Scalable and Efficient Pattern Recognition
Classifier for WSN

Nomica Imran and Asad I. Khan

School of information Technology,
Monash University, Clayton, Victoria, Australia
{nomicac, asad.khan}@infotech.monash.edu.au

Abstract. We present a light-weight event classification scheme, called
Identifier based Graph Neuron (IGN). This scheme is based on highly
distributed associative memory. The local state of an event is recognize
through locally assigned identifiers. These nodes run an iterative algo-
rithm to coordinate with other nodes to reach a consensus about the
global state of the event. The proposed approach not only conserves the
power resources of sensor nodes but is also effectively scalable to large
scale WSNs.

1 System Model

In this section, we model the wireless sensor network. Let there are N sensor
nodes in the wireless sensor network. Let & = {ej,ea,...,er} be a non-empty
finite set of such data elements sensors sense from their surroundings. Input data
is in the form of patterns. A pattern over £ is a finite sequence of elements from
E. The length of a pattern is the number of sensors in the system. We define P
as a set of all possible patterns of length L over £. We model GN as a structured
overlay G = {(€ x £)} where £ = {1,2,..., L}, where n(e;, j) is a node in G
at i-th row and j-th column. GN can be visualized as a two dimensional array
of L rows and F columns. Total number of nodes in the G are E x L. We refer
all the nodes in the (j — 1) column as the left neighbors of any node n(x, j)
in j-th column. Similarly, all the nodes in the (j 4+ 1) column are called as the
right neighbors of n(x,j). In a GN-based classifier[Raja,2008],[Nasution,2008],
each node n(e;, j) is programmed to respond to only a specific element e; at
a particular position j in a pattern. That is, node n(e;,j) can only process all
those patterns in P such that e; is at the j-th position in that pattern. Each
node maintains an active/inactive state flag to identify whether it is processing
the incoming pattern or not. Initially all nodes are in inactive state. Upon arrival
of a pattern, if a node finds its programmed element e; at the given position in
the pattern, it switches its state to active otherwise it remains inactive. Only
active nodes participate in our algorithm and inactive nodes remain idle. At any
time, there can be exactly L active nodes in a GN. Hence, there are exactly
one active left-neighbor and exactly one active right-neighbor of a node n(e;, j)
where j # 0,1. Whereas terminal nodes n(e;, 0) and n(e;, L) has only one active
left and right neighbor respectively.

P. Sénac, M. Ott, and A. Seneviratne (Eds.): MobiQuitous 2010, LNICST 73, pp. 303-304] 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



304 N. Imran and A.I. Khan

2 Proposed Protocol

On arrival of an input pattern P, each active node n(e;, j) store e; in its ju
position. Each node n(e;, j) sends its matched element e; to its active neighbors
(j+1) and (§ — 1). The GNs at the edges will send there matched elements
to there penultimate neigbours only. Upon receipt of the message, the active
neighboring nodes update there bais array. Each active node n(e;, j) will assign
a local state Ly to the received (e;, ) value. The generated local state Lg will be
Recall if the the added value is already present in the bais array of the active
node and it will be a store if in-case its new value. An < I D > will be generated
against each added value. The rules for assigning ids are as under:

— Rule 1. Store(s;y > Recall(g;: If node n(e;, j) self local state L, is Recall
but it receives a Store command from any of its neighbors, (j+1) or (j —1),
it will update its own state from Recall(g;y to Store(g;).

— Rule 2. All New Elements: If any of the elements presented to G is not
existing in the bais array of any of the active nodes n(e;, j) suggests that
its a new pattern. Each active node n(e;,7) will create a new <ID> by
incrementing the already stored maximum <ID> in there bias array by 1.

— Rule 3. All Recalls with Same ID: If e; presented to G is the recall of previ-
ously stored pattern with same <ID>, means that its a repetitive pattern.
The same <ID> will be allocated to this pattern.

— Rule 4. All Recalls with Different IDs: If all the e; of the pattern P presented
to G are the recall of already stored patterns with different <IDs> indicates
that it’s a new pattern. Each active node n(e;, j) will find out the max(ID)
in there bias array and will increment it by 1.

— Rule 5. Mix of Store and Recall: If the end decision is to Store due to mix of
Store and Recall, each active node n(e;, j) will again find out the maxz(ID)
in there bais array and will increament it by 1.

— Transition Rule 1 If the active node n(e;, j) has received a greater value
from its left neighbor (5 + 1), it will upgrade its local state and transfer this
updated value to its right (j — 1) neighbor only.

— Transition Rule 2 In case if the received value from both the neighbors (j+1)
and (j—1) are smaller than the local value, node n(e;, j)will upgrade its value
and transfer this new value to both of its neighbors. Once the pattern has
been stored, a signal is sent out within the network informing all the IGN
nodes that the pattern has been stored. This is called the pattern resolution
phase.

3 Conclusion and Future Work

In this paper we have proposed an in-network based pattern matching approach
for providing scalable and energy efficient pattern recognition within a sensor
network. Our proposed scheme is base station independent. The proposed scheme
is also independent of preprocessing steps such as patterns segmentation or train-
ing for its processing. Through parallel processing, the scalability issues in WSN
are catered well.



	Scalable and Efficient Pattern Recognition 
Classifier for WSN
	System Model
	Proposed Protocol
	Conclusion and Future Work




