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Abstract. Clustering is a crucial network design approach to enable
large-scale wireless sensor networks (WSNs) deployments. A large va-
riety of clustering approaches has been presented focusing on various
aspect such as minimizing communication overhead, controlling the net-
work topology etc. Simulations on such protocols are performed using
theoretical models that are based on unrealistic assumptions like ideal
wireless communication channels and perfect energy consumption esti-
mations. With these assumptions taken for granted, theoretical models
claim various performance milestones that cannot be achieved in realis-
tic conditions. In this paper, we design a new clustering protocol that
adapts to the changes in the environment and the needs and goals of
the user applications. We provide a protocol that is deployable protocol
in real WSNs. We apply our protocol in multiple indoors wireless sen-
sor testbeds with multiple experimental scenarios to showcase scalability
and trade-offs between network properties and configurable protocol pa-
rameters. By analysis of the real world experimental output, we present
results that depict a more realistic view of the clustering problem, re-
garding adapting to environmental conditions and the quality of topology
control. Our study clearly demonstrates the applicability of our approach
and the benefits it offers to both research & development communities.

Keywords: Algorithm Engineering, Clustering, Self-Stabilization, Im-
plementation, Protocols, Software Design, Cross-layer, Cross-platform.

1 Introduction

During the last decade, wireless sensor networks (WSNs) gained the interest of
computer science, industries and academia, not only from theoretical but also
from practical perspectives [22]. Consisting of spatially distributed autonomous
sensor-equipped devices, WSNs allow the cooperative monitoring of physical or
environmental conditions (e.g., temperature, light, pollutants, etc.), enabling a
multitude of applications in both urban and rural contexts.
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Current WSN technologies used by the vast majority of off-the-shelf sensor
nodes allow short range message exchanges. They employ flat network organiza-
tion structures for message exchanges, data aggregation and actuators operation.
Thus, they typically allow the operation of a few dozens of nodes.

Many of the proposed applications assume large node populations densely
deployed over sizable areas. Although thus far, we have only a few examples of
large-scale deployments of such systems, we are currently seeing great advances,
as signified by research projects such as CitySense [12] and SmartSantander [29].

It is therefore important that future WSN have scalable network structures
that achieve appropriate levels of organization and integration. This organization
and integration needs to be achieved seamlessly and with appropriate levels of
flexibility, in order to be able to accomplish their global goals and objectives.
And it needs to be done in a proactive way to meet the current or anticipated
needs of their “users”. For this reason, they need to adapt to the changes in
their environment and change their internal organization by communicating,
cooperating and forming goal-driven sub-organizations.

Since [4], grouping sensor nodes into clusters has been widely pursued by the
research community in order to achieve network scalability and fault-tolerance. A
large variety of approaches has been presented focusing on different performance
metrics. Some have been proposed as stand alone methods (e.g., [19]), others
incorporated as sub protocols in larger solutions designed to solve more specific
problems such as query execution, aggregation, localization etc. (e.g., [20,32]).

Unfortunately, even though all of them have many potential applications,
extremely few software implementations for real sensor nodes is available to
the community [33,20,19]. Furthermore, none of them has been widely adopted
by the community. This is partially because cluster formations remain static
throughout the execution of the network. Thus, it is difficult to react to “external
changes” that affect the topology of the network (e.g., due to node failures) or
to “internal changes” requested by the application (e.g., to reduce cluster sizes).
Sudden variations of service requests or environmental physical conditions or of
motion of nodes disrupts the system from serving its goals.

Clearly, technology expects future WSN to be dependable and adaptive to:
the user needs, sudden changes of the environment and specific applications
characteristics. This means that the system continues to operate in a set of
desired states with maintained, or gracefully degraded or even improved qual-
ity of service. In order to design such systems we adopt the concept of [3] for
self-organization that has been widely mentioned in the scope of distributed
computing and peer to peer networks. We consider self-stabilizing distributed
algorithms for cluster definition in communication graphs of bounded degree
processors as well as for hierarchical distributed snapshots. We observe that as
far as dynamic changes are limited within a cluster they do not affect the rest
of the network.

We implement our solution by following a component-based design. We totally
avoid implementing our algorithmas amonolithic, stand-alone piece of code. Thus,
our code promotes exchangeability of different modules that interact using
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well-defined interfaces. The modules can be easily integrated as sub-protocols in
other problems such as energy conservation, routing, role assignment, security
etc.. Furthermore, we use the Wiselib [8]: a code library, that allows implementa-
tions to be OS-independent. It is implemented based on C++ and templates, but
without virtual inheritance and exceptions. All implemented algorithms are plat-
form independent as they can be compiled on a number of different hardware
platforms (e.g., TelosB, iSense, ScatterWeb) and OS independent as they can
be automatically used in systems implemented using C (Contiki), C++ (iSense),
and nesC (TinyOS).

We conduct a thorough evaluation using an experimental testbed environment.
For all cases, our results indicate that our approach adapts to the external and
internal changes. The results of the evaluation also indicate that our implemented
code achieves high scalability and efficiency. To the best of our knowledge, this
work is among the very few that conducts experiments and assess the practicality
of a clustering approach in real WSN.

2 PreviousWork

A large variety of clustering algorithms has been presented during the past
years. In the relevant bibliography there exist several surveys and tutorials (e.g.,
[1,25,21,11]) that attempt to categorize and classify the various protocols based
on the design choices and the mode of operation.

In terms of Cluster-head selection in some algorithms, like [18,6] each node is
assigned a probability p of becoming a cluster-head. In algorithms like [27,5,32],
some deterministic criteria like node connectivity, node identity and energy are
respectively used for electing cluster-heads. Finally, algorithms like [9,14] are based
on the combination of criteria in order to assign weights to nodes and decide the
cluster-heads based on those.

In terms of Node Grouping, when a node is elected as cluster-head, it advertises
itself to neighboring nodes in order for them to join its cluster. A node can decide
to join a cluster based on various criteria. In most algorithms, e.g., [18,34,7], the
main criterion for a node to join a cluster is the distance to the cluster-head. In
other algorithms, like [31,28,9] the nodes decide to join a cluster-head based on
some cluster-head attribute like remaining energy, time to live, etc..

In recent years, the concept of self-organization has been widely mentioned in
the scope of distributed computing and peer to peer networks. Many works have
claimed being self-organizing, but a mere fraction of these works also tries to give
a specific definition of what self-organization really is. In [3] a framework for
self-organization is proposed, including formal definitions of the self-organization
concept and complementary proof techniques which can be used to prove that
algorithms are indeed self-organizing.

Self-stabilizing and self-healing constructions of hierarchies, in the domain of
sensor networks, appear in [35]. The authors divide the plane into hexagonal cells.
In each cell, a head that corresponds with a cluster leader is elected. In [26],
Wattenhofer and Moscibroda present an algorithm for computing a maximal in-
dependent set in radio networks where processors can broadcast their messages
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asynchronously, but no collision detection mechanism is provided. Snapshot al-
gorithms are used for recording a consistent global state of a distributed asyn-
chronous system. A self-stabilizing snapshot algorithmwas first introduced in [23],
where repeated invocations of snapshots are used to ensure stabilization of a non-
stabilizing algorithm. Following [23], several works have studied ways of
achieving efficient snapshots in different models e.g., message passing, bounded
links message passing and shared memory ([30,2,13]).

The initial point of our work is [15]. We are inspired by this protocol due to its
inherent simplicity, ease of deployment, scalability and self-stabilizing properties.
In this work, we move beyond this protocol’s ([15]) abstract design. We provide
a solution that resolves crucial issues such as bidirectionality and reliability of
channel communication between the nodes, adaptive detection of changes to the
network topology and the efficient usage of communication mechanisms. We pro-
pose specific algorithmic solutions and provide software components fine tuned
for real WSN hardware. In contrast to [15] and to the majority of the previous
related work, we evaluate the system in real testbeds to measure the performance
of the resulting adaptive clustering protocol.

3 An Adaptive Hierarchical Network Structure

The main idea of the algorithm is to partition the nodes of the network into small
clusters that are then merged to form bigger clusters and so on. Nodes continu-
ously monitor the local topology. Based on this information, if they do not detect
any cluster, they take the initiative to create a new one. If one or more clusters
exist, they join one of these using some very simple criteria.

The clustering algorithm maintains the self-stabilizing properties analysed in
[15]. It uses the network parameter k for controlling the size of the clusters. The
value of k is set by the network operator during the deployment phase of the system
and can be modified during the execution of the protocol. Essentially, the protocol
adapts to the external requests by properly adjusting the cluster size so that they
have a diameter of 2× k. The adaptation to the new size requires O(k) execution
rounds (in [15] in order to measure the communication complexity they assume
the existence of a global clock, however for the actual execution of the algorithm
in real networks no such global clock is required).

3.1 Initialization Phase

Our algorithm follows the self-stabilization approach, so we do not assume any
initialization phase. Hence, it is capable of starting from any configuration where
the nodes of the network are set to any arbitrary state. Thus, some nodes may
consider themselves as cluster heads, others may consider as members of non-
existing clusters, etc.. Regardless of this initial arbitrary state, within a bounded
number of steps, our algorithms converges to a stable configuration, i.e., a con-
figuration where all nodes of the network participate in a valid cluster of k −
hop diameter. This is done regardless of the way that the devices are positioned



Adaptive Hierarchical Network Structures for WSNs 69

in the network area. In fact, as explained in the following section our algorithm
will suitably adapt its operation to the physical topology of the network.

We do not assume any kind of global clock synchronization among the nodes of
the network. Yet we assume that clocks of all nodes have similar (if not identical)
drift rates. Thus they are capable of measuring the same amount of time for a
given period.

In the sequel, for simplicity we assume that nodes are provided with unique
identities. Still, in large-scale deployments this may not be guaranteed by the
technical personnel involved during the network installation. Note that this prob-
lem can be easily solved by a very simple extension provided in [15] that uses
random choice used to break symmetry between nodes (for further motivation,
see the asynchronous version of the algorithm in [15]).

3.2 Neighbor Discovery

An important aspect of the algorithm is the ability to detect the current topology
of the network. The purpose for detecting the topology is twofold. First, to discover
the target nodes as they change their position within the network area. Second,
to detect changes to the local connectivity so that the spreading of the traces is
properly adjusted to frequent and/or significant topology changes.

A simple approach would be for each node to periodically broadcast beacon
messages that include their unique id. For each received message beacon the algo-
rithm considers the sender node as a neighbor. Similarly, if a node stops receiving
beacons from a neighbor, it removes the node from the list of neighbors.

This simple approach has to deal with the fact that communication is carried
out via a wireless channel. Naturally, the quality of the wireless channel is subject
to a number of environmental effects and thus its quality varies over time. This
means that some beacons from neighboring nodes may not be received, while the
topology has not changed. The algorithm falsely translates this as if the topol-
ogy has changed. Accordingly, the perceived neighborhood of the node is changed.
Then, when the temporary degradation of channel quality is restored, the beacons
are received again, and the nodes are reinstated in the neighborhood. Hence, the
perceived neighborhood of the node is changed once again. This series of events
is temporary, does not reflect the actual state of the neighborhood and forces the
algorithm to take unnecessary actions for adaptation.

Our approach is to take into account the Link Quality Indicators (LQI) pro-
vided by the MAC layer for each received message beacon. The goal is to filter
out the neighbors that have poor communication channel quality. The nodes will
consider the broadcaster as a neighboring node only if it receives a number of
consecutive beacon messages with LQI above a certain threshold. In order to
prevent the occasional short channel degradation from negatively impacting the
above strategy, we allow a node to miss a number of beacons within a given
period of time before removing it (called the timeout period). We also set a sec-
ond LQI threshold; message beacons with LQI below this threshold are dropped



70 D. Amaxilatis et al.

(and therefore count towards the number of beacons that are missed). In Sec. 5.1,
we report a preliminary set of experiments we conducted in order to fine tune these
LQI thresholds and the timeout period.

Another crucial aspect of the neighbor discovery operations of the algorithm
is the periodicity of the broadcast beacons. One would expect that there exists a
linear correlation between the time required for the neighbor discovery to stabilize
(i.e., correctly detect passing by nodes) and the beacon interval. Reducing the
beacon interval period (i.e., increasing the rate of transmission) should lead to
a quicker response to changes in the topology (i.e., shorter delays in detecting a
mobile node and potential changes to the neighboring nodes). Interestingly, the
experiments reported in Sec. 5.1 indicate that there is a lower bound in the beacon
interval period beyond which the network is congested with messages leading to
instability in the operation of the algorithm. The experiments indicate a suitable
value around 1000ms and 2000ms. Our experiments indicate that these values are
very suitable for the proper operation of the algorithm. However, in some cases
we may wish to have faster response times. For this reason we allow the mobile
nodes to have a different beacon interval period than the rest of the static nodes.
This way, we can set the beacon interval to be as low as 100ms. This essentially
allows us to have a very low response time without creating a large overhead on
the wireless channel. In fact, the response time achieved is much lower than other
RF technologies, like, e.g., Bluetooth devices that has an interval period of about
12sec [17].

3.3 Leader Election Phase

Each node u maintains an internal list with all the leader nodes that are within
k − hop distance. This list is continuously broadcast to all neighboring nodes by
piggy packing it in the periodic beacons of the neighbor discovery module.

A node u that has an empty list decides to nominate itself as a local leader and
insert in the list the entry {idu, distu = 0, null}.

When a node v that receives a list from a neighboring node u, it processes it as
follows: for each entry {idu, distu = 0, null} it adds {idu, distu = 1, v}; for each
entry {idx, distx, u} it adds {idx, distx+1, v}. After processing the incoming list,
it drops duplication entries and merges the conflicting entries (in which the id is
the same) as follows: the node chooses the entry with the minimum id with the
minimal dist (further ties are broken using the parent value).

Remark that the above update algorithm is a simplification of the one presented
in [15]. Each node v maintains an internal array which consists of the most recent
topology list received from each neighboring node u. The computation of v’s topol-
ogy list is done on the basis of this list. Furthermore, in the validation phase we also
delete entries with dist > k. Consequently, v’s list will reflect its neighborhood up
to distance k − hops from u. The correctness of the revised update algorithm is
trivially preserved, and the convergence time is O(k) rounds.
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3.4 Clusters Construction Phase

As soon as a node nominates itself as a local leader it enters a waiting period of
O(k) period of time. Then it waits for the self-stabilizing update algorithm to
collect the other identifiers and notify for the leader identity all nearby nodes
within at most O(k) rounds. If there does not exist a node u with distance less
than k from v, with lower id than v, then v is a stable leader and initiates the
cluster construction phase. If another node u is identified (With lower id) then v
exits the waiting period and becomes passive.

Next, each active local leader starts a breadth-first search to identify all nearby
nodes and invite them in its cluster. Nodes receiving the search message of local
leader u respond by joining the cluster of the leader. The leaders define the cluster
structure and since each node v may follow a different local leader in its
neighborhood, if v decides to join the cluster formed by node u it sends back to u
a response message. This process requires an additional O(k) rounds.

The above algorithm is self-organizing based on the arguments used in [15]
and the convergence time is O(k) rounds.

4 Component-Based Implementation

4.1 Generic Implementation Using Wiselib

More often than not, in Theoretical Computer Science, researchers tend to design
an algorithm in an abstract way. This happens because an algorithm should be
able to be used in many different situations and it is up to the developer to decide
the way it should be turned into code for a real system. Algorithm Engineering re-
quires the algorithm developer to actually implement algorithms. This step from
theory into practice is often considered hard and requires programming skills in
addition to knowledge in algorithm theory. Almost every time the developer finds
many limitations in the ways she can operate within the given hardware and soft-
ware specifications. These problems are further augmented when implementing
algorithms for wireless sensor networks due to the extremely limited resources and
also due to the heterogeneous nature (both in terms of hardware and software).
This also explains why many theorists, having only little Software Engineering
experience, never engage in Algorithm Engineering. This situation is particularly
alarming in distributed embedded systems.

We decided to implement our algorithmusingWiselib [8]: a code library, that al-
lows implementations to be OS-independent. It is implemented based onC++ and
templates, but without virtual inheritance and exceptions. Algorithm implemen-
tations can be recompiled for several platforms and firmwares, and even for simu-
lators without the need to change the code. In its current versionWiselib can inter-
face with systems implemented using C (Contiki), C++ (iSense), nesC (TinyOS),
Android (via the C/C++ NDK) and iPhone OS.

An important feature of Wiselib are the already implemented algorithms and
data structures. Since different kind of hardware uses different ways to store data
(due to memory alignment, inability to support dynamic memory, etc.), it is
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important to use these safe types as much as possible since they have been tested
before on most hardware platforms. In its current version,Wiselib includes about
60 Open Source implementations of standard algorithms including Localization
algorithms, Cryptographic schemes, Distributed data structures etc..

Wiselib also runs on the simulator Shawn [16] and TOSSIM [24], hereby easing
the transition from simulation to actual devices. This feature allows us to validate
the faithfulness of our implementation and also get results concerning the quality
of our algorithms without time consuming deployment procedures and harsh de-
bugging environments. Furthermore, apart from ordinary sensor node targets or
simulation environments, it is also possible to run Wiselib code directly on a PC.
The PC therefore acts as a sensor node, but without any code space or execution
speed limitations. On the one hand, there is basic OS functionality provided, such
as a timer for event registration, or a clock providing the current time. On the
other hand, it is possible to connect an IEEE 802.15.4 device to the PC, so that
the PC can directly communicate with other sensor nodes.

4.2 Components Description

The component-based design that we propose is depicted in Fig. 1. We partition
the logic of the clustering algorithm into three pieces with clear boundaries in
terms of functionality provided. Each partition is designed so that it can progress
its work in a relatively independent manner while ensuring the correct functional-
ity of the algorithm. Clean interfaces are provided so that the partitions can easily
communicate, fast and without heavy information exchange.

Fig. 1. Basic components and relation with Wiselib

Cluster-Head Decision (CHD). The first partition that we propose is related
to the cluster-head selection process. We wish to implement the leader election
mechanism as a single, stand-alone, software component. The component uses
call-backs to theNeighborhood discovery component so that it is re-executed
whenever a change is detected in the node’s neighborhood.
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JoinDecision (JD).The second partition is related to themethodology bywhich
nodes decide to join cluster-heads. This component constructs the necessary pay-
loads for the JoinRequest/JoinDeny/JoinAcceptmessages and it determines
if a node will join a cluster when a JoinRequest message is received. The deci-
sion is based on the distance of the leader node and the ID of the node as described
in Sec. 3.4.

Iterator (IT). The third partition is related to the organization of the nodes
while clustering decisions are made by each node. This component is responsi-
ble for categorizing and storing neighbors into nodes that have already joined the
cluster, nodes that have not joined the cluster yet and nodes that have joined an-
other cluster. Collected information is maintained inmembership tables by the IT
component. These tables are of crucial importance for the algorithms that will be
executed on top of the clustering – they are necessary to ensure cross-layering.
This component also monitors the node’s neighborhood and updates the mem-
bership tables based on observed changes to the network. This information can be
used from the other components. For example, changes in the neighborhood that
indicate that a node has left a cluster can trigger a new join decision process from
the JD component.

The above three components are used by the main component which we call the
Core Component (CC). It is the kernel of our architecture that controls and
coordinates all other components so that clusters are properly formed and main-
tained. TheCC provides a public interface for other algorithms to take advantage
of the resulting network organization. In the following we present the life-cycle of
CC when forming a new cluster.

1. CHD is invoked to determine if the node will become a cluster head or not.
2. If the node is a cluster-head: JD is invoked to send JoinRequest messages

to nearby nodes and invite them to the cluster. The JoinRequest messages
can be sent to all available nodes using Broadcast messages or to selected
nodes using the selected nodes ids.

3. Upon receiving a Join Request message, CC isolates the message’s payload
and passes it to JD.
If JD decides to join, a JoinAccept message is sent to the originator of the
JoinRequest message, IT is notified of the address so for it to be saved as
the node’s Cluster-head.
If JD decides not to join, a JoinDenymessage is generated along with a pay-
load from JD and passed to the originator of the JoinRequest message.

4. If a JoinDenymessage is received, its payload is passed to JD to be examined,
in case the neighborhood’s conditions are of interest and the IT is notified in
order to keep track of which neighbors have joined the cluster and which have
not.

5. When all nodes have been examined the membership tables are generated by
the IT and the process of cluster formation completes.
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4.3 Implementation Details

In the following, we present a Wiselib concept for each one of four basic compo-
nents. The design goal of the concept is provide clear interfaces so that the imple-
mentation can be easily used by other algorithms with minimum effort.

Core Component (CC) Concept. TheCC concept takes as template parame-
ters a set of components types such asRadio,Timer andDebug that are needed
for sending messages, registering events and optionally printing debug messages.
The most important parameters are the types for the CHD, JD and IT which
the CC will use for the clustering algorithm. The first method that initializes the
module also provides instances of the components that the module will use. Then
we have two methods for enabling and disabling the module, which is useful when
it should only be run in certain points in time. After the module is enabled, the
find head() method is called and starts the cluster formation. Next, we have a
method for setting the parameters of the algorithm, which also sets the parame-
ters for every other component. Then, we have a method for registering a callback
in order to get notifications upon events. Finally, CC provides a set of functions
to access useful information such as the cluster id, the parent node(if any) etc.

TheCC components also provides a public interface that implements theWiselib
concept of Clustering and thus provides the cluster’s ID, the ID of the cluster-head,
and also allows to register a function callback in order to be able to deliver events
to external components whenever an change to the cluster occurs, e.g., when the
node joined a new cluster, or a neighbor from different cluster was discovered, or
a new cluster was formed etc..

Cluster Head Decision (CHD) Concept. In the CHD concept we have a
method for setting the parameters (e.g., the probability value that the module
will use). Additionally, there is the method for calculating if the current node is a
cluster-head and a method to get this result.

Join Decision (JD) Concept. In the JD concept we have a method that gives
the hop count from the cluster-head, after the node has joined a cluster. It also
provides methods that set the payload for specific types of messages. The mini-
mum requirement is three methods, for the JoinRequest, the JoinAccept and
the JoinDeny messages. Finally, we have the method join that is called with a
new JoinRequest payload, and decides if it is going to join the cluster.

Iterator (IT) Concept. For IT, we provide methods for getting the cluster id
and the parent of the node. Moreover, the next neighbor() method allows it-
erating through the neighborhood of the node. If the neighborhood information
is not available, we can register a callback function that the Iterator will call to
inform us about changes in the neighborhood.

5 Real Experiments

Recently, experimentally-driven research has become an instrumental tool in de-
signing and optimizing novel networking applications. While simulations are still
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important tools, they suffer from several imperfections as they make artificial
assumptions on radio propagation, traffic, failure patterns and topologies. Espe-
cially in the domain of wireless sensor networks, which are embedded into the en-
vironment, applications strongly depend on real-world processes that are often
a result of complex interactions and are extremely difficult to model accurately.
In order to design robust applications, developers need appropriate tools and
methods for testing and managing their applications on real hardware in large-
scale deployments. However, testbeds are expensive to set up and to maintain,
hard to reconfigure for a different experiment and usually feature a fixed number
of nodes. A possible approach to deal with these issues is to federate smaller-scale
testbeds to form a virtual unified laboratory. WISEBED1 [10] provides such a
federation of testbeds consisting of heterogeneous sensor nodes (such as TelosB,
Mica2, iSense or Sun Spot equipped with different sensors) and a collections of
tools and methods to cope with implementing protocols and applications for
heterogeneous networks.

We ended up using the WISEBED testbeds at UNIGE, CTI and UZL that are
comprised of iSense nodes. An iSense node provides an IEEE 802.15.4 compli-
ant radio, a 32-bit RISC controller running at 16MHz, 96kbytes of memory, a
highly accurate clock and a switchable power regulator.We used 26 iSense nodes in
UNIGE, 20 iSense nodes in CTI and 20 iSense nodes in UZL. In all experiments we
set the transmission power set at−6dB to enforce one-hop neighborhoods in room
resolution. Data samples are collected every one second via the USB connectivity.
The debugging was encoded out-of-band and it did not affect the experiments.

Due to space limitations we here report the results from the UNIGE experi-
ment. Similar results hold for the other testbeds.

5.1 Assessing Channel Quality and Its Effect on the Performance of
the Neighborhood Discovery Module

We conduct some preliminary experiments in order to fine tune the neighbor dis-
covery operation of the algorithm. This essentially includes the appropriate ad-
justment of the two LQI threshold pairs (see Sec. 3.2) and the periodicity of the
broadcast beacon. As expected the stricter the LQI thresholds, the smaller and
more stable the neighborhood sizes will be. While when relaxing the LQI thresh-
olds, the neighborhood sizes increase but also the system become prone to channel
quality fluctuations. We tested two different pairs of LQI thresholds: (35, 75) and
(55, 95). The resulting neighborhood sizes are depicted in Fig. 2.We conclude that
the LQI threshold pair (55, 95) is more suitable for the experimental testbed used.
For this range the algorithm generates stable neighborhoods within a short period
of time and the resulting topology is dense enough to allow the proper spreading
of the traces (as it shall be reported in the sequel).

1 http://www.wisebed.eu

http://www.wisebed.eu


76 D. Amaxilatis et al.

Fig. 2. Average neighborhood size with different LQI thresholds

We also examine the impact of beacon interval period and the neighbor timeout
period in the detection of neighboring nodes. In Fig. 3 we test four different sets
of beacon intervals. We measure the number of changes in the detected neighbor-
hoods (i.e., the events) as the experiment evolves. It is evident that as the bea-
con interval increases, the neighbor discovery experiences fewer fluctuations. We
believe that a beacon interval of 2000ms and above is a good trade-off between
adaptivity and responsiveness to topology changes and induced overhead on the
wireless medium.

Fig. 3. Neighbor discovery for various beacon interval and timeout periods

5.2 Assessing the Speed and Quality of Adaptation

One would expect there exists a linear correlation between the time required for
the module to stabilize (i.e., correctly detect the neighboring nodes) and the bea-
con interval. Reducing the beacon interval period (i.e., increasing the rate of trans-
mission) should lead to a quicker response to changes in the topology (i.e., shorter
delays in detecting changes to the neighboring nodes). Surprisingly, the results
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show that our intuition was wrong, the experiments reveal that for small beacon-
ing values (less than 1000ms) the time the Neighbor discovery module needs to
stabilize is longer. This leads to a larger number of events generated. This is caused
by the excess traffic generated due to the short beacon interval, which itself cre-
ates interference that leads to losses of message beacons. Thus, many neighbors
are falsely removed and then re-added to the neighborhoods. Compared to the
1000ms/5000ms, the 500ms/2500ms Beacon Interval/Neighbor Timeout needs
about 30% more time to stabilize and generates almost double more events.

In order to assess how this period of stabilization affects the performance of the
other modules of the network layer. Essentially, we wish to investigate if a high
rate of events prevents the other algorithms from stabilizing and thus function-
ing properly. We run 30 minute experiments using short beacon interval periods
of 500ms/2500ms and long beacon interval periods of 3000ms/150000ms. As ob-
served in Fig. 4, for the case of 500ms period, we observe that the total number of
events. The Neighbor discovery module wrongfully reports changes in the topol-
ogy for such sort beacon interval and this leads the Clustering module to con-
stantly attempt to adapt to the new state. However, when using 3000ms beacon
interval, the communication channels reported by the Neighbor discovery module
seems to be stable as the number of generated events is very limited.

(a) Interval 500ms / 2500ms (b) Interval 3000ms / 15000ms

Fig. 4. Events generated by the Clustering mod. while reacting to events generaged by
the Neighborhood discovery module

5.3 Assessing the Ability to Adapt to Channel Failures

Channel failures refer to a situation where a node is unable to successfully send
most of its outgoing messages due to temporary noise on the wireless communi-
cation medium. We emulate such a behavior by introducing a node called “the
Jammer” that continuously broadcasts big messages in order to create collisions,
reduce link quality and in general reduce the message delivery rate. The Jammer
has normal communication range, identical to all other nodes. We position it in
such a way to disrupt almost 50% of the network.

The experiments conducted consisted of 3 stages. Firstly, the Adaptation and
Clustering modules worked for 10 minutes to reach a stable state, then the Jam-
mer was turned on for 10 minutes and finally the Jammer was turned off and the
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network was left to stabilize again. As we can see in Fig. 5 the function of the Jam-
mer heavily disrupts the smooth operation of both modules. During the channel
disruption the Adaptation module continuously produces events and so does the
Clustering module. Essentially, it creates the need to send more control messages
in order to adapt to the new network state increasing the network traffic. When
the disruption is over, network stabilizes and new events are rare.

(a) Total # Events generated (b) Messages generated

Fig. 5. Effect of channel failures on the performance of the Neighborhood discovery and
Clustering modules

6 Conclusions

In this paper we have designed, implemented and extensively evaluated a cluster-
ing scheme for establishing adaptive hierarchical network structures for wireless
sensor networks. We follow an experimental-driven research approach so that our
system can be executed in real sensor networks. The extended experimental evalu-
ation indicates that with proper fine tuning of the various algorithm’s parameters,
the resulting system can adapt to various internal and external events. In testbeds
located in single-floor office spaces, stabilization was always reached within a very
short period of time. In all cases the system returned to a stable state where all
nodes participated in one of the formed clusters.

We believe that our experimental driven approach can be further optimized
and for this we plan to conduct further experiments. We wish to examine mech-
anisms to adapt the protocol parameters as the system evolves dynamically. We
wish to examine mechanisms that can adapt to concurrent events with heteroge-
neous performance parameters and in some cases conflicting goals. We also wish
to combine our algorithmwith specific application environments by exploiting the
rich set of algorithm implementation provided by WISELIB pool of algorithms.
One such application domain is the tracking of mobile assets in large-scale deploy-
ments. We believe that the hierarchical structure proposed here can be exploited
to improve the scalability of the tracking process.
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