A Quantitative Comparison of Communication
Paradigms for MANETSs

Justin Collins and Rajive Bagrodia

University of California, Los Angeles
Los Angeles, CA
{collins,rajive}@cs.ucla.edu

Abstract. Mobile ad hoc networks (MANET) present a challenging
area for application development. The combination of mobile nodes and
wireless communication can create highly dynamic networks with fre-
quent disconnections and unpredictable availability. Several language
paradigms have been applied to MANETS, but there has been no quan-
titative comparison of alternative approaches. This paper presents the
first quantitative evaluation of three common communication paradigms
(publish/subscribe, RPC, and tuple spaces) compared within realistic
MANET environments using real applications. We investigate the
application-level performance of the paradigms and present a summary
of their relative strengths and weaknesses. We also demonstrate the im-
pact of wireless and mobility on application-level metrics, the most dra-
matic being delivery rates dropping to nearly 25% and round trip times
increasing up to 2000% in a mobile scenario.

1 Introduction

In mobile ad hoc networks (MANET), high nodal mobility causes frequent topol-
ogy and route changes, making it difficult to maintain connections between
nodes. Many routes in the network span multiple wireless hops which may ex-
perience dramatic and unexpected fluctuations in quality. The combination of
mobility and wireless communication creates highly dynamic network topolo-
gies in which frequent, possibly permanent disconnections are commonplace.
The dynamics of the network and the wireless channel requires changes to the
networking stack and alternative solutions at the application level.

Middleware, frameworks, libraries, and languages have been proposed for
meeting the challenges of developing mobile and ubiquitous applications. Quan-
titatively comparing these projects is difficult, since they are implemented in dif-
ferent languages, with different feature sets, and with varying levels of complete-
ness. In this paper, we examine the fundamental differences in communication
paradigms commonly used in projects, rather than the projects themselves. We
accomplish this by evaluating representative implementations of each paradigm.

We also use real applications utilizing each of the paradigms, allowing us to
investigate the impact of the paradigms on application-level metrics. Of prime
importance to MANET applications is the performance of the communication

P. Sénac, M. Ott, and A. Seneviratne (Eds.): MobiQuitous 2010, LNICST 73, pp. 261, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

262 J. Collins and R. Bagrodia

model when the wireless channel and mobility are introduced. Therefore, we
have evaluated the communication paradigms using a high-fidelity emulation of
the network stack and detailed models of the wireless channel.

Since these communication models are common across multiple projects and
are likely to be used in future projects, the results of this study have wide ap-
plicability. While previous work has qualitatively compared a subset of these
paradigms or reported experimental results at the individual project level, we
have investigated the performance characteristics of the underlying communica-
tion models themselves.

In this paper, we present the first quantitative comparison of three communi-
cation paradigms - publish/subscribe [1], remote procedure calls [2], and tuple
spaces [3] - using canonical implementations within real applications. Our re-
sults show wide variation in paradigm performance within the same scenario.
Publish/subscribe provides fast, cheap message delivery, with a message over-
head of 357 bytes and median round trip times of <400ms even with mobility.
RPC supplies good delivery ratios when a reply is expected, achieving a 94%
delivery ratio with mobility, while publish/subscribe and tuple spaces dropped
to 75% and 72%. In the whiteboard application, however, tuple spaces were able
to deliver all messages in 5 out of 6 scenarios, including a scenario in which RPC
only delivered 25%.

2 Evaluation Architecture

The architecture used for this comparison has three layers: a network emulator,
which provides a scalable and realistic MANET environment; the communication
components, which implement the paradigms; and the applications which utilize
the paradigms. The application is built on top of the communication component,
which communicates over a regular wired network. The traffic from the network is
routed through the network emulator, which provides a high fidelity simulation of
the wireless network, intermediate nodes, and mobility. This allows applications
to be written independently of whether the network is real or emulated.

Network Emulation. Because application-level performance is affected by
variations in the wireless channel, mobility, and disconnection patterns, it is
essential to have an accurate representation of the network stack and the wire-
less channel [4l[5]. EXata provides a high fidelity emulation of the entire network
stack, using real MAC and routing protocols, as well as detailed simulation of
the effects of the wireless channel and mobility, such as fading, shadowing, and
path loss [6]. The emulator allowed us to run actual applications, rather than
models, in a realistic representation of the MANET environment while retaining
precise control of the variables in each experiment. This ensures our results are
a fair comparison and not influenced by transient environmental effects.

Communication Components. Each of the three communication paradigms
are implemented in Java on top of Apache MIN7 a high-performance net-

! Multipurpose Infrastructure for Network Applications: http://mina.apache.org/

http://mina.apache.org/

A Quantitative Comparison of Communication Paradigms for MANETSs 263

Send/Request Send Send / Receive
Message Packaged Message Object
Application| " | Comm. API| " |Comm. Handler » Apache MINA
Ret M Return .
eturn Message Packaged Message Send / Receive
Serialized Object L 4

Emulated Network|

Fig. 1. Communication Components

working library. A summary of the interaction between the application, the
communication components, and the networking library is illustrated in
Figure Il The libraries are intended to be functionally equivalent implemen-
tations of each paradigm to keep the comparison as fair as possible.

For publish/subscribe, we implemented a simple topic-based system. Publica-
tions to topics are broadcast to all subscribers available at time of publication.
Our RPC implementation uses a reflection-based mechanism for invoking meth-
ods on remote objects, which are addressed by class. Parameters are copied to the
remote machine and there is always a return value. The tuple space implementa-
tion we used is largely modeled on LIME [7] and uses the same local tuple space
library. All three implementations support unicast, multicast, synchronous, and
asynchronous communication.

Applications. The first application used for these experiments is a simple
client-server application which can send messages between hosts. This provides a
baseline for the performance results and allows us to easily test performance with
varying message sizes and frequency. The second application is a shared white-
board. Collaborative applications are often cited as use cases for MANETSs and
the shared whiteboard is a common example [8HIT]. This provides a non-trivial,
realistic test case for each of the three communication paradigms.

3 Experimental Results

In the following sections, we present measurements of message delay and message
delivery reliability for unicast and group communication, as well as for a non-
trivial whiteboard application. We also examine the message overhead and the
influence of routing algorithms. These experiments demonstrate the impact of
the wireless network and mobility at the application level.

We compared application-level metrics using unicast and group communica-
tion in three network scenarios which are used throughout the experiments: a
single hop, static network; a multi-hop, static network; and a fully mobile net-
work. Each node in the emulated network is equipped with an 802.11b wireless
interface. The two-ray model is used for path loss. Based on preliminary results,
we used DSR [12] as the routing protocol for the static scenarios and AODV [L3]
for the mobile scenario.

264 J. Collins and R. Bagrodia

The mobile scenario uses random waypoint mobility with a pause time of
30s and maximum speed of 1 meter/second, representing pedestrians carrying
handheld devices. The nodes move within a 1500m x 1500m indoor space where
transmission range is limited to 50m. To avoid network segmentation, the sce-
nario ensures there are always possible routes between any two nodes by having
four fixed nodes. The mobility pattern in each experiment is identical.

3.1 Unicast Communication

Message Overhead

Application Overhead. The first step of our experimental evaluation of these
three paradigms is discovering the basic cost of communication. Table [I] pro-
vides an overview of the sequence of messages involved when using each of the
communication paradigms in the simple case of a single sender and a single
receiver sending a 1KB payload. The total size includes the 1KB payload. Pub-
lish /subscribe requires only two messages to be sent: one to subscribe to a topic
and one to publish. Since publish/subscribe only needs to add a string indicating
a topic, there is very little overhead added to the original message.

RPC first sends out a query to find the desired remote object. Once found,
it sends a second message to invoke the method and transfer any arguments.
The final message in the sequence is the return value from the method, which is
dependent on the size of the return value.

Tuple spaces require the same number of messages as RPC, but the overhead
is 2.3 times higher. Except for the search reply messages, all messages include a
tuple object, making them larger than the simple messages exchanged in RPC.

Table 1. Message Sequence Overview

Paradigm Sender Receiver Size (bytes) Overhead (bytes)
Publish/Subscribe

Subscribe 175
Publish 1182

Total 1357 357

RPC

Search 146
Search Reply 187
Invoke 1238
Return Value 152

Total 1571 571

Tuple Space

Search 608
Search Reply 133
Tuple Request 588
Tuple Reply 1586

Total 2915 1915

A Quantitative Comparison of Communication Paradigms for MANETSs 265

16000 600

§ 14000 | [Publish/Subscribe [Publish/Subscribe
2 M RPC + 500 |l RPC
= 12000 {|[[] Tuple Space o [] Tuple Space
2 n 400 4
© 10000 - n
S 8000 % 300 4
>
& 6000 4 & 200 4
o
& 4000 S
o 2000 = 100
g |
< 0+ 0~
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Message Size (bytes) Message Size (bytes)
(a) Bytes per Message (b) TCP Packets per Message

Fig. 2. Average Message Overhead

Network Overhead. While Table [[] indicated the overhead added at the applica-
tion layer, Figureshows the average amount of TCP traffic which is sent over
the network for a single message, calculated as bytes sent - message size. These
results use the single hop static scenario and are averaged from 50 messages.

The results are fairly constant until the packet size is exceeded. There is some
increase at 10KB, and a dramatic increase at 100KB. Figure shows the
same data in terms of TCP packets and indicates the cause of the sharp increase
in traffic at 100KB is the result of packet fragmentation.

Despite having large message sizes, tuple spaces have much lower overhead in
terms of TCP traffic. This difference arises from a side issue related to TCP send
window sizes. For tuple spaces, where the receiver initiates the connection, the
TCP send window size grows to accommodate larger packet sizes. With RPC
and publish/subscribe, the send window size remains constant, causing the large
messages to be split into many more packets.

Message Reliability. How reliably a communication paradigm handles mes-
sage delivery has a direct impact on the application layer. The more reliable
the communication paradigm, the less responsible the application is for han-
dling lost messages. We measured reliability in terms of message delivery. In the
single hop scenario, all paradigms achieved 100% delivery and figures and
3(b)|indicate nearly perfect message delivery for all the paradigms in the unicast
scenario. Publish/subscribe performed the worst and still only lost 4 messages.

Message Delay. Message delay is another important application-level metric,
as it determines how quickly information is transferred and the freshness of the
application’s information. Figures [4(a)l [4(c)l and |4(e)[show delay in terms of
round trip times for each paradigm in a single hop scenario. The majority of the
messages in each paradigm are under the 200ms mark, with just a few wayward
messages taking longer. Even for tuple spaces, 80% of the messages take less
than 400ms to complete their round trip. However, some messages take much
longer, up to 8s. For tuple spaces, this is partially due to the complexity and
overhead of the messages required to perform the round trip message delivery.

266 J. Collins and R. Bagrodia

However, the time delay for tuple spaces in the single hop scenario is also
related to the pull (rather than push) nature of the paradigm. A tuple is time-
stamped when it is output, but the tuple is not actually sent to the receiver until
the receiver requests it. The same situation happens on the return trip, when
the tuple must be pulled back to the original sender. Any delays in this process
cause the round trip time to increase.

On the other hand, publish/subscribe messages are sent out almost immedi-
ately after being timestamped. Nearly all the delay is caused by the network
itself. RPC has more potential for delays since it must find the remote method
before invoking it. However, the return message can reuse the existing TCP
connection, which appears to provide an advantage over tuple spaces.

The mobile scenario introduces even greater delays. Routes are changing fre-
quently and may be several hops long. While the publish/subscribe and RPC
results are clustered around 100ms and remain under 500ms, the tuple space
values are considerably higher with a median at 256ms and a high of nearly 20s.
This is again due to the pull nature of tuple spaces and the overhead seen in

Section B.11

3.2 Group Communication

Group or multicast communication is a useful but more complex part of
MANETS, where information and resources are often disseminated in a peer-to-
peer manner. Group communication differs significantly from unicast communi-
cation. Given the mobile characteristics and decentralized nature of MANETS,
a group’s membership may be in constant flux, so it is unlikely a sender has
perfect knowledge of the members of the group. The time difference between
replies from members of the group may vary greatly, and the initiating node
cannot know how many replies to expect.

We have investigated how well each paradigm handled group communication
by again evaluating message delay and message delivery reliability, but with
multiple receivers.

100% 7 =m

° 100%

b~ o

£ 90% =

- o 90%

o - - >

g o [Publish/Subscribe S

= 80% Il RPC = 80%-|

a [] Tuple Spaces g

()

o 70%1 & 70%

wn ©

0 w

2 0% ¢

e S 4 5 6 | = 60%) L2 3 4 s 6
Unicast Multicast Receivers Unicast Multicast Receivers

(a) Multihop Scenario (b) Mobile Scenario

Fig. 3. Message Reliability

A Quantitative Comparison of Communication Paradigms for MANETSs 267

Message Reliability. With this application, message reliability refers to mes-
sages which make the circuit from the sender to the receiver and back to the
sender. This is useful, for example, in situations where a sink node aggregates
information from other nodes.

Figures and show the percentage of messages successfully completing
the round trip. The single hop scenario is not shown, as all paradigms achieved
> 99% reliability in that scenario. In the multi-hop scenario, there are more
losses even without mobility, but there is no significant trend as the number of
receivers increases.

RPC has a slight advantage with this metric, as it will wait until at least one
receiver is available. Publish/subscribe and tuple space will send out messages
whether or not any receivers are available at the time. However, none of the
communication paradigms will retry a message which is lost in transit. A message
lost anywhere in the circuit causes the entire attempt to be reported as a failure.

This contributes to tuple spaces showing the lowest delivery ratio (93%) in
the multi-hop scenario and a low delivery ratio (72.6%) in the mobile scenario.
While tuple spaces can easily handle the delivery of the outgoing tuple, it is more
difficult to guarantee the return of the reply tuple. If a node is not available to
receive the request broadcast for a reply tuple, then the reply will never be sent
even if the original outgoing tuple is received.

Message Delay. We again consider round trip time for each of the paradigms,
but this time with an increasing number of receivers. Figures - show
the results for each paradigm and scenario.

For the single hop and multi-hop scenarios, where there is no mobility, the
majority of the round trip times are fairly fast. The bottom 75% of the messages
have very similar results, while the top 25% varies much more. This indicates
that an application can expect most messages to be delivered quickly or not at
all, but about a quarter of the messages may arrive up to minutes later.

The median delay does increase as receivers are added, especially in the mobile
scenario. In the static scenario, the median delay publish/subscribe increased
121ms from two receivers to six receivers. RPC increased 147ms, and tuple spaces
increased 140ms. For the mobile scenario, the median times for publish/subscribe
increased 255ms, RPC increased 237ms, and tuple spaces increased by 2035ms.
The maximum delay values varied much less predictably. For tuple spaces, the
static scenarios have unusually long delays with two and three receivers. In the
static scenarios, the first three receivers are located in close proximity. One node
would dominate the channel for several seconds before relinquishing it. Once
again, this shows how influential the wireless channel is on the performance and
behavior of applications in MANETS.

The median and maximum tuple space results are much longer than the other
two paradigms. The median delay for tuple spaces ranges from twice as much as
publish /subscribe in the single hop scenario up to 6 times as high in the mobile
scenario. For publish/subscribe and RPC, the majority of delays can only be
caused by the network, since they do not attempt to retransmit messages. Tuple
spaces, on the other hand, can have very large delays due to the paradigm itself.

268

J. Collins and R. Bagrodia
1600 10000
~— 1400 —_
wn
£ 12004 £ 80004
2 1000 g 6000
i= 800 =
o 600 4 Q2 4000
= =
: 400 - ;
2 ;l 2 2000
3 2004 =}
] i=}
< o <
L L2 3 5 6 | 6
Unicast Multicast Receivers Unlcast Multlcast Rece|ver5

(a) Publish/Subscribe - Single Hop

(b) Publish/Subscribe - Multi-hop

1600 10000
= 1400 = _
§1200— é 8000
& 10004 QEJ 6000
= 800 E
2 600 .2 40004
= = -
e 4001 T 2000
> 2004 ; =]
& oL g o = =
| L 2 4 6
Unlcast Multlcast Recelvers Unicast Multicast Receivers
(c) RPC - Single Hop (d) RPC - Multi-hop
16000- 100000
~~ 14000 —_
(%) (%)
glmo’ g 80000
@ 10000 - OEJ 60000
i= 8000 [=
2 6000 2 40000
= =
g 40007 T 20000
g] g L ;
o L o T
o 0 n 5 o« 0 M 4 5 6 |
Unicast Multicast Receivers Unicast Multicast Receivers
(e) Tuple Space - Single Hop (f) Tuple Space - Multi-hop
100000 100000
m m
£ 100004 £ 100001
[} [}
1S 1S
= 1000 = 1000
2 a
JE z o L
100 100
z 2
H 3
109 L2 3 4 5 5 | £ 107 L2 3 4 5 6
Unicast Multicast Receivers Unicast Multicast Receivers
(g) Publish/Subscribe - Mobile (h) RPC - Mobile
1000000
m
£ 100000
Q
£ 10000-
£
% 1000
'_
T 1004
>
&
109 T 3 7 5 6 |
Unicast Multicast Receivers

(i) Tuple Space - Mobile

Fig. 4. Round Trip Times

A Quantitative Comparison of Communication Paradigms for MANETSs 269

If a receiver is “behind” it may spend time receiving older tuples before the
newest tuple is requested. This causes the round trip times to increase while
only improving one-way message delivery.

3.3 Shared Whiteboard Application

When testing the whiteboard application, we considered the metrics which a user
might care about at the application level: how reliably and quickly users receive
updates. In the results below, a single user is updating the whiteboard and the
updates are propagated to 6 receivers. We used traffic traces from Coccinelld?
to ensure our implementation accurately represented a typical whiteboard appli-
cation. For these experiments, 250 whiteboard update messages of varying sizes
were sent out over a 10 minute period at varying intervals.

Furthermore, we tested the whiteboard application under the two different
routing protocols we have been using, AODV and DSR. This is not meant to be
an exhaustive comparison of the routing protocols themselves, but is intended
to show how the choice in routing protocols might affect the performance of the
communication models in a nontrivial application.

o 100% o 100%
2 90% 5 90%
©
< 80% < 80%
E 70% E 70%
9
2 60% [Publish/subscribe | = ©0%
8 50% B RPC 8 50%
40% 40%
Tuple S
& 30% U Tuple Space & 30%
§ 20% 5 20%
g 10% %"} 10%
0% ! ! 0%
Single Hop Multihop Mobile Single Hop Multihop Mobile
(a) DSR (b) AODV

Fig. 5. Whiteboard Message Delivery

Message Reliability. Unlike the previous results, these represent one-way
communication from the whiteboard user to the receivers. Message reliability
determines how accurately the receivers’ views reflect the state of the shared
whiteboard.

Figures and show the percentage of whiteboard messages delivered
for DSR and AODV, respectively. As before, the results are nearly 100% for
all paradigms and both protocols in the single hop network. AODV performs
poorly on the multi-hop scenario, while DSR, achieves nearly 100% delivery for
all paradigms. On the other hand, DSR performs much worse in the mobile
scenario, with the delivery ratio for RPC only reaching 25%.

The reliability of tuple spaces is considerably better in these experiments
than in the round trip scenario, with 100% delivery in all but the AODV multi-
hop scenario. The difference between these results and Section is the lack
of a return message. Each receiver is responsible for requesting the whiteboard

2 http://thecoccinella.org/

http://thecoccinella.org/

270 J. Collins and R. Bagrodia

8000 | [Publish/Subscribe 8000 { [Publish/Subscribe
«w 7000 4| RPC % 7000 ||l RPC
ii 6000 4| Tuple Space E 6000 | Tuple Space
& 5000 - & 5000
Q j
Q 4000 O 4000 A
& 3000 - & 3000 4
8 2000 4 'S 2000
= 1000 = 10004

Single Hop Multihop Mobile Single Hop ‘ Multihop ‘ Mobile
(a) DSR (b) AODV

Fig. 6. Whiteboard Message Delay

updates, so the blocking request will be retried until the tuples are received.
The only exception is the multi-hop scenario with AODV, in which all three
paradigms perform much worse. Since all three paradigms are affected equally,
these results must be directly due to the behavior of AODV in this scenario.
Investigation of this phenomenon is outside the scope of this paper.

Message Delay. Message delay is measured as the time from when a white-
board update is sent by the application until it is delivered to the receiver’s
whiteboard. Update delays are very noticeable in a shared whiteboard applica-
tion, so the delay time should be minimized.

Figure shows the results when using DSR and Figure shows the
AODV results. Not unexpectedly, tuple spaces have the highest median latencies
of 8,486ms with AODV and 3,357ms with DSR. For publish/subscribe and RPC,
the median delay remained under 400ms.

With DSR, tuple spaces report a nearly 100% delivery ratio in every scenario,
yet the delay times are <400ms in the static scenarios. In contrast, AODV causes
long delays for tuple spaces in both the multi-hop and mobile scenarios. Since
tuple spaces will repeatedly attempt to deliver messages, retries are expected to
contribute to the majority of the delays. This is supported by the long delay times
experienced by tuple spaces with AODV in the multi-hop scenario. However, in
the mobile scenario tuple spaces achieve 100% delivery with AODV and DSR,
but the median delay with DSR is less than half as with AODV.

From the mobile reliability results, we can infer that DSR does not maintain
viable routes, because the results of publish/subscribe and RPC are poor. How-
ever, the delay results suggest DSR is faster than AODV at finding new routes
when they become available.

4 Related Work

There are many projects using publish/subscribe, RPC, and tuple spaces specif-
ically in MANETs. M2MI (Many-to-Many Invocation) [14] adapts RPC to a
MANET context. LIME (Linda in a Mobile Environment) [7] is a tuple space
implementation intended for mobile devices. STEAM (Scalable Timed Events

A Quantitative Comparison of Communication Paradigms for MANETSs 271

and Mobility) [I5] is an example of an event-based middleware which uses pub-
lish /subscribe for communication.

Middleware for MANETS is surveyed in [16] and [I7], but no quantitative
results are presented. Projects using different communication paradigms were
compared in [I§]. [19] implements tuple spaces in terms of a modified pub-
lish /subscribe, but does not provide quantitative results.

5 Conclusions

Publish/subscribe, remote procedure calls, and tuple spaces are three communi-
cation paradigms which have been applied to MANETS. They have been used as
the basis for many projects and applications intended to operate in MANETS.
This paper presented a quantitative comparison of these three paradigms in three
different network scenarios, with a focus on application level metrics. The results
show the relative strengths and weaknesses in each of the three paradigms, as
well as how they varied within the same scenario.

Publish/subscribe and RPC provide fast delivery of messages (best times
were <100ms), but provide little message reliability (as low as 25% delivery
ratio for RPC). Tuple spaces, on the other hand, pay a speed penalty (median
round-trip times are 2-6 times slower than publish/subscribe), but provide better
reliability, since messages will persist until explicitly removed from the tuple
space. When used to implement a whiteboard application, tuple spaces achieved
a 100% delivery ratio in all but one scenario.

The wireless channel itself can cause unexpected delays in message delivery.
In the single hop scenario, publish/subscribe had a maximum delay of 1.6s and
tuple spaces had one message require 14s to deliver. Introducing multi-hop routes
without mobility caused median delay times to double for publish/subscribe and
increase by a factor of 10 for tuple spaces. Mobility and multi-hop wireless routes,
both defining characteristics of MANETS, strongly influenced the application-
level performance and reliability of these paradigms.

Our results provide essential quantitative data for deciding which communi-
cation model should be used for new projects. While the paradigms presented
here are essentially interchangeable in terms of functionality, their performance
varies widely according to traffic and wireless conditions. Since we have tested
canonical implementations of each paradigm, these results are applicable to ba-
sic versions of the paradigms in general and can be used to inform future work
in application development for MANETS.

References

1. Eugster, P.T., et al.: The many faces of publish/subscribe. ACM Comput.
Surv. 35(2), 114-131 (2003)

2. Birrell, A.D., Nelson, B.J.: Implementing remote procedure calls. ACM Trans.
Comput. Syst. 2(1), 39-59 (1984)

3http://www.isi.edu/nsnam/ns/

http://www.isi.edu/nsnam/ns/

272

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J. Collins and R. Bagrodia

Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97-107 (1992)

Takai, M., Martin, J., Bagrodia, R.: Effects of wireless physical layer modeling in
mobile ad hoc networks. In: MobiHoc 2001: Proc. of the 2nd ACM Intl. Symp. on
Mobile Ad Hoc Networking & Computing (2001)

. Varshney, M., Bagrodia, R.: Detailed models for sensor network simulations and

their impact on network performance. In: MSWiM 2004: Proc. of 7th ACM Intl.
Symp. on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(2004)

. Scalable Networks. Exata: An exact digital network replica for testing, training

and operations of network-centric systems. Technical brief (2008)

. Murphy, A.L., et al.: Lime: A coordination middleware supporting mobility of hosts

and agents. ACM Trans. on Software Engin. and Methodology (July 2006)

. Lien, Y.-N., et al.: A manet based emergency communication and information sys-

tem for catastrophic natural disasters. In: ICDCSW 2009: Proc. of the 29th IEEE
Intl. Conf. on Distributed Computing Systems Workshops, pp. 412-417 (2009)

. Badache, N.: A distributed mutual exclusion algorithm over multi-routing protocol

for mobile ad hoc networks. IJPEDS 23(3), 197-218 (2008)

Leggio, S., et al.: Session initiation protocol deployment in ad-hoc networks: a
decentralized approach. In: 2nd Intl. Workshop on Wireless Ad-hoc Networks,
IWWAN (2005)

Sung, M.Y., Lee, J.H.: Desirable mobile networking method for formulating an
efficient mobile conferencing application. In: Yang, L.T., Guo, M., Gao, G.R., Jha,
N.K. (eds.) EUC 2004. LNCS, vol. 3207, pp. 377-386. Springer, Heidelberg (2004)
Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Mobile Computing, pp. 153-181. Springer, US (1996)

Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: WM-
CSA 1999: Proc. of the 2nd IEEE Workshop on Mobile Computer Systems and
Applications, p. 90 (1999)

Kaminsky, A., Bischof, H.-P.: Many-to-many invocation: a new object oriented
paradigm for ad hoc collaborative systems. In: OOPSLA 2002: 17th Conf. on
Object-Oriented Programming, Systems, Langs., and Apps. (2002)

Meier, R., Cahill, V.: Steam: Event-based middleware for wireless ad hoc network.
In: ICDCSW 2002: Proc. of the 22nd Intern. Conf. on Distributed Computing
Systems, pp. 639-644 (2002)

Hadim, S., et al.: Trends in middleware for mobile ad hoc networks. Journal of
Communication 1(4), 11-21 (2006)

Paroux, G., et al.: A survey of middleware for mobile ad hoc networks. Technical
report, Ecole Nationale Supérieure des Télécommunications (January 2007)
Collins, J., Bagrodia, R.: Programming in mobile ad hoc networks. In: WICON
2008: Proc. of the 4th Annual Intl. Conf. on Wireless Internet (2008)

Ceriotti, M., et al.: Data sharing vs. message passing: synergy or incompatibility?:
an implementation-driven case study. In: SAC 2008: Proc. of the ACM Symp. on
Applied Computing, pp. 100-107 (2008)

	A Quantitative Comparison of Communication
Paradigms for MANETs
	Introduction
	Evaluation Architecture
	Network Emulation.

	Experimental Results
	Unicast Communication
	Message Overhead
	Message Reliability.
	Message Delay.

	Group Communication
	Message Reliability.
	Message Delay.

	Shared Whiteboard Application
	Message Reliability.
	Message Delay.

	Related Work
	Conclusions
	References

