
Enforcing Security Policies in Mobile Devices

Using Multiple Personas

Akhilesh Gupta1,3, Anupam Joshi1,2, and Gopal Pingali1

1 IBM Research - India,
Plot 4, Block C, Vasant Kunj Institutional Area,

New Delhi 110070, India
akhilesh.iitdelhi@gmail.com, anupam.joshi@in.ibm.com, gpingali@us.ibm.com

2 CSEE Department,
University of Maryland, Baltimore County

3 Department of Computer Science,
Stanford University

Abstract. Cell phones are becoming increasingly more sophisticated,
and such ”Smart” phones are a growing front end to access the web and
internet applications . They are often used in a multiple modes – for
instance for both personal and business purposes. Enterprises that allow
employees to use the phones in this dual mode need to protect the infor-
mation and applications on such devices and control their behavior. This
paper describes an approach that integrates declarative policies, context
and OS level device control to enforce security by creating multiple per-
sonas for the device. We describe the approach, and present a proof of
concept implementation on Android.

1 Introduction

Mid to high end smartphones have become commonplace in corporate settings.
The same smartphone is used in a corporate as well as personal setting, has
both types of applications, and stores both personal and corporate data. This
can lead to significant security concerns. Sensitive data can be compromised by
making the device behave inappropriately using one of the installed applications,
or by hacking into the device using its connectivity to public networks. Data
can even be compromised by the device being lost, or someone stealing the
removable storage media or the device itself. While we illustrate this problem
using a corporate / personal dual persona situation, more generally we might
want the device to have multiple personas. For instance, one when it is connected
to a trusted network, another when it is in a particular location (office vs home),
and yet another when we are using a particular application. We address this
problem by forcing the device to isolate its functionality and behave differently
when being used in different contexts using a middleware layer.

We argue that a set of applications, data, and device capabilities are relevant
to a context, which we call a device persona. Each such persona should have
its own sandbox to run, and should be isolated from other personas. What

P. Sénac, M. Ott, and A. Seneviratne (Eds.): MobiQuitous 2010, LNICST 73, pp. 297–302, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



298 A. Gupta, A. Joshi, and G. Pingali

is permitted within this sandbox needs to be dictated by the corresponding
policy. We propose a security mechanism in which the device functions in distinct
modes, and specifically show an implementation for separating personal use from
enterprise use.

For example, the enterprise may want to specify in a policy that device capa-
bilities like 802.11, Bluetooth, and GPRS are unrestricted while in the personal
mode. However, if the user wishes to read their official email, it requires the
device to switch to the enterprise mode. In this mode, the policy directs the en-
forcement mechanisms on the device to disable the Cellular radio and Bluetooth,
and limit access via 802.11 interfaces to the enterprise VPN. The device platform
is modified to actually enforce the issued policies. The enterprise VPN server is
entrusted with the task to verify the login credentials of the user requesting to
switch to the enterprise mode and to verify the authenticity of the device before
granting network resources to the device. The device authentication is carried
out by ensuring that the device is actually running the customized build of the
platform distributed by the enterprise. We describe a proof of concept imple-
mentation carried out by customizing the Android Donut Mobile platform. Note
that our approach builds on top of existing mechanisms such as link encryption
and user authentication – it does not supplant them. Moreover, it also does not
obviate the need for malware detection and remediation systems.

2 Related Work

Most of the current systems for device level security work on a per application
basis, typically at install. For instance in Android1, each application typically
gets its own uid. All permissions it needs are predeclared (and signed) by the
developer. At install time, these permissions are either granted to the uid or
not based, amongst others, on interactions with the user. This is very coarse
grained control. Ideally, the decision on whether or not to grant a request to
access device features from an application should be based on the context of
the device and the user. For instance, an enterprise may have a policy that cell
phones with cameras are not allowed to take pictures inside the office, or that
they must be in vibrate mode when in a meeting room. These are all instances of
the context of the device, as captured in the policy of the space it happens to be
in. Similar context dependant policies arise from the user’s perspective. A user
might want to make his Bluetooth device discoverable when at home or office,
but not otherwise. We posit that a context dependent, policy driven security
mechanism is best suited for device capability security.

Access control is a very well studied topic in literature, with a variety of mod-
els that have been developed over four decades of work. We focus here on two
works of immediate relevance. The first, by Jansen et al[2] suggests that devices
such as PDAs be provided enterprise security policies (in XML) on a smart card.
These policies would describe access/noaccess decisions for specific device fea-
tures. The PDA would run a trusted kernel which would enforce these policies.

1 http://www.android.com/

http://www.android.com/


Security in Mobile Devices Using Mutiple Personas 299

The focus there was to provide policies, not base them on changing context. We
extended this approach in our prior work[5] and showed that a pointer to such a
policy could be sent over the 802.11 beacons, so that a “smart space” could point
a device to its acceptable use policy. Our proposed approach builds upon some
of these ideas. Susilo [6] identified the risks and threats of handheld devices con-
nected to the internet. Since the mobile device is not subject to physical security
as are the fixed computers in the wired networks, it is susceptible to attacks and
hence can potentially host malicious code while it is in some untrusted network
and try to propagate it, once back in the home network. Another scenario in-
volves a temporary user granted access to the network injecting malicious code
into the network.

Our system uses a declarative policy-based approach, where the rules of be-
haviour, or the boundaries of the sandbox, of entities in a variety of environments
are described in a machine-understandable specification language. Policy driven
systems can even be engineered so as to be extremely lightweight on resource
constrained devices[5]. Semantic web languages such as RDF and OWL prove a
natural choice for such policy languages.

Policy driven security has been looked at by several academic research groups
over the last decade. Rei [3] is an example of a declarative policy language that
uses Semantic Web technologies to describe policies as constraints over allowable
and obligated actions on resources in the environment. Rei is, of course, just
one of the recent efforts to develop declarative policy languages. Most are not,
unlike Rei, motivated by the security and privacy issues in open systems such
as ubiquitous computing. These include industry standards such as XACML [4],
but also academic efforts such as Ponder [1].

3 Design Approach

Android is a free, open source, and fully customizable mobile platform by Google
and the Open Handset Alliance. Before we discuss our implementation in the
next section, there is a present a quick overview of three relevant components
of the Android platform viz. services, intent broadcasts and security. A more
general discussion of Android is beyond the scope of this paper. However, note
that security is enforced at the process level through standard Linux facilities,
such as user and group IDs that are assigned to applications. The permissions
required by an application are declared statically in that application, so they
can be known up-front at install time and will not change after that.

A service runs in the background for an indefinite period of time. Most core
system functions are carried out by services. A broadcast receiver receives and
reacts to broadcast announcements. Many broadcasts originate in system code
to notify the rest of the system about a state change. Services and broadcast
receivers are activated by asynchronous messages called intents. These intents
name the action being announced making the concerned service handle the state
as required.



300 A. Gupta, A. Joshi, and G. Pingali

There are several possible approaches to provide each persona with its own
sandbox. The most obvious approach is to build in separation at the application
level using the access control mechanisms provided by the OS. However, these
are generally limited in most mobile platforms. More importantly, they can be
easily overriden by the user. Another possibility is to introduce modifications at
the kernel level. This approach is based on the idea of Jansen et al.[2]. However,
this approach adds an extra layer to check to every access request thus raising
the overhead significantly.

For Android, we consider an alternate approach that creates each sandbox
as a “mode” similar to built in modes like the “Airplane mode”. While such
modes merely switch off certain functionality by default, they can be extended
to perform the functions we need. We add such modes to the stock Android
distrubution (1.6) and build a customized image from source to achieve our ob-
jectives. We utilized the Android system services to disable interfaces at the
framework level. This also allows us to work with the Android security mech-
anisms and disable user controls in device settings preventing manipulation of
the functioning in the modes, and not allowing functionality to be added to
the sandbox by the user. Moreover, this approach makes it easier to work with
Android networking for authentication procedures and the Volume daemon for
working with accessibility of file-systems, both of which are useful for providing
the sandbox. To keep the initial implementation simple, we start with the policy
expressed in XML, and directly describe the device constraints.

4 Implementation

For our implementation on the Android platform, certain setup functions are
performed during initialization of the device. An application has been created
for the purpose of accepting the user’s enterprise login credentials. The user
settings interface presents a button to issue the command for switching back
and forth between the two modes.

During the boot process, the device reads the enterprise policy from the policy
file (included as part of the build) and configures enterprise mode accordingly.
The volume daemon detects the external storage card and stores its configuration
and mount point. The device boots up in the personal mode. On receiving the
boot completed intent, the mount service on the device unmounts the external
storage reserved for the enterprise mode.

The user opens the application for entering enterprise login credentials. When
the user issues the command for switching the mode, the credentials are sent to
the enterprise server for validation. In our prototype, we use IBM’s internal
single sign on system to validate the user.

An intent is generated to indicate the switch to the new mode and is broad-
cast to inform the rest of the device. The services corresponding to each of the
radio interfaces execute the handler for this intent. The handler decides if the
radio interface is sensitive to the enterprise mode and enables or disables the
corresponding radio based on the policy. The status icons on the user interface



Security in Mobile Devices Using Mutiple Personas 301

are updated to present the current status of various wireless interfaces on the de-
vice. The user interface buttons corresponding to each of these radios also handle
this intent and enable or disable their interface presence. In our example pol-
icy demonstrated in the screenshots, all network connections are disabled when
in enterprise mode, and only the VPN connection to the enterprise gateway is
permitted. This will prevent data leaks on any network path.

The mount service invokes the volume daemon to mount or unmount the ex-
ternal SD storage. We mount it for enterprise mode, and unmount it for regular
usage. For added security, the filesystem on the SD card could be encrypted.
The key, instead of being stored locally on the device, would be provided by the
enterprise gateway via the encrypted VPN channel upon successful authentica-
tion. Note that we chose to keep the on device flash filesystem encryption free
to comply with FCC mandates on smartphones that they be allowed to boot
into a mode allowing calls to 911. An Android application can store data on
the device memory itself which is private to that application ensured through
linux file-system permissions. However, any data stored on the external storage
is not secured. Thus, in our implementation, the external storage is reserved
for enterprise data and can be accessed only in the enterprise mode. The exter-
nal storage in Android is handled by the Volume daemon. The external storage
is unmounted as soon as the user switches to the personal mode. We show in
Figure 1, the disabling of the radios/network and mounting of the external SD
card in response to a successful authentication into the enterprise mode.

The user can go back to the personal mode by unselecting the enterprise mode.
In our present implementation, no authentication is done for this reverse switch,
although it could be easily added if desired.

Fig. 1. Authentication with enterprise server successful. Radios mentioned in enterprise
policy get disabled. SD card mounted.



302 A. Gupta, A. Joshi, and G. Pingali

An Android source patch has been created for ease of application of the mod-
ification made to the platform to the original source code. This modified source
can be built for an actual android device to generate a system image. This sys-
tem image can then be signed by the enterprise for installing onto real devices.
The customized Android build can be flashed to devices and then distributed to
employees of the organization. New policy files and build patches can be sup-
plied by the enterprise network to the devices wirelessly using the Android OTA
(over-the-air) update mechanism. We note that arbitrary personas can be cre-
ated using our system that are specific to the particular needs of an enterprise or
organization. Each persona can specify an arbitrary combination of functionality
that is available.

5 Conclusion and Future Work

Devices such as smartphones are increasingly being used in both personal and
professional/enterprise context. This creates serious security concerns about loss
of data from the compromise or loss of the phone. Devices can also be attacked
using their network connections. We have proposed a solution to this problem by
having the device take on multiple personas, each corresponding to a sandbox
where certain applications and device functionalities are allowed. What function-
alities are allowed are based on the needs of the mode (e.g. personal, enterprise,
travel hotspot, etc.) and are specified by a declarative policy.

References

1. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification lan-
guage. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995,
pp. 18–37. Springer, Heidelberg (2001)

2. Jansen, W.A., Karygiannis, T., Gavrila, S., Korolev, V.: Assigning and Enforcing
Security Policies on Handheld Devices. In: Proceedings of the Canadian Information
Technology Security Symposium (May 2002)

3. Kagal, L., Finin, T., Joshi, A.: A Policy Language for A Pervasive Computing En-
vironment. In: Proceedings of the IEEE 4th International Workshop on Policies for
Distributed Systems and Networks (June 2003)

4. Moses, T., et al.: eXtensible Access Control Markup Language (XACML) Version
2.0. OASIS Standard, 200502 (2005)

5. Patwardhan, A., Korolev, V., Kagal, L., Joshi, A.: Enforcing Policies in Pervasive
Environments. In: International Conference on Mobile and Ubiquitous Systems: Net-
working and Services. IEEE, Cambridge (2004)

6. Susilo, W.: Securing Handheld Devices. In: 10th IEEE International Conference on
Networks (August 2002)


	Enforcing Security Policies in Mobile Devices 
Using Multiple Personas
	Introduction
	Related Work
	Design Approach
	Implementation
	Conclusion and Future Work
	References




