
An Energy-Delay Routing Protocol for Video

Games over Multihops Ad Hoc Networks

Arnaud Kaiser, Khaled Boussetta, and Nadjib Achir

L2TI – Institut Galilée – University of Paris 13
93430 Villetaneuse, France

firstname.lastname@univ-paris13.fr

Abstract. Nowadays, with the development of networked technologies
and the great expansion of video games industry, almost all video games
propose a multi-player mode. Development of portables consoles which
integrate 802.11 technology offers to people the opportunity to play any-
where, at any time and with anybody. However, wireless networked con-
ditions are not always optimal and directly impact the quality of game
perceived by players. In this paper, we propose a multimetric ad hoc
routing protocol, based on OLSR, which improves game experience in
terms of fairness among players and gaming sessions lifetime. We con-
sider the delay and the energy as metrics to route informations through
the network. We compare our routing protocol with an energy-efficient
OLSR version and a delay-efficient OLSR version. We show that our
routing protocol provides better performances in terms of fairness while
keeping a good network lifetime.

Keywords: multihops ad hoc networks, multimetric routing, networked
games, objective evaluation.

1 Introduction

Over the past fifteen years, the video games market has grown at an excep-
tional rate. This impressive progression was sustained by the innovation and
the creativity of this industry. Among the basic ingredients in recent successful
games, interactivity supported by network communications is a key element. As
a matter of fact, most of nowadays popular games integrate a multiplayer mode.

Taking into consideration the popularity of LAN multiplayer games and the
tremendous success of wireless networks, we believe that future game consoles
will benefit from supporting MANET (Mobile Ad-hoc NETworks) mode. In-
deed, MANET allows spontaneous creation of data networks by exploiting the
multihops communication capacity of the mobile terminals. Moreover, all the
networking functionalities (multihop routing, auto-configuration, self healing,
security, etc.) are carried out by the terminals themselves in an entirely dis-
tributed way. Therefore, besides the social and cultural interest of playing with
close located persons, MANET technology can allow players, to easily improvise
a LAN multiplayer party without any need for an existing fixed wireless network

D. Simplot-Ryl et al. (Eds.): ADHOCNETS 2011, LNICST 89, pp. 193–208, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

194 A. Kaiser, K. Boussetta, and N. Achir

infrastructure. A scenario, like a group of kids equipped with MANET terminals
wishing to play anywhere (e.g. in a playground, in a school bus etc.) a WLAN
party will be possible.

In order to make such scenario a common based reality in the near future,
several issues still have to be addressed by the research community. Several diffi-
culties come from the inherent constraints that characterize MANET technology.
In particular, the mobility of the core network, the energy limitation and the
variability of shared resources. All these problems lead to a variable connectivity
and potentially, to a high fluctuation in the provided Quality of Service (QoS).
On the other hand, multiparty games are very sensitive to resource availability.
They are very demanding on CPU and thus, high consuming on energy. In addi-
tion, the game play could experience a significant degradation caused by delays
variability, which is typically the case in MANET, due to the mobility of users
and to the random nature of IEEE 802.11 MAC layer.

In this work, we address the routing issue for multiplayer networked games
in a multihop ad hoc network environment. We consider specifically the most
popular ad hoc routing protocol. Namely, OLSR. Our aim is to increase the
network life duration and improve game fairness considering OLSR and suppos-
ing a multiplayer FPS (First Person Shooter) game. We propose and analyze,
through realistic experimentations and using objective metrics, a multimetric
routing protocol based on energy consumption and end-to-end delay.

The remainder of this paper is organized as follows: in the next section, we
briefly introduce OLSR and present the state of the art on ad hoc routing under
energy and delay criteria. Section III describes our routing protocol. Section
IV gives a detailed description of our experimentation scenarii. In section V,
we analyze and discuss the obtained results. Finally, section VI summarizes the
main contributions of this work and provides some future prospects.

2 Related Work

2.1 Ad-Hoc Routing Protocols

Routing protocols for ad hoc multihop networks can be classified into two main
categories: reactive protocols and proactive protocols.

Routing protocols belonging to the first category compute a route to reach a
destination only when needed. As long as a node in the network doesn’t want
to send data, no signaling messages are sent, leading to save energy and reduce
congestion and collisions. However, when a node wants to send data, it first has
to start a route discovery mechanism to find a route to reach its destination.
This mechanism is time consuming and hence delays the data sending until the
node has found a route.

Routing protocols from the second category periodically send signaling mes-
sages in order to discover and update the network topology. A node using this
kind of routing protocol always has a route available to reach every nodes present
in the network. Thus, the node can instantly send data when needed. However,

An Energy-Delay Routing Protocol for Video Games 195

signaling message used are energy consuming and increase risks of congestion
and collisions.

A hybrid category also exists. Routing protocols belonging to this category
combine both reactive and proactive algorithms.

As we are considering a time sensitive application where delay is a crucial
metric, we decide to base our work on the well-known proactive routing protocol
OLSR.

2.2 OLSR Overview

OLSR [1] is a proactive routing protocol, which means that it memorizes per-
manently paths to all discovered nodes in the network. Thus, all nodes can be
reached at any time. In order to discover and update the network topology,
OLSR sends periodical signaling messages known as HELLO and TC messages.

A node uses the HELLO messages to discover its neighborhood. The HELLO
messages are broadcasted with a TTL (Time To Live) of 1 such that only direct
neighbors receive the message. A HELLO message contains the neighbors table
of the node that sent it. The neighborhood table is a list of all the neighbors
known by the node. An information about the link type to these neighbors is
also noticed. A link with a neighbor can be unidirectional or bidirectional. If a
node receives a HELLO message from a neighbor and sees its own IP address
inside, it knows that the communication with this neighbor works in both sides,
so the link is bidirectional. Finally, thanks to these HELLO messages, all nodes
know their direct neighbor nodes (1-hop neighbors) and their 2-hops neighbors.

The second step of the protocol is the MPR (Multi-Point Relay) selection. The
MPR selection is a technique that improves broadcasting messages by allowing
only a subset of nodes to forward broadcasted messages. Each node chooses a
subset of nodes among its 1-hop neighbors, such that all of its 2-hops neighbors
are reachable via this subset. The chosen subset is called MPR set. When a node
broadcasts a message, only its MPR nodes are allowed to forward the message.
Thus, the number of retransmissions of the broadcasted message is reduced.
The nodes inform their neighbors that they have chosen them as MPR via the
HELLO messages. The nodes that were elected as MPR, create a MPR selector
table which lists all neighbors that have chosen them as MPR. As an example,
let us consider the network topology presented in figure 1. C8 has three 1-hop
neighbors (C1, C2 and C3) and three 2-hops neighbors (C4, C5 and C6). C8 has
to choose its MPR nodes among its 1-hops neighbors in order to be able to reach
nodes C4, C5 and C6. C4 and C5 are reachable via C1, C6 is reachable via C3,
so let us assume that the MPR nodes of C8 are C1 and C3. When C8 broadcasts
a message, C1 and C3 will forward it but not C2. This reduces flooding of the
network.

The next step of the protocol is to transmit the MPR selector table to all
nodes in the network. To this end, the TC (Topology Control) messages are
used. All MPR nodes broadcast periodic TC messages that contain their MPR
selector table. The TTL value is set to 255 (maximum value) such that all nodes

196 A. Kaiser, K. Boussetta, and N. Achir

in the network receive it. Of course, the flooding of the TC messages uses the
MPR technique.

Finally, by combining informations contained in HELLO and TCmessages, the
nodes have a global view of the network topology. Then, they compute the Dijk-
stra’s shortest path algorithm to find the bests routes to reach all destinations in
the network. The metric used to compute the routes is the number of hops.

2.3 Integrating Energy Consumption in OLSR

In order to reduce the energy consumption in ad hoc networks, many works were
done in the literature to combine the OLSR protocol with the energy metric.

In [2], instead of the number of hops, the authors consider the residual energy
of nodes to compute routes. Thus, they avoid nodes with low remaining energy,
leading to increase the network lifetime.

In [3], the authors go further and also consider the energy consumed at the
1-hop and 2-hop neighbors of the node that sends a message. Indeed, as we are
in a wireless environment, when a node sends a message, all its neighbors receive
it, even if they are not concerned by it, leading to consume energy.

In [4], the authors base their route computing on a min-max energy algorithm.
In each available route to reach a destination, they look at the node that has the
lowest remaining energy. They choose the route whose lowest remaining energy
node has the greatest value.

In [5], the authors exploit the Willingness field of the HELLO messages to
compute their link cost. The Willingness is a value that informs if a node will
forward data or not. When a node has a low remaining energy, it sets its Willing-
ness to 0 in order to inform the other nodes that it won’t forward traffic anymore.
The authors also use the RTS/CTS messages in order to turn off (sleep mode)
the nodes that are not concerned by the actual communication.

2.4 Integrating Delay in OLSR

As shown in our previous work [12], in the context of real time video games
the delay metric is the most important one. Some works in the literature have
studied the combination of the delay metric and the OLSR protocol.

In [10], the authors compute the delay between two neighbor nodes. They
assume that nodes are synchronized. They timestamp the HELLO signaling
messages, such that a node receiving a HELLO message can calculate the delay
value of the link to its neighbor. The delay metric is then used in the Dijkstra’s
shortest path algorithm to compute routes.

In [11], the authors add three new signaling messages in the OLSR protocol.
These messages enable to compute the end-to-end delay value between two nodes
in the network, without the need of a synchronized network.

2.5 Multimetric Routing Protocol

Some works have been done to combine energy and delay metrics in a routing
protocol.

An Energy-Delay Routing Protocol for Video Games 197

In [6], the authors propose EDC-AODV (Energy Delay Constrained AODV), a
modified version of the Ad-hoc On-demand Distant Vector (AODV) [13] routing
protocol. Each node takes into consideration the current size of its buffer (which
informs about the delay and congestion at this node, noted Q) as a first metric,
and its residual energy as a second metric (noted ER). The cost of a link between
two neighboring nodes is processed using the following equation:

cost = α
∑

i

1

1 + ERt
i

+ (1 − α)
∑

i

(1− 1

1 +Qt
i

) (1)

They use a parameter α in order to strike a balance between the two metrics.
They compare their EDC-AODV routing protocol with the classical AODV rout-
ing protocol for different values of the α parameter.

In [7], the authors propose OEDR (Optimized Energy-Delay Routing), an ad-
hoc routing protocol based on energy and delay metrics. They use OLSR as a
base protocol and modify it. They consider the delay between two neighbors,
measured thanks to timestamped HELLO messages, as the delay metric. As for
the energy metric, they consider the residual energy of the nodes. They use the
HELLO messages to transmit the energy and the delay values. Then, the cost
of a link is the multiplication of the delay and the energy values. The Dijkstra’s
shortest path algorithm is finally processed using this cost to find the bests
routes.

In this paper, our work consist of proposing a routing protocol, specific to
real time client-server video games, which consider both the energy and delay
metrics to improve the gameplay and also to increase the duration of gaming
sessions. Indeed, as we have previously shown in [14], a player who has a great
end-to-end delay with the game server has a bad game quality. On the contrary,
a player who is close to the game server in terms of end-to-end delay has a
better game quality, but his energy decreases dramatically faster because he has
to forward the game traffic coming from the other players. In the next section,
we describe our proposal, which is close to the one proposed in [6]. However, we
decide to dynamically modify the value of the balancing parameter depending
on the distance, in terms of end-to-end delay, that separates a player and the
game server. If a player has a great end-to-end delay with the game server, he
gives priority to the delay metric. On the contrary, a player who has a smaller
end-to-end delay with the game server favors the energy metric.

3 Energy-Delay Routing Protocol

In this section, we detail our routing protocol algorithm that is based on two
metrics: energy and delay. Our protocol uses a parameter, like the one presented
in [6], to introduce a balance between the two considered metrics. We propose
to dynamically modify the value of the parameter depending on the position of
the nodes compared with the game server node.

198 A. Kaiser, K. Boussetta, and N. Achir

3.1 Considered Energy and Delay Metrics

We consider the residual energy of the nodes as the energy metric. The en-
ergy cost of a link is computed as follow:

energy costns→nr = 1−REnr (2)

where ns is the node which send a message and nr is the neighbor of ns which
receives the message, and REnr is the residual energy of the node nr. The
residual energy of the nodes is normalized such that 0≤RE≤1.

As delay metric, we consider the delay measured on a link between two neigh-
bor nodes. We assume that all nodes in the network are synchronized. Thus,
by timestamping the OLSR HELLO signaling messages, the nodes can easily
compute the delay value of the links by subtracting the timestamped value of
the HELLO message from their current clock. Finally, the delay cost of a link
between two neighbor nodes is the delay measured on this link.

In order to inform all the nodes of the delay cost and the energy cost of the
links, each node adds its computed values in its HELLO and TC messages.

3.2 Link Cost Function

The cost of a link between two neighbor nodes directly depends on the position
of the nodes compared with the game server in terms of end-to-end delay. Hence,
a node first computes its shortest path to reach the game server by considering
only the delay metric. We call the total cost of this path the delay path cost.

Our goal is to find a compromise between the delay and the energy met-
ric. However, players who have a great delay path cost should not consider the
energy metric, but only focus on the delay metric. To this aim, we define a de-
lay threshold, above which we consider that the players are too far from the game
server, thus very hampered. All the nodes whose delay path cost is greater than
the delay threshold only consider the delay metric to compute their paths. All
the other nodes consider both energy and delay metrics to compute their paths.
For these latter, the link cost function is defined as follow:

link cost = f.delay cost+ (1− f).energy cost (3)

where f is a balancing factor which varies between 0 and 1. This balancing factor
determines the weight of each metric. Each node computes its own balancing
factor f following this equation:

f =
delay path cost

delay threshold
(4)

with 0≤f≤1. If f is greater than 1, we set it to 1 and thus the node will only
consider the delay as link cost. This parameter varies from one node to another

An Energy-Delay Routing Protocol for Video Games 199

in function of their position compared with the game server in term of end-to-
end delay. The far away from the game server a node is, the less it takes into
account the energy cost. On the contrary, the closest from the game server a
node is, the less it takes into account the delay cost.

4 Experimental Settings

In order to evaluate the performances of our multimetric routing protocol, we
set up a multihop ad hoc network emulator.

Our testbed is composed of eight computers: seven clients (each one repre-
senting a player in the game) and one dedicated game server. The computers are
connected in a LAN via a switch. The clients hardware configuration is as follow:
a 2 GHz Core 2 Duo processor, two gigabytes of main memory, and consumer-
level graphic and network cards integrated into the motherboard. The server
has a 2.4 GHz Core 2 Duo processor with two gigabytes of main memory. All
the eight computers run the same software configuration: Linux Ubuntu 10.04
distribution with the 2.6.32.21 kernel version.

As our computers are directly connected to AC power, we emulate the battery
consumption. In the beginning of each experimentation, all the nodes are full of
battery. Each time a network frame is sent or received by a node, we decrease
the remaining energy of this node according to the energy consumption model
presented in [9]. This model takes into consideration the size of the frames and
the nodes state (transmission, reception, idle) to compute the specific amount
of energy spent when sending or receiving a frame. The consumed energy is
computed as follow:

consumed energy = m ∗ s+ b (5)

where s is the size of the frame (in bytes), m and b are constants which can
be determined empirically. The constant values that we used in our experimen-
tations are given in table 1. In order to obtain the size of the frames, we use
the pcap API to capture the frames and recover their length. To simplify the
analysis, we consider neither the energy consumed in idle mode, nor the energy
consumption due to the game engine processing. We just focus on the transmis-
sion and the reception of frames. Finally, we stop our experimentations when
the residual energy of a node reaches 0%.

To emulate the wireless conditions, we add some delay on each link. The delay
values are chosen depending on the density of the nodes. Each node has a 10
milliseconds delay penalty per neighbor. Thus, the more neighbors a node has,
the more penalized it will be. We use the Traffic Control (TC) and Netem tools
available on Linux kernel to add the delay penalties.

The multihop network is emulated by using the iptables tool, also available
on Linux kernel. Each node adds iptables filters, based on the MAC address, to
drop all the frames that it should not have received in a real ad hoc environment.
Figure 1 depicts the network topology we used in our experimentations. Values
on links are the delays values in milliseconds.

200 A. Kaiser, K. Boussetta, and N. Achir

Table 1. m & b values

m (µW.s/byte) b (µW.s)

point-to-point transmisson 0.48 431
broadcast transmisson 2.1 272
point-to-point reception 0.12 316
broadcast reception 0.26 50

C8

C2

C1

C3

C5

C4

C7

C6

30 30

50
30

40

30

30

30
50

30

40
50

30
50

30

50

30
40

20

30

20
30

10

40

Fig. 1. The network topology used during the experimentations with delay cost of links
in ms

As game application, we adopted Quake III Arena, a real-time FPS video
game. Quake III Arena is a well-known multiplayer FPS which is, nowadays,
still largely played over the Internet. Moreover, this game has been released to
the open source, IOQuake III [8]. The game is set in Free For All (FFA) mode
with a maximum score of 40. The goal of a FFA match is to eliminate as much
enemies as possible. Each kill gives +1 point. The match ends when a player
reaches the score of 40. As game quality not only depends on network quality
but also on players skills, we use autonomous robots (or bots) on the clients side.
Of course, the bots are configured in the same way, such that player’s skills don’t
impact on game quality.

5 Results and Analysis

5.1 Energy Analysis

In figure 2, we present the energy consumption versus time while using the delay-
efficient OLSR. According to the topology presented in figure 1, C2 and C3 are

An Energy-Delay Routing Protocol for Video Games 201

the 1-hop neighbors of the game server which belong to the shortest paths, in
terms of delay, of nodes C4, C5, C6 and C7. Thus, they forward their game traffic,
that is why their residual energy decreases faster. Indeed, C3 forwards the traffic
of C5 and C6 whereas C2 forwards the traffic of C4 and C7. Until 3000 sec.,
we can distinguish three groups of nodes: C2 and C3 which forward two traffics
each, C4 which forwards one traffic (the one of C7) and leaf nodes (C1, C5, C6

and C7) which do not forward any traffic. After 3000 sec., C2 and C3 reach 0%
of residual energy and shut down. Then, C1 takes over and forward the traffics
of C4, C5 and C7. As a consequence, its residual energy decreases faster. The
only path for C6 to reach the game server is through C3. However, as this node
is out of energy, C6 cannot reach the game server anymore and has to leave the
game. Finally, after 4600 sec., C1 is out of energy and no other node can reach
the game server. These results show that finding routes for traffic according to
only the delay metric seriously reduce the game session.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

E
ne

rg
y

(%
)

Time (sec)

Residual energy per node in function of time

player 1
player 2
player 3
player 4
player 5
player 6
player 7

Fig. 2. Residual energy per node in function of time, considering delay-efficient OLSR

In figure 3, we present the energy consumption versus time while using the
energy-efficient OLSR. Routes are now computed according to only the energy
metric. We can clearly distinguish three groups of curves in this figure. Members
of these groups are in fact determined by their position compared with the
game server. Indeed, the first three curves are the ones of nodes C1, C2 and C3,
which all are 1-hop far from the game server. These three nodes forward game
traffic from and to nodes C4, C5, C6 and C7, that is why their residual energy
decrease faster than the other nodes. The second group of curves is composed of
nodes C4 and C5, which both are 2-hops far from the game server. They fairly
forward traffic from and to C7. Finally, curves of C6 and C7 represent the third

202 A. Kaiser, K. Boussetta, and N. Achir

group. These two nodes are leaf nodes and do not forward any other traffic than
theirselves. Thus, their residual energy decreases slower than all other nodes.
This figure shows well that the traffic load is fairly distributed among the nodes
of a same group to avoid excessive energy consumption of only one node. Indeed,
all the players can play together up to only 3000 sec. against 4000 sec. for energy-
efficient routing. Using the energy metric rather than the delay metric increased
the game session from 3000 sec. to 4000 sec.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

E
ne

rg
y

(%
)

Time (sec)

Residual energy per node in function of time

player 1
player 2
player 3
player 4
player 5
player 6
player 7

Fig. 3. Residual energy per node in function of time, considering energy-efficient OLSR

In figure 4, we present the energy consumption versus time while using our
energy-delay routing protocol (with a threshold of 150 ms). In the beginning, all
nodes have the same amount of energy (100%). Thus, it is the delay metric that
differentiates the costs of the links. C4 chooses C2 and C5 chooses C3 to forward
their game traffic to the game server because their delay cost is smaller than the
one of C1. The residual energy of C1 thus decreases slower than the one of C2

and C3. If we consider the game traffic from the players to the game server, C1

can be considered as a leaf node because it does not forward any traffic. However,
its residual energy decreases faster than the ones of C6 and C7, which are leaf
nodes too. Indeed, if we consider the game traffic from the game server to the
players, C8 has a delay path cost equals to zero (i.e. its factor f = 0) because it
is the game server. Hence, it only considers the energy metric as link cost. As
C2 and C3 already forward the game traffics of C4 and C5 respectively, and thus
consume more energy than C1, C8 chooses C1 to forward its game traffic to the
different players. This explains why the residual energy of C1 decreases faster
than the ones of C6 and C7. However, after 650 sec., the delay advantage that
C2 and C3 offer is counterbalanced by their lower remaining energy compared to

An Energy-Delay Routing Protocol for Video Games 203

the one of C1. C4 and C5 then balance their game traffic between C1 and C2 and
between C1 and C3 respectively, that is why the curve of C1 becomes parallel to
the curves of C2 and C3. The same phenomenon appears after 1100 sec. between
C4 and C5. Indeed, at this time, C7 starts to balance its traffic between these
two nodes. Once more, these two curves become parallel. Our routing protocol
tends to reduce the energy consumption on nodes that are close to the game
server and have a short delay cost. Moreover, we can see that all nodes are able
to play until 4000 sec., which is the same amount of time as with energy-efficient
routing protocol.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

E
ne

rg
y

(%
)

Time (sec)

Residual energy per node in function of time

player 1
player 2
player 3
player 4
player 5
player 6
player 7

Fig. 4. Residual energy per node in function of time, considering energy-delay OLSR
(threshold = 150 ms)

Finally, we plot in figure 5 the duration of a gaming session in function
of the routing strategy chosen. Results clearly show that increasing the de-
lay threshold value leads to increase the gaming session. Indeed, the bigger is
the delay threshold, the more nodes will take into account the energy metric to
compute their paths.

5.2 Score and Fairness Analysis

Figure 6 represents the CCDF (Complementary Cumulative Distribution Func-
tion) of score of players with the delay-efficient OLSR. We can distinguish in this
figure two groups of curves. The first group is composed of nodes C1, C2, C3 and
C6. Their curves are very close to each others. That means that there is a good
fairness between them. Moreover, their probability of ending a match with a
score at least equals to 30 is about 70%. The second group is composed of nodes

204 A. Kaiser, K. Boussetta, and N. Achir

 3000

 3200

 3400

 3600

 3800

 4000

 4200

olsr
delay

olsr
energy-delay
thres. 50 ms

olsr
energy-delay
thres. 100 ms

olsr
energy-delay
thres. 150 ms

olsr
energy

D
ur

at
io

n
of

 a
 g

am
in

g
se

ss
io

n
(s

ec
on

ds
)

Routing strategy

Duration of a gaming session versus routing strategy

Fig. 5. Duration of a gaming session versus routing strategy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
C

D
F

Score

CCDF of score per game

player 1
player 2
player 3
player 4
player 5
player 6
player 7

Fig. 6. Score CCDF of each player with delay-efficient OLSR

C5, C4 and C7. Their probability of having a score of at least 30 is very low and
their curves are more distant from those of the first group. Indeed, delay-efficient
routing selects paths that have the smaller end-to-end delay. Therefore, nodes
which are far from the game server or which have higher end-to-end delays are
penalized. This kind of routing protocol does not provide fairness among players,
so game experience of penalized players may be frustrating.

An Energy-Delay Routing Protocol for Video Games 205

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
C

D
F

Score

CCDF of score per game

player 1
player 2
player 3
player 4
player 5
player 6
player 7

Fig. 7. Score CCDF of each player with energy-efficient OLSR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
C

D
F

Score

CCDF of score per game

player 1
player 2
player 3
player 4
player 5
player 6
player 7

Fig. 8. Score CCDF of each player with energy-delay OLSR (threshold = 150 ms)

Figure 7 represents the CCDF of score of playerswith the energy-efficientOLSR.
Here again, the nodes C1, C2, C3, and C6 have better probabilities of finishing a
match with a good score because they are closer to the game server in term of
end-to-end delay. C7 is still the last one because it has the greater end-to-end
delay. However, curves of C4 and C5 are closer to each other, which means that
fairness between these two nodes is better than with the delay-efficient OLSR.

206 A. Kaiser, K. Boussetta, and N. Achir

Indeed, C4 and C5 do not only choose C2 and C3 respectively to reach the
game server but they balance their traffic between C1, C2 and C3 in function
of the residual energy. Thus, when they use C1 as relay, their end-to-end delay
increases. Finally, their average end-to-end delay tends to be closer and that is
why their score curves are closer. We also see on that figure that the global score
of each node is a little worse than with delay-efficient OLSR. This is due to the
fact that only the energy metric is taken into account, so sometimes the nodes
choose a path with a higher end-to-end delay. However, unfairness between C1,
C2, C3, C6; C4, C5 and C7 is not that much increased.

Figure 8 represents the CCDF of score of players with our energy-delay OLSR
(with a threshold of 150 ms). Compared with the two others figures, we can see
here that the interval between curves of C1, C2, C3, C6 and C4, C5 is reduced.
Indeed, the probabilities to reach a score at least equals to 30 at the end of a
match increased for C4 and C5 and slightly decreased for C1, C2, C3 and C6,
making the game more fair. Except C7, which is very far from the game server,
our modified OLSR routing protocol enable to increase fairness among players.

Finally, figure 9 depicts the average score of the players in function of the
routing strategy chosen. Results show that increasing the delay threshold value
leads to slightly decrease the average score. These results confirm the ones pre-
sented in figure 5. Increasing the delay threshold value improves lifetime of game
session and fairness among players but at the cost of some gaming quality (in
particular for players which are close to the game server). On the contrary, re-
ducing the delay threshold value, decreases the lifetime of game session and the
fairness among the players but improves the game quality.

 28

 28.5

 29

 29.5

 30

 30.5

 31

olsr
delay

olsr
energy-delay
thres. 50 ms

olsr
energy-delay
thres. 100 ms

olsr
energy-delay
thres. 150 ms

olsr
energy

A
ve

ra
ge

 s
co

re

Routing strategy

Average score of players versus routing strategy

Fig. 9. Average score of player versus routing strategy

An Energy-Delay Routing Protocol for Video Games 207

6 Conclusions and Future Work

In this paper, we focus on the energy consumption and the game quality of a real-
time multiplayer video game session over multihop ad hoc networks. We propose
a multimetric routing protocol based on the delay and the energy metrics. It is
specialized in client-server based applications because it takes into consideration
the position of the nodes compared with the game server.

We study the impact of a delay-efficient protocol and an energy-efficient pro-
tocol on the duration and the quality of gaming sessions. We showed that one
improves game quality but seriously decreases the network lifetime whereas the
other do the contrary. Moreover, no one of them improves the fairness among
the players.

We then compare our routing protocol with the two mentioned above. We
showed that it enables to find a compromise between game quality and energy
consumption and also increases the fairness among the players, depending on its
delay threshold parameter. Setting the latter to a value close to the maximum
existing end-to-end delay between the game server and the players seems to be
a good compromise between lifetime and quality of gaming sessions.

Our future work consist of using a dynamic delay threshold value: the game
server can compute it depending on the different end-to-end delay it has with
the players and share the computed value to all the players by using the routing
protocol signaling messages. Also, we plan to evaluate our proposition in a mobile
environment (MANET).

References

1. Clansen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR) (October
2003), http://www.ietf.org/rfc/rfc3626.txt

2. Kunz, T.: Energy-Efficient Variations of OLSR. In: International Wireless Com-
munications and Mobile Computing Conference, IWCMC (2008)

3. Mahfoudh, S., Minet, P.: An energy efficient routing based on OLSR in wireless ad
hoc and sensor networks. In: Advanced Information Networking and Applications
Workshops, AINAW (2008)

4. Benslimane, A., El Khoury, R., El Azouzi, R., Pierre, S.: Energy Power-Aware
Routing in OLSR Protocol. In: International Conference on Mobile Computing
and Wireless Communication, MCWC (2006)

5. De Rango, F., Fotino, M., Marano, S.: EE-OLSR: Energy Efficient OLSR Routing
Protocol for Mobile Ad-hoc Networks. In: Military Communications Conference,
MILCOM (2008)

6. Sanchez-Miquel, L., Vesselinova-Vassileva, N., Barcelo, F., Carbajo-Flores, P.: En-
ergy and Delay-Constrained Routing in Mobile Ad Hoc Networks: an Initial Ap-
proach. In: 2nd International Workshop on Performance Evaluation of Wireless Ad
Hoc, Sensor, and Ubiquitous Networks, PE-WASUN (2005)

7. Regatte, N., Sarangapani, J.: Optimized energy-delay routing in ad hoc wireless
networks. In: Proceedings of World Wireless Congress (2005)

8. http://ioquake3.org/

http://www.ietf.org/rfc/rfc3626.txt
http://ioquake3.org/

208 A. Kaiser, K. Boussetta, and N. Achir

9. Feeney, L.M.: An Energy Consumption Model for Performance Analysis of Routing
Protocols for Mobile Ad Hoc Networks. In: Mobile Networks and Applications
(2001)

10. Badis, H., Al Agha, K.: QOLSR Multi-path Routing for Mobile Ad Hoc Networks
Based on Multiple Metrics: Bandwidth and Delay. In: IEEE Vehicular Technology
Conference, VTC (2004)

11. Meraihi, A.N., Jacquet, P.: Le Controle du Delai dans le Protocole OLSR. Research
Repport (2003)

12. Kaiser, A., Maggiorini, D., Achir, N., Boussetta, K.: On the Objective Evalua-
tion of Real-Time Networked Games. In: Global Telecommunications Conference,
GlobeCom (2009)

13. Perkins, C.E., Royer, E.M.: Ad hoc On-demand Distant Vector Routing. In: IEEE
Workshop on Mobile Computing Systems and Applications, WMCSA (1999)

14. Kaiser, A., Achir, N., Boussetta, K.: Multiplayer Games over Wireless Ad hoc
Networks: Energy and Delay Analysis. In: International Workshop on Ubiquitous
Multimedia Systems and Applications, UMSA (2009)

	An Energy-Delay Routing Protocol for Video Games over Multihops Ad Hoc Networks
	Introduction
	Related Work
	Ad-Hoc Routing Protocols
	OLSR Overview
	Integrating Energy Consumption in OLSR
	Integrating Delay in OLSR
	Multimetric Routing Protocol

	Energy-Delay Routing Protocol
	Considered Energy and Delay Metrics
	Link Cost Function

	Experimental Settings
	Results and Analysis
	Energy Analysis
	Score and Fairness Analysis

	Conclusions and Future Work
	References

