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Abstract. In this paper we describe a (distributed) localized approxi-
mation algorithm for the MECBS (Minimum Energy Consumption
Broadcast Subgraph) problem with asymmetric edge costs, called LMCA
(Localized algorithm for energy-efficient broadcast based on Local
Minimum Cost Arborescences). Given a directed weighted graph
G = (V,E) with edge weight function w and a source node s, the MECBS
problem consists of finding a range assignment to V such that the induced
graph contains a spanning directed tree rooted at s with minimized cost.
This problem can be efficiently solved for some specific cases, but it is
NP-hard in the general case. To the best of our knowledge, LMCA is the
first localized algorithm to the MECBS problem with asymmetric edge
costs (without restricting the way how edge costs might be asymmetric).
We compared LMCA with blind flooding and with two alternative solu-
tions we designed for the problem, LMCP and LBIPAsym (a variation of
LBIP for the case of asymmetric edge costs). In our experiments, LMCA
outperformed these algorithms. We additionally present and evaluate two
slight variations of LMCA, called LMCAc and LMCAfl.

Keywords: MECBS, asymmetric edge costs, minimum cost arbores-
cence, localized algorithm, wireless sensor networks.

1 Introduction

In this paper we address the problem of energy-efficient broadcast in Wireless
Sensor Networks (WSN). Broadcast is a useful communication primitive in dif-
ferent scenarios, such as in the dissemination of data or specific requests from
the base station to the whole network (for example, for the distribution of cryp-
tographic keys or synchronization packets). Since the need for conserving energy
of nodes is a key issue in WSN (due to the fact that the nodes are typically oper-
ated by non-replaceable batteries), broadcasting should be performed as efficient
in terms of energy use as possible.
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Different approaches for the problem of energy-efficient broadcasting in wire-
less networks have been proposed. This problem consists of, given a source node
s, determining a transmission power to each node of the network such that: (a)
the resulting topology contains a spanning tree rooted at s; and (b) the sum of
the costs associated with the nodes is minimized. The control of the transmission
power of nodes is possible since radio transceivers commonly used in practical
systems typically support transmissions at different power levels.

This problem has been formulated as the MECBS (Minimum Energy Con-
sumption Broadcast Subgraph) problem [1]. In this paper we consider a version
of this problem in which edge costs might be asymmetric. I.e. transmitting from
a node u to a node v might have a different cost than transmitting from v to
u. This happens, for example, in heterogeneous networks, where transmission
and reception costs are dependent on hardware characteristics (specific to each
node) or when the cost of overhearing is taken into consideration (overhearing
is one of the major sources of energy expenditure due to communication in a
WSN [14]). Heterogeneous networks have been less considered in the literature
on energy-efficient algorithms, but they are the type of networks that is and
will be used in many applications. The general MECBS problem is NP-hard
[1].

In this paper we describe LMCA (Localized algorithm for energy-efficient
broadcast based on Local Minimum Cost Arborescences), a localized algorithm
that is an approximation for the MECBS problem with asymmetric edge costs.
Although many results have been proved for symmetric versions of MECBS and
some results for the general MECBS problem, to the best of our knowledge
LMCA is the first localized algorithm to MECBS with asymmetric edge costs
(without restricting the way how edge costs might be asymmetric). As there is no
other specific localized algorithm for this problem in the literature, we compared
LMCA with blind flooding and with alternative solutions we designed: one based
on local computation of trees of minimum cost paths (which we call LMCP) and
a variation of LBIP [5] for the case of asymmetric edge costs (which we call
LBIPAsym). LBIP was designed for the version of MECBS with symmetric edge
costs (for which it is a very good approximation) and thus cannot be directly
applied to the version of MECBS we consider in this paper. LMCA outperformed
these algorithms in our experiments. We additionally describe small variations
of LMCA (which we call, respectively, LMCAc and LMCAfl) which improved
slightly on the performance of LMCA in terms of energy cost in some scenarios,
but which require, resp., higher processing cost at nodes and the exchange of
longer messages.

This paper is structured as follows. In Section 2 we present the MECBS
problem. In Section 3 we discuss related work. In Section 4 we describe the
adopted system model. In Section 5 we describe LMCA and present proofs of its
correctness. In Section 6 we present a performance evaluation of LMCA. Finally,
we conclude the paper in Section 7.



Algorithm for Asymmetric MECBS Based on Minimum Cost Arborescences 225

2 The MECBS Problem

We use the MECBS problem formulation as presented in [1]. Let G = (V,E)
be a directed weighted graph with edge weight function w : E → R

+. A range
assignment for G is a function r : V → R

+. The transmission graph induced by
G and r is defined as Gr = (V,E′), where:

E′ = ∪v∈V {(v, u) : (v, u) ∈ E ∧ w(v, u) ≤ r(v)}
The MECBS is then defined as follows: given a source node s ∈ V , find a range
assignment r for G such that Gr contains a directed spanning tree of G rooted
at s and cost(r) =

∑
v∈V r(v) is minimized.

We consider that the edge weight function might be asymmetric. I.e. for two
edges (u, v) and (v, u) in E, w(u, v) might be different from w(v, u).

3 Related Work

The MECBS problem has been extensively studied. However, most work concen-
trates on versions of the problem with symmetric edge costs (w(u, v) = w(v, u)).
Algorithms that are centralized (e.g., BIP [10]), distributed but not localized
(e.g., [13]) and localized (RTCP and RBOP [8], LBOP, LBOP-T and RBOP-T
[9], TR-LBOP and TRDS [6] and LBIP [5]) for specific versions of the problem
have been proposed. In particular, BIP is a very efficient centralized approxima-
tion algorithm [5,15] with a Ω(n) performance ratio [18].

The general MECBS problem is NP-hard [1]. This problem was also proved to
be inapproximable within (1 − ε) lnn for any ε > 0, unless P = NP (n denotes
the number of nodes) [2,16,1].

For the general case, there are few approximation algorithms. Centralized al-
gorithms were proposed in [18,7,13]. The algorithms presented in [7] and [13]
provide logarithmic approximations to MECBS and improves the approxima-
tion ratio of the algorithm presented in [18]. The algorithm in [7] provides a
2(ln(n− 1)+ 1) approximation ratio. The algorithm in [13] improves slightly on
this result, with a 3/2(ln(n−1)+1) performance ratio. As there is no sublogarith-
mic approximation to the problem, these algorithms are asymptotically optimal.

To the best of our knowledge, distributed algorithms that consider asymme-
try are only presented in [19,4]. In [19] the authors present a centralized and a
distributed algorithm to construct a strongly connected broadcast arborescence
with bounded transmission delay. The algorithm is not localized (it is based on
distributed algorithms for calculating shortest paths, minimum weight directed
spanning trees and depth-first search). In [4], edge costs are defined by multiply-
ing the transmission power by the node’s energy unit cost, thus restricting the
way how edge costs might be different. The algorithm described in the paper
(multi-dimensional case, α > 1) [4] is not localized as well.

Additionally, in [11], although the authors define a version of the problem
with directed graphs and potentially asymmetric edges costs, the distributed al-
gorithm presented is based on the GHS minimum cost spanning tree algorithm,
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which assumes undirected graphs. In [15], the authors model the different trans-
mission levels of transceivers (in a homogeneous environment). Asymmetry could
be modelled by including all the transmission levels of all radio devices used in
a particular setting. However, the number of such levels would be very large
if we consider, for example, asymmetry due to hearing costs (the restriction of
Θ(log(n/logn)) ranges assumed in the paper would not apply in a general case).

Thus, to the best of our knowledge, LMCA is the first localized approximation
algorithm to the MECBS problem with asymmetric edge costs.

4 System Model

A wireless sensor network is represented by a strongly connected directed graph
G = (V,E) with edge weight function w : E → R

+, where V is the set of nodes,
E represents the set of communication channels and R

+ is the set of nonnegative
real numbers. We associate a process with each node. A process is a finite state
automaton that models the behaviour of a node. Each process has a unique
identifier. So we have processes p1, p2, ..., pn, where n = |V |. One of the processes
is the root process (or simply root). The node associated with the root process
is the root node. Since there is a one-to-one relationship between processes and
nodes, we will use the terms process and node interchangeably.

Processes communicate with each other by exchanging messages. Edge (p, q) ∈
E iff process q can receive messages from process p. We assume that each node
knows the set of processes in its two-hop neighbourhood. We do not restrict how
edge costs are defined. Edge costs might be asymmetric, i.e. w(p, q) might be
different from w(q, p), for any two nodes p and q. The communication relation-
ship, however, is symmetric (if u can hear a message from v, v can also hear a
message from u, when both transmit at full power). We assume that each node
can adjust its transmission power to any value from 0 to a maximum. The graph
induced when all nodes transmit at maximum power is strongly connected.

We assume an asynchronous system model. I.e. there is no known upper bound
on the time a message takes to arrive at the destination and there is no known
upper bound on the time a process takes to execute a single step. Channels and
nodes are assumed to be reliable. A message sent by a node eventually arrives
without modification at the receiver.

5 The LMCA Algorithm

5.1 Algorithm Overview

LMCA works incrementally. Starting from the root, each process pi calculates a
minimum cost arborescence rooted at pi on the graph that represents its two-hop
neighbourhood (as explained right below, nodes that are known to have already
been covered will be ignored). We use Edmonds’s algorithm to find the minimum
cost arborescence [3]. Process pi uses the calculated arborescence to define: (a)
the cost associated with it (i.e. r(pi)) and its associated transmission power; (b)
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Fig. 1. Example of LMCA

the set of processes that become covered by it, i.e. that are reached by pi when
it transmits with the defined transmission power; and (c) the next processes to
continue the algorithm. These processes are called relay processes (or simply
relays). The algorithm is repeated in the same way by each relay process. The
list of processes in pi’s neighbourhood that are known by pi to have already been
covered is transmitted to the next relays. Thus these processes can be ignored
in the local calculation of the relays’ minimum cost arborescences.

Each node pi determines the relay and covered processes as follows. Process
pi chooses a process pj among its children in the minimum cost arborescence
for which w(pi, pj) is the highest. Let us call this node highesti. Process pi will
adjust its transmission power to the minimum power necessary to reach highesti.
All processes pk in pi’s one-hop neighbourhood for which w(pi, pk) is less than
or equal to w(pi, highesti) are the processes covered by pi. The other processes
in the arborescence are the uncovered processes, according to pi’s view.

We call bridges the edges (q, s) in the minimum cost arborescence rooted at
pi which have a covered process as tail (q) and an uncovered process as head
(s)1. The relay processes will be those processes that are tails of bridges.

Figure 1 illustrates how a process (p1) determines bridges and relays. The left
part of the figure shows the graph that represents p1’s two-hop neighbourhood.
Processes p2, p3 and p4 are one-hop neighbours of p1. An arrow from node pi to
node pj represents the edge (pi, pj). The numbers beside the arrows represent
the costs of the corresponding edges.

The right part of Figure 1 represents the tree built by process p1. Process
p4 is p1’s child in the tree for which the cost of the edge from p1 to it is the
highest (i.e. p4 is highest1). The transmission power associated with p1 is the
minimum power needed to reach p4. The cost associated with p1 is the cost of
the (p1, p4) edge. The nodes covered by p1 are p2, p3 and p4. Nodes p5, p6 and
p7 are uncovered. The bridges are edges (p2, p5), (p3, p6) and (p3, p7). Therefore,
the relays will be processes p2 and p3.

After having determined the relays, process pi broadcasts a Relay message,
using the minimum power needed to reach highesti. This message contains a
list of the processes that are known to be covered and those that were chosen as

1 For an edge (u, v), we call u and v, resp., the tail and the head of the edge.
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relays by pi. The nodes that are known by pi to be covered are those in its two-
hop neighbourhood that are covered by pi or by some other node, as indicated
on the list of covered nodes present either in the first Relay message received
by pi or in an AlreadyRelay message (see below). Note that all processes
that will hear a Relay message are covered. A process, say pj , that receives this
message from process pi will be in one of the following states:

– pj has already been a relay or it is the root : if pi chose pj to be a relay,
pj replies with an AlreadyRelay message, informing that it has already
been a relay. This message contains the set of covered nodes in pj ’s two-hop
neighbourhood. If pi did not choose pj to be a relay, pj just ignores the
message.

– pj is not the root, it has not been a relay and it is on the list of relays : pj
will continue the algorithm (repeating the steps described above with its own
local information). pi becomes the parent of pj .

– pj is not the root, it has not been a relay and it is not on the list of relays :
pj was not chosen by pi to be a relay. As pj is covered, the cost associated
with it remains zero. pi becomes the parent of pj .

When process pi receives an AlreadyRelay message, it updates the set of
covered processes and executes the local procedure again to find a new set of
covered nodes, relays and a new transmission power. The new transmission power
will be the maximum between the current and the new one.

This algorithm is presented in Figure 2, where pi represents a generic process.
All processes execute the same algorithm. We assume that pi already knows the
G2h

i = (V 2h
i , E2h

i ) graph, i.e. the graph that represents its two-hop neighbour-
hood. Procedure findLocalMCA represents the main part of the algorithm:
elimination of nodes already covered (Fig. 2, lines 1-2); calculation of the local
minimum cost arborescence rooted at pi (represented by the Edmonds proce-
dure in Fig. 2, line 3); determination of highesti (Fig. 2, line 4); determination
of pi’s cost (Fig. 2, line 5); determination of the new covered and uncovered
nodes (Fig. 2, lines 6-7), bridges and relays (Fig. 2, lines 8-9); update of the
set of covered nodes in pi’s two-hop neighbourhood (Fig. 2, line 10); and the
broadcast of a relay message (Fig. 2, line 11), using the power associated with
the current value of myCosti.

Lines 12-14 of Fig. 2 represent the actions performed by pi on starting the
algorithm. Lines 15-17 of Fig. 2 represent the actions performed by pi when
it receives an alreadyRelay message. Lines 18-25 of Fig. 2 represent the ac-
tions performed by pi when it receives a relay message. It either: replies with
an alreadyRelay message; executes findLocalMCA and sets its parent; or
simply updates its parent, as described above.

Full Coverage

The algorithm, as described above, does not guarantee full coverage (i.e. that
all nodes become covered at the end of the algorithm). In our experiments (see
Section 6), however, the algorithm did not cover all nodes only in very rare
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Let G2h
i = (V 2h

i , E2h
i ) be the graph that represents pi’s two-hop neighbourhood

OneHopNeighboursi ← {q : (q ∈ V 2h
i ) ∧ ((pi, q) ∈ E2h

i )}
Coveredi ← ∅ myCosti ← 0 parenti ← nil NewCoveredi ← ∅
IAmRelayi← false

Procedure findLocalMCA
Vi ← (V 2h

i \ Coveredi) ∪ {pi}1

Ei ← E2h
i \ {(q, r) : ((q, r) ∈ E2h

i ) ∧ ((q /∈ Vi) ∨ (r /∈ Vi))}2

MCAi(VMCAi , EMCAi)← Edmonds (pi, Gi)3

highesti ← any member of the set {q : ((pi, q) ∈ EMCAi) ∧4

(�r : ((pi, r) ∈ EMCAi)∧ (cost(pi, r) > cost(pi, q)))}
myCosti ← max{myCosti, cost(pi, highesti)}5

NewCoveredi ← {q : (q ∈ OneHopNeighboursi)∧ (cost(pi, q) ≤ myCosti)}6

Uncoveredi ← Vi \ (NewCoveredi ∪ {pi})7

Bridgesi ← {(q, s) : ((q, s) ∈ EMCAi) ∧ (q ∈ NewCoveredi) ∧8

(s ∈ Uncoveredi)}
RelayProcsi ← {q : (q ∈ NewCoveredi) ∧ (∃r ∈ Vi : (q, r) ∈ Bridgesi)}9

Coveredi ← (NewCoveredi ∪ Coveredi) ∩ V 2h
i10

Send Relay(Coveredi, RelayProcsi) using power defined by myCosti11

end

on starting LMCA12

if ((pi = root) ∧ (∃ uncovered node in OneHopNeighboursi)) then13

findLocalMCA14

end

on receiving AlreadyRelay (pCvrd) from pj15

Coveredi ← Coveredi ∪ pCvrd16

if (∃ uncovered node in OneHopNeighboursi) then findLocalMCA17

end

on receiving RELAY (pCvrd, pRelays) from pj18

if ((pi = root) ∨ (IAmRelayi)) then19

if (pi ∈ pRelays) then Send AlreadyRelay(Coveredi) to pj20

else
if (pi ∈ pRelays) then21

Coveredi ← pCvrd22

IAmRelayi← true23

findLocalMCA24

parenti ← pj25

end

Fig. 2. Algorithm executed by process pi (Part I) - Main part

situations. Full coverage can be guaranteed by making each node check (after
a certain period of time) if it has been covered. If it has not, it simply asks
one of the covered nodes in its one-hop neighbourhood for covering it. The
chosen neighbour adjusts its transmission power in order to cover the requesting
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OneHopNeighboursi and myCosti are as defined in Fig. 2.

on timeout { Only executed if pi is not covered yet }1

CoveredNeighsi ← {q : (q ∈ OneHopNeighboursi) ∧ (q is covered)}2

if (CoveredNeighsi = ∅) then3

restart timeout4

else
RelayNeighsi ← {q : (q ∈ CoveredNeighsi) ∧ (q is a relay)}5

if (RelayNeighsi �= ∅) then6

pr ← any member of RelayNeighsi7

else
pr ← any member of CoveredNeighsi8

send CoverRequest to pr9

parenti ← pr10

end

on receiving CoverRequest from pj11

myCosti ← max{myCosti, cost(pi, pj)}12

Coveredi ← {q : (q ∈ OneHopNeighboursi) ∧ (cost(pi, q) ≤ myCosti)}13

IAmRelayi ← true { pi becomes a relay (if it has not been yet) }14

end

Fig. 3. Algorithm executed by process pi (Part II) - Enforcing coverage

node and thus becomes a relay (if it has not been one yet). It is shown in
Section 5.2 that any uncovered node will eventually have a covered node in its
neighbourhood.

This extension is represented in Figure 3, for a generic process pi. While
a process is not covered yet, it periodically verifies if some of its neighbours
has already been covered (Fig. 3, lines 1-4). The set of covered neighbours is
represented by CoveredNeighsi (Fig. 3, line 2). If CoveredNeighsi is empty,
the process simply restarts a timer, to execute this verification again in the
future (Fig. 3, lines 3-4). Otherwise, process pi chooses a covered neighbour to
cover it. It chooses one neighbour that is a relay, if there is any (Fig. 3, lines
5-7). The set of relay nodes is represented by RelayNeighsi. If there is not any,
it chooses one of the covered (but not relay) nodes (Fig. 3, line 8). The chosen
neighbour, represented by pr, should be one that minimizes the overall broadcast
cost. Process pi sends a message to process pr, asking pr for adjusting its power
to cover it (Fig. 3, line 9). Process pr becomes pi’s parent (Fig. 3, line 10).

When a process pi receives a CoverRequest message from a process pj , it
adjusts its power to cover pj (Fig. 3, lines 11-12). Process pi updates its set of
covered nodes and becomes a relay, if it is not one yet (Fig. 3, lines 13-14).

A process pi obtains information about which of its neighbours have been
covered or are relays by exchanging specific messages with its neighbours. We
do not specify this message exchange here.
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Induced Graph

LMCA induces a graph, Gr = (V,Er), where:

Er =
⋃

p∈V {(p, q) : ((p, q) ∈ E) ∧ (w(p, q) ≤ myCostp)}
I.e. Gr contains all processes as vertices and all edges (p, q) such that node p
covers node q. This graph might be different from a minimum cost arborescence
of the whole original graph. It might contain more than one edge with the same
node as head.

Observe that LMCA uses only knowledge about its two-hop neighbourhood,
so it is localized. Note that a message to be broadcast by an application can
be piggybacked in the Relay messages or forwarded to a node as a reply to a
CoverRequest message (thus avoiding an extra delay and overhead to execute
LMCA before actually broadcasting an application message).

The cost of the algorithm executed locally by each process is dominated by
Edmonds. Edmonds’s algorithm runs in O(E2h

i + V 2h
i logV 2h

i ) time [3].

5.2 Correctness

LMCA shall satisfy termination, full coverage and the induced graph, Gr, must
contain a directed spanning tree rooted at the root node. These properties are
represented by the lemmas and theorems presented in this section.

We refer to the two parts of LMCA as: (a) Part I, represented in Figure 2,
where processes incrementally calculate local minimum cost arborescences and
determine covered and relay nodes; and (b) Part II, represented in Figure 3,
which is needed to guarantee full coverage of nodes.

Lemma 1. Eventually all processes become covered.

Proof. Full coverage is simply guaranteed by Part II of LMCA. Suppose, by
contradiction, that the execution of the algorithm reaches a (global) final state
where some of the nodes are covered and some are not (we assume, for simplicity,
that the root node is covered at the beginning of the algorithm - so there is always
at least one covered node). As the graph induced when all nodes transmit at
maximum power is strongly connected, there would be at least one uncovered
node that is neighbour of a covered one in this graph. As a node executes Part
II periodically until it becomes covered, all uncovered nodes that are neighbours
of covered nodes will become covered. By repeating this argument, all nodes will
eventually become covered.

Lemma 2. LMCA eventually terminates, i.e. each process reaches a final state,
at which no transitions are possible.

Proof. As all nodes eventually become covered (lemma 1), in all executions
of LMCA each node is either (a) relay (including the root) or (b) a covered
but non-relay node. In case (a), the execution of the node terminates, be-
cause each node executes findLocalMCA only a limited number of times as,
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each time a process (re-)executes it, it either chooses new relays or eliminates
at least one of its neighbours (which was chosen relay, but has already been
one). By this argument, each node might only receive a bounded number of
Relay messages. Furthermore, each node might receive a bounded number of
CoverRequest messages as well (each one-hop neighbour that sends such a
message does it only once, as channels and processes are reliable). In case (b),
a covered non-relay node becomes covered either passively (as a consequence of
the execution of FindLocalMCA by some relay node) or actively (by execut-
ing Part II of LMCA). Thus, each node receives at most a bounded number of
messages (Relay messages from its relay neighbours).

Theorem 1. When LMCA terminates, the graph induced by it, Gr = (V,Er),
contains an arborescence rooted at the root node.

Proof. We must show that there is a path in Gr from the root node to each
other node in the graph. As all nodes are covered, all nodes will have a parent
node, except the root. First we show that Gr does not have any cycle. Suppose,
by contradiction, that there is a cycle 〈pi1 , pi2 , ..., pim〉, where pi1 = pim , m ≥ 2,
and pij is the parent of pij+1 . As all nodes in the cycle are parents of some
other node, they are all relays. As pik is parent of pik+1

, pik became a relay
before pik+1

. Thus, transitively, pi1 became relay before pim which became relay
before pi1 (a contradiction). As there are no cycles in Gr, the reverse paths
R = 〈qi1 , qi2 , ..., qir 〉, where qik+1 is the parent of qik in Gr (k ≥ 1) ends at the
root node (i.e. qir is the root node, since it is the only node that has no parent).
Thus, there is a path from the root node to each node in the graph (just follow
R in the opposite direction).

6 Evaluation

6.1 Compared Algorithms

As discussed in Section 3, we are not aware of any other localized algorithm for
the problem of MECBS with asymmetric edge costs, as considered in this paper.
Therefore in order to evaluate the performance of LMCA we compared it with
blind flooding and with two alternative solutions we designed, as variations of,
respectively, LMCA and LBIP [5]. We call them LMCP (Localized algorithm
for energy-efficient broadcast based on Local Minimum-Cost Paths trees) and
LBIPAsym (LBIP for graphs with Asymmetric edge costs).

In blind flooding each node that receives a message simply broadcasts it with
maximum power. It corresponds to a situation with no specific power control.

LMCP is a simple variation of LMCA where each node pi calculates a tree of
minimum cost paths (from itself to nodes in its two-hop neighbourhood) instead
of a minimum cost arborescence. It can be proved that LMCP guarantees full
coverage of the graph. Let Tsp = (V,Esp) be a shortest-paths tree rooted at the
root node, calculated over a maximum power graph. The proof is based on the
fact that the edges in Tsp will belong to the trees calculated locally by the nodes.
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LBIPAsym is a variation of LBIP [5]. LBIP is known as a very good approx-
imation algorithm for the version of MECBS with symmetric edge costs. As we
are assuming that edge costs might be asymmetric, LBIP cannot be directly
applied. In LBIP, each process constructs locally a tree (as in LMCA) and each
tree induces a broadcast cost. This local tree is constructed iteratively as follows.
For a set of already covered nodes, a new uncovered node u is inserted in the
tree that is: adjacent to a covered node, say v; and the edge connecting u and v
is the one which results in the lowest increment in the broadcast tree so far. In
LBIPAsym, the only difference is that we consider only the directed edges from
covered nodes to uncovered nodes when choosing a new node to be inserted in
the tree.

We additionally investigated the impact of modifying LMCA in two differ-
ent ways, generating two slight variations of the algorithm, which we call, resp.,
LMCAc and LMCAfl. LMCAc performs an additional processing when deter-
mining the relay nodes, in order to try to decrease their number. In LMCAfl,
when a node pi sends a Relay message, this message will now contain a list
with all nodes that pi knows to have been covered so far, i.e. the list might now
include nodes that are not in pi’s two-hop neighbourhood.

6.2 Description of the Experiments

As in this paper we are interested in the cost of the final range assignment, we
have implemented a specific Java program for the experiments. The nodes were
distributed over a 500m x 500m area. We varied the density of the network.
We made experiments with 12, 25, 50, 75 and 100 nodes, randomly spread over
the area. All nodes are stationary. For each network configuration (number of
nodes), 100 different scenarios were generated.

LMCA is independent of any specific edge cost function. For the experiments,
we adopted a cost function based on the energy model described in [17]. Energy
is spent by nodes during transmission and reception states (the energy spent
during processing is ignored).

For each (u, v), cost(u, v) denotes the energy spent by the network when u
transmits with the minimum power necessary to reach node v. We consider that
this cost involves the energy spent by u to transmit and the energy spent by all
nodes that hear the transmission (reception cost). cost(u, v) is thus defined as:

cost(u, v) = cf(u) + γ(u).d(u, v)α +
∑

∀s:(s�=u)∧(d(u,s)≤d(u,v))

cr(s) (1)

where: cf(u) is the (fixed) energy spent by the transmitter electronics at node
u; γ(u) is a parameter characteristic of the transceiver and the channel [12];
d(u, v) is the distance (in meter) between u and v; α is the path loss exponent
(2 ≤ α ≤ 6) [12]; and cr(s) is the reception cost of node s.
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Fig. 4. Ratio of the mean energy cost of LMCA and, resp., LMCP, LBIPAsym and
Blind Flooding

We used the following values: cf(u) = 48 nJ/bit, γ(u) = 16.1 pJ/bit/m2 and
cr(v) = 236.4 nJ/bit. For each scenario, we used first α = 2 and then α = 6.
Maximum transmission range was 30 units. These values were based on charac-
teristics of the CC2420 transceiver. Since the reception cost of nodes is used in
the cost function, cost(u, v) and cost(v, u) might be different (asymmetric costs).

6.3 Experiment Results

First we describe a comparison between LMCA and blind flooding, LMCP and
LBIPAsym in relation to energy cost (see Section 2). Figure 4 shows the ratio
between the mean energy cost of LMCA and, respectively, the mean energy cost
of LMCP (line with squares), LBIPAsym (line with circles) and blind flooding
(line with triangles). Figure 4(a) represents the results of the experiments for
α = 2. Figure 4(b) represents the results of the experiments for α = 6. Each
point in the graphic represents the ratio between the mean energy cost of LMCA
and each of the other algorithms, considering 100 scenarios. We see that LMCA
outperformed LMCP, LBIPAsym and blind flooding. For α = 2, the ratio de-
creases with the increase in network density, with the exception of a very little
increase in the ratio between LMCA and LBIPAsym from 50 to 100 nodes (from
0.30 to 0.31). For example, in the scenarios with 100 nodes, the cost of LMCA
was 11.5% of the cost of blind flooding, 22.8% of the cost of LMCP and 32.0%
of the cost of LBIPAsym. For α = 6, the ratio decreased with the increase in
network density, but the ratio between LMCA and, resp., LMCP and LBIPAsym
remained stable for 50 or more nodes. Thus, according to the experiments, cal-
culating locally a minimum cost arborescence (LMCA) provided better results
than calculating locally trees of minimum cost paths (LMCP). The adaptation
of LBIP to graph with asymmetric edge costs performed worse than LMCA as
well.
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Fig. 5. Mean percentage of relays: LMCA, LMCP, LBIPAsym and Blind Flooding

Figure 5 represents the percentage of relays for LMCA, LMCP, LBIPAsym
and blind flooding (for α = 2 and α = 6). The percentage of relays for blind
flooding is always 100%, as each process locally broadcasts a received message.
We see that, differently from LMCP and LBIPAsym, in LMCA the percentage
of relay nodes decreases with the increase in the number of nodes in the network.
The behaviour of the algorithms for the cases of α = 2 and α = 6 was similar.

We additionally evaluated whether there would be an improvement in the
results of LMCA if (a) we tried to decrease the number of relays by considering
the coverage of nodes which are relay candidates and (b) by passing more infor-
mation about covered nodes between relays. As previously stated, we call these
variations LMCAc and LMCAfl, respectively.

More specifically, the difference between LMCAc and LMCA is the following.
Recall that RelayProcsi is the set of relays chosen by process pi in LMCA (see
Figure 2). In LMCAc, process pi further processes RelayProcsi removing from
this set nodes whose children in the local minimum cost arborescence are covered
by other nodes in the set. I.e. a node v is removed from RelayProcsi if there
is another node u in the set that covers v’s children when u transmits with the
power defined by LMCA (induced by the local tree). This process is illustrated
in Figure 6. This figure represents the tree locally built by node s (minimum
cost arborescence rooted at s). According to LMCA, processes u and v will be
relays. But, as the range of u includes v’s children, v is removed from the set of
chosen relays (RelayProcsi).

In LMCAfl, each node pi, instead of informing to the next relays the list of
covered nodes in pi’s two-hop neighbourhood, it includes in this list the set of all
nodes that pi knows to have already been covered (so far, in the execution of the
algorithm).

Figure 7 shows the ratios of the mean energy cost, number of exchanged
messages, size of the list of covered nodes and percentage of relay nodes between
LMCA and LMCAc, for the cases of α = 2 and α = 6. For α = 2, all the ratios
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Fig. 7. Impact of further processing the set of candidate relay nodes (LMCAc)

are very close to 1, except for the case of 100 nodes, where the mean size of
the list of covered nodes is smaller for LMCA and LMCAc exhibited smaller
energy cost. For α = 6, the ratios of the mean number of messages, size of the
list of covered nodes and percentage of relay nodes varied slightly more than for
the case of α = 2. These ratios, however, remained in the range between 0.95
and 1.1. The ratios related to energy cost, however, remained very close to 1.
Thus, the performance in terms of energy cost was practically the same for both
algorithms, but LMCA exchanged more messages. Recall that LMCAc requires
more local processing at each node.

Figure 8 shows the ratios of the same parameters (total energy cost, number
of exchanged messages, size of the list of covered nodes and percentage of relay
nodes), but now for LMCA and LMCAfl. For both values of α (2 and 6), the
mean size of the list of covered nodes was higher for LMCAfl (as expected) and
the mean percentages of relay nodes used by LMCA and LMCAfl were very
close. For α = 2, LMCAfl resulted in a mean energy cost that is either very
close or lower than the mean energy cost of LMCA. LMCA, however, had a
light improvement on the number of exchanged messages, when the number of
nodes was 100. For α = 6, the energy cost was roughly the same, but LMCA
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Fig. 8. Impact of transferring more information about covered nodes between relays
(LMCAfl)

resulted in more message exchange (although the ratio was always less than 1.1).
The performances of the algorithms were equivalent, but LMCAfl requires longer
messages to be sent between nodes.

7 Conclusion

In this paper, we presented LMCA, a localized algorithm for the MECBS prob-
lem with asymmetric edge costs. We are not aware of any other localized algo-
rithm for this version of the problem. We think that this version of MECBS is
very relevant, as it models scenarios in heterogeneous sensor networks.

To evaluate the performance of LMCA, we compared it with blind flooding
and variations of LMCA and LBIP that we designed, called resp. LMCP and
LBIPAsym. In our experiments, LMCA outperformed these algorithms, achiev-
ing 10% and 8%, 22% and 48%, and 32% and 41% of the costs of, respectively,
blind flooding, LMCP and LBIPAsym, for the cases of α = 2 and α = 6.

We analysed additionally the impact of further refining the choice of relay
nodes, by taking into consideration the coverage of relay candidates, and of
transferring more information about covered nodes between relays. The perfor-
mance of these variations was slight better in some scenarios, but at the cost of
either further processing by the nodes or the exchange of longer messages. For
α = 6, the performances of these algorithms and LMCA were equivalent.
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