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Abstract. We present a deterministic key pre-distribution scheme using
projective planes where the nodes are organised hierarchically through a
structure of (p2+p)-nary tree, where p is prime. Our scheme is incumbent
to more efficient resilience and connectivity compared to the existing
schemes. Each node in our scheme requires to store significantly less
number of keys. Furthermore, any number of nodes can be intrinsically
inserted in the system by attributing a very few keys to the recently
introduced nodes only. Another interesting feature of our scheme is that
such node insertions are done without interfering the normal functioning
of the existing organised network.

Keywords: t-design, Steiner system, projective planes, key pre-
distribution.

1 Introduction

Wireless Sensor Network (WSN) consists of a large number of wireless sensor
nodes, which are typically small mobile devices with limited memory and compu-
tation power to transmit data within a specified range. Sensor nodes are usually
plotted in sensitive regions (e.g. military area, hospital etc.) to gather information
through sensors and transmit the collected data by communicating among them-
selves or with some other source. The process of assigning keys to the nodes prior
to their deployment in the target region is termed as key pre-distribution. Usually
keys are chosen from a large key-pool and then they are loaded at the nodes.

Key pre-distribution to the sensor nodes has drawn the attention of researchers
over the years. Till date combinatorial design is one of the most commonly used
mathematical tools for the key pre-distribution. Key pre-distribution in wireless
sensor network can be broadly categorized into the following [11]:

– Probabilistic: Keys are chosen randomly from the key-pool and are assigned
to the nodes so that any two nodes are connected (i.e. share a common key)
with some definite probability.

– Deterministic: Keys are distributed to the nodes following a fixed manner
and it can be determined with absolute certainty that which nodes are shar-
ing common keys.

– Hybrid : A combination of both probabilistic and deterministic approaches.
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A key pre-distribution scheme involves three main steps [8]:

(a) Key pre-distribution: The process of loading secret keys to the sensor nodes.
(b) Shared key discovery: Any two nodes wishing to communicate between

themselves check whether they have a common key or not. This process is
known as shared key discovery.

(c) Path-key establishment : If two nodes don’t share any common key, they look
for neighbouring node(s) sharing a common key with both of them. This is
known as path-key establishment.

The salient features of a good key pre-distribution scheme includes the following:

(i) Scalability - whether new nodes can be introduced without much disturbance
in the existing set-up;
(ii) Efficiency - less memory, less computation and greater connectivity
(iii) Resilience - how the network is affected when some of the nodes are captured.

The above parameters are conflicting to each other. If one common key is stored
at all the nodes, the probability of two nodes sharing a common key is 1, which
implies the best connectivity. The memory requirement met as well since the
nodes need to store only one key. But the network becomes extremely vulnerable
as capture of one single node makes the whole network to cease which leads the
resilience to become zero. Another possibility is to store a key for each pair of the
nodes. In this case, we get desirable connectivity (probability of any two nodes
sharing a common key is 1) and significant resilience as capture of any node will
destroy the links of other nodes with the compromised nodes. Whereas the rest
of the network will remain undisturbed. The drawback of this method is that
each node is required a huge memory to store N−1 keys for a network consisting
of N nodes. Hence one needs to obtain a trade-off between these parameters.

1.1 Previous Work

Eschenauer and Gligor [7] were first to use random key pre-distribution in WSN.
Their scheme is known as basic scheme. Later Chan, Perrig and Song [5] proposed
a modified version of the basic scheme.

Camptepe, Yener [1] were first to introduce combinatorial designs as one of
the key pre-distribution techniques. They have considered two combinatorial de-
signs: one is the symmetric (n2+n+1, n+1, 1)-BIBD (or, finite projective plane
of order n) and the other is generalized quadrangles. The advantage of this deter-
ministic approach is any two nodes share a common key which improves the con-
nectivity of the network to a greater extent. The main drawback of deterministic
approach is that the scheme is not scalable as the network size N should satisfy
N ≤ n2+n+1. If one wants to introduce some new nodes to the network which
exceeds the bound, then n has to be raised to the next prime number as the exis-
tence of such designs for a non prime power value of n is not certain. This results
in a much more larger network than required, and the key-chains at each node
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have to be changed. It is also observed in [2] that the generalized quadrangles
induce better scalable network and provide better resilience than finite projective
planes. To improve the scalability, authors have proposed a hybrid scheme in [2].
In this scheme, keys are assigned to the major part of the network according
to projective plane, (i.e., following a deterministic approach) and the remaining
nodes or newly joined nodes (which could not be accommodated by projective
planes) get keys in a completely random manner. This improves the resilience
and scalability. However, the probability of any two nodes sharing a common
key is reduced.

In 2005, Lee and Stinson [8] proposed a scheme on group-divisible design or
Transversal design. It is noticed that the expected proportion that any two nodes
can communicate directly is 0.6 and the same for two nodes communicating di-
rectly or via intermediate nodes is almost 0.99995. Chakrabarti et al. [3] showed
by an example that out of 2401 nodes in a network, if only 10 nodes are cap-
tured, then 18% of the links will be destroyed. This is the main disadvantage
of this scheme. Later, in 2008, quadratic schemes were developed in [10] based
on Transversal designs and the method described in [8] was referred as linear
schemes. This work suggests that the quadratic scheme provides best resilience
unless the number of compromised nodes is high. Quadratic schemes in gen-
eral provides better connectivity than linear schemes. Both linear and quadratic
schemes are preferred over 2-composite scheme [5] if shared key discovery is
taken into consideration.

In 2005, Chakrabarti et al. [3] proposed a probabilistic key pre-distribution
scheme. They have constructed the blocks as proposed by Lee et al. [8]. The
sensor nodes are then formed by merging blocks randomly. This increases the
chance of sharing common keys between two nodes. The scheme in [3] provides
better resilience as compared to the Lee-Stinson scheme [8] at the cost of large
key-chain size in each node.

3-design is considered to be the underlying combinatorial design of the key
pre-distribution scheme proposed by Dong et al. in [6]. Keys are assigned to
the sensor nodes in the network by Möbius Planes. This scheme provides better
connectivity than the scheme proposed by Lee-Stinson [10] and better memory
requirement as compared to Camptepe-Yener scheme [1]. The prime drawback
of the scheme is that resilience reduces rapidly with the increasing number of
compromised nodes.

Ruj et al. [11] proposed a deterministic key pre-distribution scheme based on
Partially Balanced Incomplete Block Design. The authors claim that this scheme
gives better resilience than that of [8] storing less than

√
N keys to the nodes

where N is the network size. But to store that many keys to the nodes, for a
very large network is also expensive.

1.2 Our Contribution

We propose a storage-efficient key pre-distribution scheme adapting a determin-
istic approach. We have used a typical Steiner system as our basic combina-
torial design for key pre-distribution. We emphasize that apart from storage
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efficiency, our design also provides better resilience and reasonable connectivity
as compared to the existing schemes. Nodes are arranged using a hierarchical
tree structure. The whole network is divided into (p2 + p+1) sub-networks each
of which forms a (p2 + p)-nary tree-hierarchical structure, where p is prime.
All the nodes in the same sub-network are connected directly or via a chain of
intermediate nodes. Moreover, two nodes from two different sub-networks can
establish a key-path via level 1 nodes which means that all the nodes in the
network are connected.

We claim that our scheme provides much better resilience even in the worst
possible condition, which is supported by our experimental results provided
in the paper. As resilience and connectivity are contradictory in nature, we
choose the order of the projective plane suitably to meet the requirement for
both the resilience and connectivity. Consumption of power and memory should
be minimal since there will be no external supply of power to the nodes once they
are deployed. Increased memory consumption will decrease the power available
for computation. Storing significantly less number of keys to the nodes is not
only cost-effective but also it leaks less information (in the form of keys) when
the nodes are captured. Unlike the existing key pre-distribution schemes, our
scheme is flexible in the sense that insertion of a large number of nodes can be
done by adding only a few keys to the newly joined nodes without disturbing
the previously assigned nodes.

Rest of the paper is organized as follows: section 2 includes preliminaries, we
discuss the proposed scheme in section 3, which is explained in detail with a
particular example in section 4. Section 5 and 6 provide obtained results and
performance respectively followed by concluding remarks in section 7.

2 Preliminaries

Definition 2.01. A design is defined as a pair (X, A) such that (i) X is a set
of points or elements, (ii) A is a subset of the power set of X (i.e. Collection of
non-empty subsets of X)

Definition 2.02. A t-design is defined as a t - (v, k, λ) block design (with t ≤
k ≤ v) such that the following are satisfied (i) X = v , (ii) each block contains
k points, (iii) for any set of t points there are exactly λ blocks that contain all
these points.

Definition 2.03. A t-design with t = 2 is known as (v, k, λ)-Balanced Incom-
plete Block Design[BIBD].

Example 2.01. A (10, 4, 2)-BIBD has X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
A = {(0, 1, 2, 3); (0, 1, 4, 5); (0, 2, 4, 6); (0, 3, 7, 8); (0, 5, 7, 9); (0, 6, 8, 9); (1, 2, 7, 8);
(1, 3, 6, 9); (1, 4, 7, 9); (1, 5, 6, 8); (2, 3, 5, 9); (2, 4, 8, 9); (2, 5, 6, 7); (3, 4, 5, 8);
(3, 4, 6, 7)}
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Definition 2.04. A t-design with λ = 1 is known as Steiner system.

Example 2.02. A (9, 3, 1)-design has X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {(1, 2, 3);
(4, 5, 6); (7, 8, 9); (1, 4, 7); (2, 5, 8); (3, 6, 9); (1, 5, 9); (1, 6, 8); (2, 4, 9); (2, 6, 7);
(3, 4, 8); (3, 5, 7)}
Definition 2.05. Finite symmetric projective plane of order n is defined as a
pair of set of n2 + n + 1 points and n2 + n + 1 lines, where each line contains
n+ 1 points and each point occurs in n+ 1 lines.

Example 2.03. Projective plane of order 2, a (7, 3, 1)-BIBD, which is also known
as the Fano plane has X = {1, 2, 3, 4, 5, 6, 7}, A = {(1, 2, 3); (1, 4, 7); (1, 5, 6);
(2, 4, 6); (2, 5, 7); (3, 4, 5); (3, 6, 7)}.
Example 2.04. Projective plane of order 3, a (13, 4, 1)-BIBD is:
X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
A = {(1, 2, 3, 4); (1, 5, 6, 7); (1, 8, 9, 10); (1, 11, 12, 13); (2, 5, 8, 11); (2, 6, 9, 13);

(2, 7, 10, 12); (3, 5, 10, 13); (3, 6, 8, 12); (3, 7, 9, 11); (4, 5, 9, 12); (4, 6, 10, 11);
(4, 7, 8, 13)}.

Any design (X, A) can be mapped to a sensor network where the elements of
the set X represent the keys and the blocks of the set A correspond to sensor
nodes.

3 Our Generalized Scheme

In this section we shall discuss how a projective plane can be mapped to the
network. We consider a particular projective plane of order p, (p is considered
to be prime so as to ensure the existence of the projective plane), as our ba-
sic building block design. Initially we label all the nodes by Node[1], Node[2],
Node[3], · · · ,Node[N]; where N is the total number of nodes. Similarly we la-
bel the keys as key[1], key[2], key[3], · · · , key[K]; where K is the size of the
key-pool. A set of p2 + p+ 1 keys are chosen from the large key pool and then
distributed to a set of p2 + p + 1 nodes so that each node gets p + 1 keys and
each key is assigned to p+ 1 nodes. Without loss of generality, we assume that
the nodes chosen are given by Node[1], Node[2], Node[3], · · · ,Node[p2 + p + 1].
We call these nodes as level 1 nodes, the keys used in level 1 are termed as level
1 keys. The set of nodes and keys used in level 1 thus forms a Steiner system.
In level 2, Node[1] forms a Steiner system with p2 + p new nodes. We know
that total p2 + p + 1 keys are required to form a Steiner system. As there are
p + 1 keys already stored in the first node, we need only p2 nodes to complete
the Steiner system. In the similar manner, Steiner systems are produced corre-
sponding to each of the level 1 nodes. All the nodes that are included in level 2
are referred to as level 2 nodes and all the keys that are used for the first time
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in level 2 are called level 2 keys. Steiner systems are created corresponding to
each of the level 2 nodes to complete level 3. This method is repeated until
keys are distributed to all the nodes in the network. This completes the key
pre-distribution phase.

4 Fano Plane Scheme

We explain the key distribution procedure described above for a Fano plane. Fig.1
illustrates the 2 - (7, 3, 1) Steiner system i.e. the Fano Plane under consideration.

1

2

3 4 5

6
7

Fig. 1. The Fano Plane

Here seven nodes correspond to seven keys and each line represents a sensor node
(key chain of the node). This assigns a set of 7 keys to 7 nodes such that all nodes
together contain exactly 7 keys and any two are connected by exactly one com-
mon key. We label all the nodes and all the keys by 1, 2, 3, 4, . . . for convenience.
In level 1, seven keys {1, 2, 3, 4, 5, 6, 7} are distributed to the first seven nodes as
described above. Thus the key-chains assigned to the nodes 1, 2, 3, 4, 5, 6, 7 are
respectively {1, 2, 3}, {1, 4, 7}, {1, 5, 6}, {2, 4, 6}, {2, 5, 7}, {3, 4, 5}, {3, 6, 7}.

The Steiner systems corresponding to all the level 1 nodes are explicitly de-
scribed in Table 1.

In level 3, each of level 2 nodes are attached to six new level 3 nodes to
form a Steiner system and the corresponding key chain is chosen in the same
manner, i.e., keeping the first three keys same as the level 2 keys contained by
level 2 nodes and adding four new level 3 keys. This process is repeated until
keys are assigned to all the nodes in the network. We provide the algorithm Key
Pre-Distribution for assigning keys to the tree hierarchy as explained above. We
consider a hierarchical structure using a 6-nary tree for key pre-distribution.

Let us consider a network having maximum N nodes. Let K denote the total
key-pool and l denote the maximum level in the hierarchical tree structure.
The three keys assigned to Node[i] are stored in Node[i][1], Node[i][2], Node[i][3].
Choose {u1, u2, u3} ∈R K, where the symbol ∈R denotes random selection.
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Table 1. Components of Steiner systems formed by level 1 nodes

Node Node-set Key-set

node 1 {1, 8, 9, 10, 11, 12, 13} {1, 2, 3, 8, 9, 10, 11}

node 2 {2, 14, 15, 16, 17, 18, 19} {1, 4, 7, 12, 13, 14, 15}

node 3 {3, 20, 21, 22, 23, 24, 25} {1, 5, 6, 16, 17, 18, 19}

node 4 {4, 26, 27, 28, 29, 30, 31} {2, 4, 6, 20, 21, 22, 23}

node 5 {5, 32, 33, 34, 35, 36, 37} {2, 5, 7, 24, 25, 26, 27}

node 6 {6, 38, 39, 40, 41, 42, 43} {3, 4, 5, 28, 29, 30, 31}

node 7 {7, 44, 45, 46, 47, 48, 49} {3, 6, 7, 32, 33, 34, 35}

Algorithm : Key Pre-Distribution
i := 0;
Node [1][1] := u1, Node [1][2] := u2, Node [1][3] := u3;
procedure Key Pre-Distribution (u1, u2, u3)
X := {u1, u2, u3} ;
Choose {u4, u5, u6, u7} ∈R B where B ⊆ K −X , B is the set of unused keys
X := X ∪ {u4, u5, u6, u7};

j := 6i+ 2;
Node [j][1] := u1, Node [j][2] := u4, Node [j][3] := u7;
Node [j + 1][1] := u1, Node [j + 1][2] := u5, Node [j + 1][3] := u6;
Node [j + 2][1] := u2, Node [j + 2][2] := u4, Node [j + 2][3] := u6;
Node [j + 3][1] := u2, Node [j + 3][2] := u5, Node [j + 3][3] := u7;
Node [j + 4][1] := u3, Node [j + 4][2] := u4, Node [j + 4][3] := u5;
Node [j + 5][1] := u3, Node [j + 5][2] := u6, Node [j + 5][3] := u7;

p := 1; r := 1; s := 0; N := r + s
while (p < l) do

r := r + 6p; s := s+ 6p−1;
p++;
for i := N to (r + s− 1) do in parallel

call Key Pre-Distribution (Node[i][1],Node[i][2],Node[i][3])
end do

N := r + s;
end do
end Key Pre-Distribution
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The detailed hierarchical tree structure (upto level 3) has been depicted in
Fig.2
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Fig. 2. The nodes, denoted by Ni and corresponding key-chains upto level 3

5 Results

Theorem 5.01. Number of nodes in level j is nj = (p2+p+1)(p2+p)j−1 , ∀j ∈
{1, �}.
Proof : The result holds trivially for i = 1.

In level 2, each node from level 1 forms a projective plane with new p2+p level
2 nodes. Let us refer to these p2 + p nodes as the children of that level 1 node.
Similarly, all level 1 nodes have p2 + p children. Following the same pattern
all level 2 nodes have p2 + p children in level 3 and this pattern continues.
Therefore, we note that the nodes are distributed in the form of (p2 + p)-nary
trees corresponding to each of p2 + p+ 1 nodes in level 1. Thus the nodes form
p2 + p+ 1 numbers of (p2 + p)-nary trees. Hence the result follows. �	
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Corollary 5.01. Total number of nodes in the network is N = (p2+p+1)
(p2+p−1){

(p2 + p)l − 1}
Proof: As the levels of the nodes are exhaustive and disjoint, we have N =
n1 + n2 + ...+ nl, where l represents the total number of levels in the network.
Consequently, total number of nodes in the network is N =

∑l
j=1(p

2+p+1)(p2+

p)j−1 = (p2+p+1)
(p2+p−1){(p2 + p)l − 1}. This completes the proof. �	

Theorem 5.02. Number of keys that are used for the first time in level j is
kj = pj(p+ 1)j−2(p2 + p+ 1), ∀ j ≥ 2 and k1 = p2 + p+ 1.

Proof: There are p2+p+1 keys in each of the projective planes. As there is only
one projective plane is level 1, number of keys in level 1 is p2+p+1. We observe
that when one node from level i forms a projective plane with new nodes from
level i + 1, it requires p2 new nodes to complete the projective plane as p + 1
keys are already stored in that node. So number of keys required in level i is p2

corresponding to each Steiner system to be formed. If kj denotes the number of
keys in level j, then kj = p2 × nj−1 = pj(p+ 1)j−2(p2 + p+ 1). �	
Corollary 5.02. Total number of keys in the network is K = (p2+p+1) [1+

p2

p2+p−1 ((p
2 + p)�−1 − 1)]

Proof: As the keys appearing for the first time in a particular level are ex-
haustive and disjoint, we have K = k1 + k2 + ... + kl, where l represents the
total number of levels in the network. Hence, total number of keys required
in the network is K = (p2 + p + 1)

∑l
j=1 p

j(p + 1)j−2. The result follows on
simplification. �	
Theorem 5.03. Number of nodes to which a level i key is assigned to, is given
by Ni = p+1

p−1 ×{pl+1−i − 1}, where l denotes the total number of levels present
in the network.

Proof: The keys that appear for the first time in level i is contained in only one
Steiner system and hence goes to p+ 1 nodes in level i. In the next level, i.e. in
(i+ 1)th level, that key goes to each of the p+ 1 Steiner systems corresponding
to each of the previous level nodes and in each system, the key is contained in p
new nodes. Thus we observe that the nodes to which a level i key is contained,
form (p + 1) number of p-nary trees with their roots in level i. Therefore, the

number of nodes to which a level j key is assigned to is
∑l

i=j(p+1)pi−j . Hence
the result follows. �	
Theorem 5.04. Number of nodes containing key-chain as (level j, level i,
· · · , level i) in level i is given by

{
(p2 + p+ 1)× pi−1 × (p+ 1)j for j = 1;
(p2 + p+ 1)× pi × (p+ 1)j−1 ∀ j = 2, 3, · · · , (i − 1).
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Proof: We observe that all the nodes in level 1 contain p+1 level 1 keys. In level
2, the nodes contain one level 1 and p level 2 keys. In level 3 we get two types of
nodes depending on the key distribution. All level 3 nodes contain exactly p level
3 keys and the remaining key is from level 1 or level 2, we call the nodes Type 1
and Type 2 accordingly. We also notice that the ratio of Type 1 and Type 2 nodes
is 1 : p as shown in the Fig. 3.

level i, level (j+1), … , 
level (j+1)

level i, level j, …,  level j Level j

Level (j+1)level j, level (j+1), … , 
level (j+1)

Type A Type B

Fig. 3. Type A and Type B nodes in level j + 1 are in the ratio 1 : p

In level 4 we get three types of nodes: Type 1 with key chain (level 1, level 4,
· · · , level 4); Type 2 with key chain (level 2, level 4, · · · , level 4); Type 3
with key chain (level 3, level 4, · · · , level 4); and they are in the ratio 1 :
p : p(p + 1). Continuing this process upto level i, the nodes are in the ratio
1 : p : p(p + 1) : p(p+ 1)2 : · · · : p(p + 1)i−3 . Sum of these ratios is (p + 1)i−2.
Their corresponding proportions are given in Table 2. Now, we know that the
number of nodes in level i is given by ni = (p2 + p+ 1)(p2 + p)i−1. Multiplying
the proportions of different types of nodes with ni, we get the individual number
of them as provided in Table 2. �	
Let us now discuss the effect of adversarial interference. We try to estimate how
the network gets disturbed when nodes are captured by the opponent. Since the
nodes are deployed in hostile regions, they are likely to be captured frequently.
When a node gets captured, all the keys contained in it are also compromised. As
a result, the set of links which uses keys from the captured nodes are destroyed
completely. Moreover, the node which contains any compromised key cannot
use it for any further communication, though the other keys stored at them are
still secret. We refer to these nodes as (partially) affected nodes. We notice that
capture of each node reveals only p keys at a time, which is very less portion
of the total key-pool. Now we analyse below what portion of the nodes and the
links are affected when a single node is captured.

Theorem 5.05. Let φ(i, l) be the number of affected nodes when an ith level
node is compromised, l being the total number of nodes (and keys) present in the
network. Then

φ(i, l) =
p+ 1

p− 1

(
pl−i+2 − 1

)− pl

(p+ 1)i−3
− p
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Table 2. Proportion of different types of nodes

Type Key-chain Proportion Number of Nodes

1 (level 1, level i, · · · , level i) 1/(p + 1)i−2 pi−1(p+ 1)(p2 + p+ 1)

2 (level 2, level i, · · · , level i) p/(p+ 1)i−2 pi(p+ 1)(p2 + p+ 1)

3 (level 3, level i, · · · , level i) p/(p+ 1)i−3 pi(p+ 1)2(p2 + p+ 1)

4 (level 4, level i, · · · ,level i) p/(p+ 1)i−4 pi(p+ 1)3(p2 + p+ 1)

j (level j, level i, · · · , level i) p/(p+ 1)i−j pi(p+ 1)j−1(p2 + p+ 1)

i− 1 (level i− 1, level i, · · · , level i) p/(p+ 1) pi(p+ 1)i−2(p2 + p+ 1)

Proof :We note that all the level i nodes contain p level i keys and the remaining
key may belong to any of the previous (i−1) levels. Depending on this we divide
the nodes into types. Therefore there are (i− 1) types of level i nodes.

Let nij denote the number of nodes affected when a level i node of Type j, (for
j = 1, 2, ...i − 1) is compromised. A level i node of Type j contains exactly one
level j key and p level i keys. A level i node is attached to p+1

p−1 × {pl+1−i − 1}
nodes. Hence we have, ni1 = {1 × (

pl − 1
)
+ p × p+1

p−1

(
pl+1−i − 1

)} − p. Here

p is subtracted as a set of p+ 1 keys is contained in exactly one node (i.e., the
compromised node here), which we count once for every key repeating it p extra
times. Similarly, we have

nij = {1× (
pl+1−j − 1

)
+ p× p+ 1

p− 1

(
pl+1−i − 1

)} − p, ∀j ∈ 1, 2, · · · , i− 1.

Simplified expressions for nij are listed in Table 3.
The proportions of the different types of nodes given in Table. 2. Thus we have
φ(i, l) = ni1×1

(p+1)i−2 +
ni2×p

(p+1)i−2 +· · ·+ nij×p
(p+1)i−j +· · · ni(i−1)×p

(p+1) . Substituting the values

for nij , from Table 3, we get the desired expression. �	
Remark 1. If we wish to know the effect of the adversarial attack on the net-
work, φ(i, l) will provide the average number of the affected nodes (and hence
their proportion) when an ith level node is compromised, i.e., φ(i, l) gives an es-
timate for resilience involving affected nodes. Resilience involving destroyed links
is discussed in the following section.
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Table 3. Values of nij

ni1
p+1
p−1

(pl − 1) + p+1
p−1

(pl−i+2 − p)− p

ni2
p+1
p−1

(pl−1 − 1) + p+1
p−1

(pl−i+2 − p)− p

ni3
p+1
p−1

(pl−2 − 1) + p+1
p−1

(pl−i+2 − p)− p

ni4
p+1
p−1

(pl−3 − 1) + p+1
p−1

(pl−i+2 − p)− p

nij
p+1
p−1

(pl−j+1 − 1) + p+1
p−1

(pl−i+2 − p)− p

ni(i−1)
p+1
p−1

(pl−i+2 − 1) + p+1
p−1

(pl−i+2 − p)− p

6 Performance

We determine resilience mathematically by the following formula put forward
by Lee-Stinson [8]:

fail(s) = 1 −
l∏

i=1

(

1 − Ni − 2

N − 2

)si

where fail(s) denotes the portion of total link failure when s nodes are compro-
mised, Ni denotes the number of nodes to which a level i key is assigned to, si
is the number of compromised nodes in the ith level. Therefore,

∑l
i=1 si = s.

Unlike other key pre-distribution schemes based on combinatorial designs, our
scheme is heterogeneous, i.e., the nodes are not distributed uniformly. Therefore
it is not possible to present the exact value of fail(s). Instead we provide the
average value of fail(s).

First, we would like to deduce how the network accomplishes its function when
the order of the underlying projective plane is altered (let us consider a network
composed of two levels so that for p = 2, Tnodes = 49, for p = 3, Tnodes = 169,
for p = 5, Tnodes = 961 and for p = 7, Tnodes = 3249, where Tnodes represents
total number of nodes occurring in the network). If we wish to estimate their
comparative performances by retaining the number of compromised nodes, it
would culminate into inadequate consequences. This is due to the evidential
information that if we regard only 10 nodes to be compromised then a major
portion of the network is interfered for p = 2. In contrast to this, for p = 7 a
very negligible portion of the network is disrupted from normal functioning. To
keep up the uniformity on the compromised nodes, instead of a fixed number,
we assume that the number of compromised nodes is a certain percentage of the
total number of nodes present in the network.
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Percentage of total nodes compromised
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Fig. 4. Networks consisting two levels
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Fig. 5. Networks consisting three levels
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Fig. 6. Networks consisting four levels
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Fig. 7. Networks consisting five levels

The supportive figures Fig.4 - Fig.7 relate to the comparison between the per-
formance of our scheme making use of different orders of projective planes when
the maximum level in the network is predetermined. The four figures Fig.4, Fig.5,
Fig.6 and Fig.7 describe and justify the comparison graphically for the networks
composed of two, three, four and five levels respectively. In these figures, the per-
centage of total nodes in the network, which is compromised is plotted against
the portion of the destroyed links. From these figures it can be observed that for
any network, the resilience gets adversely affected with increasing order of the
projective planes, when number of levels is kept unaltered.
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Next we shall concentrate on comparing the performance of our scheme with
other existing schemes.

In Table 4, we provide the comparison based on the performance of our scheme
with Lee-Stinson linear scheme [8], Chakrabarti et al. scheme [3], Ruj-Roy scheme
[11] and Lee-Stinson quadratic scheme [10], where Tnodes denotes total number
of nodes in the network and Tkeys denotes total number of keys present in each
node. To keep up Tnodes in our scheme comparable with other schemes, we
consider p = 2, level = 4. The details have been mentioned in the table.

Table 4. Comparison with some of the existing schemes

[8] [3] [11] [10] Ours

Tnodes 1849 2550 2415 2197 1813

Tkeys 30 ≤ 28 136 30 3

fail(10) 0.201070 0.213388 0.0724 0.297077 0.010087

The comparison between the schemes has been represented graphically through
figures Fig. 8 and Fig. 9. In Fig. 8 we demonstrate the comparison of our
scheme with Lee-Stinson linear scheme [8], Chakrabarti et al. scheme [3], Ruj-
Roy scheme [11] and Lee-Stinson quadratic scheme [10] for a handful (i.e., 1 - 10)
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Fig. 8. Comparison of resilience with
some of the existing schemes for small
number of compromised nodes

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fa
il(

s
)

Number of compromised nodes (s)

 [8]
 [9]
 Ours

   (p=2,l=4)

Fig. 9. Comparison of resilience with
some of the existing schemes for large
number of compromised nodes



30 S. Mitra, R. Dutta, and S. Mukhopadhyay

number of compromised nodes. On the other hand in Fig. 9 we provide the com-
parison with Lee-Stinson linear scheme [8] and Lee-Stinson quadratic scheme [10]
for a large number (i.e., 10 - 200) of compromised nodes. It is very evident from
the figures that the networks incorporated on other schemes collapses in no time
when compared to ours.

7 Discussion and Conclusion

We have proposed a key pre-distribution scheme by applying combinatorial de-
sign. The memory prerequisite in each sensor node is appreciably reduced. Fur-
ther, we perceive that unlike most of the deterministic and combinatorial design
based schemes, the proposed scheme sustains scalability, i.e., a number of nodes
could be inserted without interfering the present network set-up. The discussed
scheme affords reasonable connectivity: any two nodes are connected either di-
rectly or via a key-path. We note that it is advantageous to make use of projective
planes of small order as they acquire better resilience. However, comparing with
other existing schemes, we come across that our scheme offers enhanced resilience
for higher order projective planes. Intuitively, we can also declare that the con-
nectivity gets better with increasing order of the projective plane employed as
basic building block to design the whole network.

In the present scheme the lower level nodes are more sensitive compared to
the higher level nodes. As a future work, we would like to propose a randomized
scheme by merging the more sensitive nodes with less sensitive nodes to achieve
uniform sensitivity among the nodes in the network, to continue functioning
interactively.
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