEE Pervasive Computing 1, 33—40 (2002)

	Context Acquisition and Acting in Pervasive
Physiological Applications
	Introduction
	From Sensing to Acting - A Software Engineering Perspective
	Affective Music Player Example
	Framework Support
	Handling Sensor Data
	Selecting Actions
	Inspecting and Testing

	Related Work
	Conclusion
	References

