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Abstract. This paper proposes a new method for identifying the blur model and 
its parameters to restore the image from the blurred image. This is based on the 
specific distortions caused by the distorting operator in the Fourier spectrum 
amplitude of an image. Due to the ill-posed nature of image restoration (IR) 
process, prior knowledge of natural images is used to regularize the IR problem. 
The Bayesian approach provides the means to incorporate prior knowledge in 
data analysis. The choice of prior is very important. A comparative analysis 
using various priors was studied qualitatively. The sparse and redundant prior 
method gives better results both subjectively and objectively when compared 
with other priors.  

Keywords: Image Restoration, point spread function, image deblurring.  

1 Introduction 

The goal of image restoration (IR) is to reconstruct the original scene from a degraded 
observation. Images captured in uncontrolled environments invariably represent a 
degraded version of an original image due to imperfections in the imaging and 
capturing process. This degradation can be shift-variant or shift-invariant. This paper 
focuses on shift-invariant blurs. This degradation may be classified into two major 
categories: blur and noise. Images may be blurred due to atmospheric turbulence, 
defocusing of the lens, aberration in the optical systems, relative motion between the 
imaging system and the original scene. Automatic image deblurring is an objective of 
great practical interest for the enhancement of images in photo and video cameras, in 
astronomy, in tomography, in other biomedical imaging techniques, motion tracking 
applications, etc. 

Image deblurring methods can be divided into two classes: nonblind and blind. In 
nonblind methods information about the blurring filter are known. Blind 
deconvolution refers to a class of problems when the original image is estimated from 
the degraded observations where the exact information about the degradation and 
noise is not available. The blind deconvolution problem is very challenging since it is 
hard to infer the original image and the unknown degradation only from the observed 
image. The method that is described here belongs to the latter class. In most situations 
of practical interest the blurring filter’s impulse response, also called point spread 
function (PSF), is not known with good accuracy. Since nonblind deblurring methods 
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are very sensitive to mismatches between the PSF used by the method and the true 
blurring PSF, a poor knowledge of the blurring PSF normally leads to poor deblurring 
results. In blind image deblurring (BID), not only the degradation operator is ill-
conditioned, but the problem also is severely ill-posed as the uniqueness and stability 
of the solution is not guaranteed: there are infinite number of solutions (original 
image + blurring filter) that are compatible with the degraded image. An overview of 
BID methods can be obtained from [1]. 

In some cases, one has access to more than one degraded image from the same 
original scene, a fact which can be used to reduce the ill-posedness of the problem 
[13], [1]. In [13] they presented a novel filtering method for reconstructing an all-in-
focus image or an arbitrarily focused image from two images that are focused 
differently. Karen et. al[14] proposed a novel nonparametric regression method for 
deblurring noisy images based on the local polynomial approximation (LPA) of the 
image and the intersecting confidence intervals (ICI) that is applied to define the 
adaptive varying scales (window sizes) of the LPA estimators. Lokhande, Arya and 
Gupta [16] proposed a technique for restoring the motion blurred images. 

In this work, first the blur model and its parameters are identified from the blurred 
image to restore the image. Here only Gaussian blur and Uniform blur are considered. A 
novel method has been proposed for this task. This is based on the specific distortions 
caused by the distorting operator in the Fourier spectrum amplitude of an image. A 
template based on several blurred images is constructed for both Gaussian and uniform 
blur. The Fourier spectrum amplitude of the noisy blurred image is compared with the 
templates to identify the blur model. The parameters of blur are also determined from 
the Fourier spectrum amplitude thresholded image. With this estimated blur model and 
parameter values, the blurring filter PSF is constructed, which is used for obtaining the 
image estimate (deblurred image) from the blurred image. Due to the ill-posed nature of 
IR, prior knowledge of natural images can be used to regularize the IR problem. The 
Bayesian approach [2] provides the means to incorporate prior knowledge in data 
analysis. The priors used here are Tikhonov (L2), Sobolev, Total Variational (TV) [3], 
Sparsity [4] and the Sparse and Redundant prior [5].  

The system is implemented and experiments were conducted with blur parameter 
set as 7, 9 and 11 for Uniform blur and parameters 2.5, 2.9 and 3.3 for Gaussian blur. 
The performance measures used are Peak signal-to-noise ratio (PSNR) and Structural 
similarity index measure (SSIM). From the results obtained it can be inferred that the 
sparse and redundant prior (ASDS method) gives better results. 

2 Image Deblurring Problem 

The image degradation is modeled by  

wxhy +∗=  (1) 

in which y and x are images which represent, respectively, the degraded image, the 
original image and w is the additive noise (white gaussian noise is taken); h is the PSF 
of the blurring operator, and ∗  denotes the mathematical operation of convolution. 



 Image Deblurring Using Bayesian Framework 517 

 

An alternative way of describing (1) is through its spectral equivalence. By applying 
discrete Fourier transforms to (2), the following representation is obtained: 

 WHXY += (2) 

where capitals represent Fourier transforms of y, x, h and w. . In practice the spectral 
representation is more often used since it leads to efficient implementations of 
restoration filters in the (discrete) Fourier domain. If deblurring is obtained by 
dividing the Fourier transform by the blurring filter PSF, this will lead to the 
explosion of noise.  

Prior knowledge of natural images is used to regularize the IR problem. The 
Bayesian approach [2] provides the means to incorporate prior knowledge in data 
analysis. Bayesian analysis revolves around the posterior probability, which 
summarizes the degree of one’s certainty concerning a given situation. Bayes’s law 
states that the posterior probability is proportional to the product of the likelihood and 
the prior probability. The likelihood encompasses the information contained in the 
new data. The prior expresses the degree of certainty concerning the situation before 
the data are taken. Inorder to improve the knowledge concerning a parameter x the 
present state of certainty is characterized by the probability density function p(x). 
Perform an experiment and take some data d. Bayes’s law becomes: 

( ) ( ) ( )
( )dp

xpxdp
dxp

|
| =  (3) 

p(x|d) is the posterior probability density function, or simply the posterior, because it 
effectively follows the experiment. It is the conditional probability of x given the new 
data d. The probability p(x) is called the prior because it represents the state of 
knowledge before the experiment. The quantity p(d|x) is the likelihood, which 
expresses the probability of the data d given any particular x. The likelihood is usually 
derived from a model for predicting the data, given x, as well as a probabilistic model 
for the noise. The term in the denominator p(d) may be considered necessary only for 
normalization purposes. As the normalization can be evaluated from the other terms, 
Bayes’s law is often written as a proportionality, leaving out the denominator. 

Although the posterior probability completely describes the state of certainty about 
any possible image, it is often necessary to select a single image as the ‘result’ or 
reconstruction. A typical choice is that image that maximizes the posterior 
probability, which is called the MAP (maximum a posteriori) estimate. Given the data 
y, the posterior probability of any image x is given by Bayes’s law (3) in terms of the 
proportionality 

( ) ( ) ( )xpxypyxp || α  (4) 

where p(y|x ), the probability of the observed data given x, is the likelihood and p(x ) 
is the prior probability of x. The negative logarithm of the posterior probability 
density function is given by 
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( )[ ] ( ) ( ) ( )xxxyxp Π+Λ== φ|log  (5) 

where the first term comes from the likelihood and the second term from the prior 
probability. 

The likelihood is specified by the assumed probability density function of the 
fluctuations in the measurements about their predicted values (in the absence of 
noise). For the additive, uncorrelated Gaussian noise assumed, the negative log 
(likelihood) is just half of chi-squared  

( )[ ] ( ) 2

2
2

2

1

2

1
|log hxyxxy

w

−==Λ=−
σ

χp  (6) 

which is quadratic in the residuals. The choice for the likelihood function should be 
based on the actual statistical characteristics of the measurement noise. The restored 
image can be obtained from Eq. (7). 

 )(
2

1
minargˆ 2

2
xhxyx Π+−= λ

x
(7) 

where x̂ is the restored image or image estimate and λ is the regularization 
parameter. 

A. Blur Model 

In this paper, only Gaussian and Uniform blurs are considered. 

a) Uniform Blur 

The uniform rectangular blur is described by the following function: 
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where parameter l defines the size of smoothing area. The frequency characteristics of 
Eq. (8) is shown in Fig. 1. 

Atmospheric turbulence is a severe limitation in remote sensing. Although the blur 
introduced by atmospheric turbulence depends on a variety of factors (such as 
temperature, wind speed, exposure time), for long-term exposures the point-spread 
function can be described reasonably well by a Gaussian function: 
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b) Atmospheric Turbulence Blur 
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Fig. 1. Uniform blur of size 3 x 3 and its frequency characteristics 

where 2τ  is a parameter of the PSF (the variance of the Gaussian function) (Fig. 2). 
Its Fourier transform is also a Gaussian function and its absolute values are shown in 
Fig. 2. 

 

Fig. 2. Gaussian PSF with 2=τ  and its frequency characteristics 

B. Estimation of Blurring Filter PSF 

A prior knowledge about the distorting operator and its parameters is of crucial 
importance in blurred image restoration. In this paper, a novel method is proposed for 
the identification of the type of blur and of its parameters. Only Gaussian and uniform 
blur can be identified with this method. The Fourier spectrum of an image is 
influenced by the blur. This is shown in Fig. 3. So here a method to identify the blur 
from this Fourier amplitude spectrum is proposed. After identifying the type of blur, 
its parameters are also extracted from the Fourier spectrum thresholded image. 
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                      (a)                     (b)                        (c) 

Fig. 3. Influence of blur on Fourier spectrum amplitude: (a) spectrum amplitude of image that 
is not corrupted (b) spectrum amplitude of the same image corrupted by the uniform blur (c) 
spectrum amplitude of the same image corrupted by the Gaussian blur 

1) Blur Template 

The blur template is constructed from the thresholded Fourier spectrum image of 
several blurred images. First, the Fourier spectrum amplitude of blurred images are 
thresholded to reduce the noise effect. After thresholding, a morphological operation 
[18] is performed on the resultant image. Morphological operations apply a 
structuring element to an input image, creating an output image of the same size. In 
morphological operations, the value of each pixel in the output image is based on a 
comparison of the corresponding pixel in the input image with its neighbors. By 
choosing the size and shape of the neighborhood, a morphological operation that is 
sensitive to specific shapes in the input image can be constructed. Here dilation is 
performed with the disk structuring element. A structuring element is a matrix 
consisting of only 0's and 1's that can have any arbitrary shape and size. The pixels 
with values of 1 define the neighborhood. Dilation adds pixels to the boundaries of 
objects in an image. The number of pixels added or removed from the objects in an 
image depends on the size and shape of the structuring element used to process the 
image. The value of the output pixel is the maximum value of all the pixels in the 
input pixel's neighborhood. In a binary image, if any of the pixels is set to the value 1, 
the output pixel is set to 1. The dilation is performed inorder to set the boundary 
pixels to connect all the white regions. 

  

                                  (a)                        (b) 

Fig. 4. Blur templates: (a) Uniform blur template (b) Gaussian blur template 
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Several blurred images are created for both Gaussian and Uniform blur. From each of 
these blurred images, the dilated images are constructed. The mean image of the dilated 
images of Gaussian blurred images is created and this is taken as the template for 
identifying Gaussian blur. Similarly the template for uniform blur identification is also 
constructed. Thus the templates for identifying both the blurs are available (Fig. 4), so by 
using these templates it can decide to which blur type, a new blurred image belongs. 

2) Blur Identification 

For deblurring, first the Fourier spectrum amplitude of the blurred image is taken. 
This image is thresholded and dilated. The resultant image is matched with both of the 
blur templates shown in Fig. 4. For this, the difference image is computed. i.e., the 
resultant image is subtracted from each of the blur templates. Now there are two 
difference images corresponding to the Gaussian and Uniform blur templates. The 
number of non-zero elements in these difference images is computed. The type of blur 
template which generates the difference image whose number of non-zero elements is 
minimum, is identified as the blur type. If the blurred image belongs to some other 
blur model then the number of non-zero elements in the difference image will be very 
high. But still there exists a minimum value with the two blur templates. This leads to 
incorrect blur estimate. So to avoid this, a constraint is made that this minimum value 
should be less than a constant. 

3) Blur Parameter Estimation 

For Gaussian blur parameter estimation, the radius of the center white portion of the 
thresholded and dilated image of the Fourier spectrum amplitude of the blurred image 
is used. In the case of Gaussian blur, variance is the blur parameter. Variance has 
influence over the radius of the center white portion of the dilated image. i.e., the 
radius corresponding to a range of variance values will be different. Once the radius is 
computed and if it is found less than a specific value, then the variance value 
corresponding to that will be computed as follows: 

( ) ( )( )
( ) ancelower_varival*0.5 variance

uslower_radiusupper_radiuslower_radiradius1val

+=
−−−=

 (10) 

The radius and variance range is given in Table 1. For example, if radius > 50, the 
variance is computed as: 

val = 1 - ((radius – 50)/(61 - 50)) 
variance = (0.5 * val) + 1 

For uniform blur, the breadth and height of the center white portion is calculated and 
minimum of it is taken as length. If length is in the range or less than a specific value, 
then the kernel size corresponding to that is selected, shown in Table 2. With this 
estimated blur type and blur parameter, the blurring filter PSF can be constructed as 
specified in section II.A. This estimated PSF is used for deblurring the image. Image 
deblurring in Bayesian framework using different priors are explained in the 
following section. 
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3 Priors 

The choice of prior is very important. Five priors (Tikhonov (L2), Sobolev, Total 
variational (TV), Sparse, Sparse and redundant prior) are taken here. 

A. Tikhonov and Sobolev Priors 

The Tikhonov prior is also known as the L2-norm. This prior is based on the fact that 
the energy present in images is bounded, but this is not the case with noise. The image 
estimate (deblurred image) can be obtained from the Eq. (11). 

2
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λ+−=  (11) 
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Since the filtering is diagonalized over Fourier, the solution is simply computed 
over the Fourier domain as: 
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where )(ˆ ωX , )(ωY , and )(ωH  denotes the Fourier transform of restored 

image, blurred image and blurring filter PSF. λ is the regularization parameter. 
L2 regularization does not perform any denoising. So to remove noise, high 

frequencies in the blurred image can be penalized using the Sobolev prior. The prior 
is as follows: 
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where 
2

)( ωω =S .  

Since this prior can be written over the Fourier domain, the solution to the 
deblurring with Sobolev prior can be simply computed with the Fourier coefficients: 
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Table 1. Gaussian parameter 
selection 
 

Radius Variance 

range 

>= 61 1 

>= 50 <= 1.5 

>= 41 <= 2 

>= 36 <= 2.5 

>= 32 <= 3 

>= 29 <= 3.5 

>= 25 <= 4 

 >= 23 <= 4.5 

>= 21 <= 5 

otherwise >= 5.5 

 Table 2. Uniform parameter selection 

Length Kernel size 

taken 

> 60 7 

Between 49 and 55 9 

Otherwise 11 
 

 
The lena image is blurred using Gaussian blur of variance 2.3. The blurred lena 

image is deblurred using the L2 and Sobolev priors and the resultant image is shown 
in Fig. 5. The blur estimated is Gaussian with variance 2.27, the blurring filter 
constructed using this is used to deblur the image.  

B. Total Variation (TV) Prior 

Sobolev regularization perform a denoising but also tends to blur the edges. The TV 
prior [3] is able to better reconstruct sharp edges. It reads: 

∑ ∇=Π
i

ixx )()(  (15) 

With respect to the Sobolev energy, it simply measure the L1-norm instead of the 
L2-norm, thus dropping the square in the functional. L1-norm is the summation of 
absolute values of all the image intensity elements. Unfortunately, the TV 
functional )(xΠ  is not a smooth function of the image x. It thus requires the use of 

advanced convex optimization method to be minimized for regularization. An 
alternative is to replace the absolute value by a smooth absolute value. The smoothed 
TV norm reads: 
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 ∑ +∇=Π
i

ixx 22
)()( ε  (16) 

When ε  gets close to zero, the smoothed energy becomes closer to the original total 
variation, but the optimization becomes more difficult. When ε  becomes large, the 
smoothed energy becomes closer to the Sobolev energy, thus blurring the edges. 
Unfortunately, this prior is non-quadratic, and cannot be expressed over the Fourier 
domain. So an iterative scheme such as a gradient descent is used to approximate the 
solution.  

For deblurring, initially, the deblurred image denoted by x is initialized with the 
value of blurred image. By using the gradient descent optimization method, the value 
of x is updated in each iteration. Gradient descent is implemented in TV with the 
following equation.  

( ) ( )( ))()()()1( ** kkkk xGradyxhhxx Π+−−=+ λγ  (17) 

where )1( +kx  and )(kx denotes the value of x in the current and previous iterations 

respectively. This process continues until the stopping criteria are met. Here, the 
number of iterations is fixed which is considered as the stopping criteria. The 
deblurred image obtained with TV prior of blurred lena image is shown in Fig. 5(e).  

C. Sparsity Prior 

Sparsity prior[4] considers a synthesis-based regularization, that compute a sparse set 

of coefficients mma )( *  in a frame Ψ= ( )mmψ  , i.e., wavelet transform [19] is applied 

over the blurred image. After applying the wavelet transform, the energy will be 
present in lower number of coefficients (low-low band coefficients are taken). The 
L1-norm of the sparse set of coefficients is taken as the prior. The deblurred image x 
can be obtained from 

1

2
,*

2

1
minarg mx xxhyx ψλ+−=∗  (18) 

where 
1

, mx ψ  = ∑
m

mx ψ, , y – the blurred image and h – blurring filter PSF. 

To solve this non-smooth optimization problem, iterative soft thresholding is used. It 

computes a series of images )(lx  defined as 

 ( )( )yxhhxSx lll −−=+ )()()1( **τψ
τλ  (19) 

where λ is a constant which should be adapted to noise. For )(lx  to converge to a 
solution of the problem, the gradient step size should be chosen as   
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hh*

2<τ  

Total number of iterations is set to 1000. Soft thresholding is performed for denoising. 
The deblurred image of blurred lena image using this sparsity prior is shown in Fig. 
5(f).  

D. Sparse and Redundant Prior 

This prior considers that the contents can vary significantly across different images or 
different patches in a single image. The adaptive sparse domain selection (ASDS) 
method [5] uses this prior. This method learns various sets of bases from a pre-
collected dataset of example image patches, and then for a given patch to be 
processed, one set of bases are adaptively selected to characterize the local sparse 
domain. Consider the Eq (20). 

 αΦ=x (20) 

where Φ  = [ ]mφφφ ,...,, 21 is a given dictionary of atoms (i.e., code set), α – the set 

of coefficients where most of coefficients are close to zero and x, the deblurred 
image. With the sparsity prior, the representation of x over Φ can be estimated from 
its observation y by solving the following L0-minimization problem:  

{ }
0

2

2
minargˆ αλαα

α
+Φ−= Hy  (21) 

where the L0-norm counts the number of nonzero coefficients in vector α. Once α̂  

is obtained, x can then be estimated as α̂ˆ Φ=x . The L0-minimization is an NP-hard 
combinatorial search problem, and is usually solved by greedy algorithms. Set of 
compact sub-dictionaries from high quality example image patches are learned using 
the principal component analysis (PCA) technique. For an image patch to be coded, 
the best sub-dictionary that is most relevant to the given patch is selected.  

Suppose that { }kφ , k = 1,2, …,K,  is a set of K orthonormal sub-dictionaries. Let 

x be an image vector, and xi = Rix, i=1,2,…,N, be the ith patch (size: 7 × 7 ) vector of 
x, where Ri is a matrix extracting patch xi from x. For patch xi, suppose that a sub-

dictionary 
ikφ  is selected for it. Then, xi can be approximated as iki i

x αφ=ˆ , 

Ti ≤
0

α via sparse coding. The whole image x can be reconstructed by averaging 

all the reconstructed patches ix̂  , which can be mathematically written as: 
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The deblurred image of blurred lena image using the ASDS is shown in Fig. 5(g).  

     

     (a)                   (b)                  (c)               (d)                 (e) 

  

                                      (f)                (g)              

Fig. 5. L2 & Sobolev Restored images (a) Original Lena image (b) Gaussian blurred image 
with variance 2.5 (c) L2 (d) Sobolev (e) TV (f) Sparsity (g) ASDS 

4 Results and Discussion 

Experiments were conducted on gray scale images [20], color images [20] and 
satellite images. The performance of the restoration process is quantified using Peak 
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The PSNR and 
SSIM values obtained for 6 gray scale images blurred with Uniform blur of length 
9are shown in tables 3 - 4. The blur is estimated as Uniform with blur parameter 9. 
The PSNR and SSIM values obtained for 6 gray scale images blurred with Gaussian 
blur of variance 2.5 are shown in tables 5 - 6. The blur is estimated as Gaussian. The 
blur parameter obtained are shown in Table. 5. Naturally blurred satellite image due 
to atmospheric turbulence is deblurred where the blur type estimated as Gaussian and 
parameters estimated are 1.3. The deblurred satellite image using various priors is 
shown in Fig. 6.  

      

      (a)             (b)             (c)             (d)              (e)              (f) 

Fig. 6. Restoration performed on blurred raw_moon1 image (a) original blurred raw_moon1 
image (b) L2 restored (c) Sobolev restored (d) TV restored (e) Sparsity (f) ASDS  
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Table 3. Table showing PSNR values in dB of the blurred and restored images blurred with 
Uniform kernel of size 9x9 

Name Blurred L2 Sobolev TV Sparsity ASDS 
boat 20.37 23.91 24.45 24.60 26.02 29.95 

cameraman 19.34 22.72 23.04 23.45 25.48 29.26 
lena 21.32 24.12 24.54 24.67 25.79 29.77 

cactus 20.33 23.51 23.89 23.69 25.08 26.06 
building 18.56 21.27 21.49 21.36 23.67 25.32 
animal 21.76 24.63 24.96 24.72 25.84 27.09 

Table 4. Table showing SSIM values of the restored images blurred with Uniform kernel of 
size 9x9 

Name L2 Sobolev TV Sparsity ASDS 
boat 0.575 0.578 0.578 0.582 0.855 

cameraman 0.604 0.606 0.608 0.612 0.922 
lena 0.588 0.591 0.591 0.593 0.822 

cactus 0.572 0.574 0.574 0.577 0.782 
building 0.574 0.577 0.577 0.583 0.819 
animal 0.609 0.612 0.612 0.614 0.770 

Table 5. Table showing PSNR values in dB of the blurred and restored images blurred with 
Gaussian blur of standard deviation 2.5 

Name Blurred 
Estimated 
Variance L2 Sobolev TV Sparsity ASDS 

boat 21.43 2.36 23.53 24.13 24.10 25.78 26.88 
cameraman 20.39 2.34 22.42 22.92 22.85 25.25 25.58 

lena 22.24 2.3 24.35 24.69 24.85 25.84 28.48 
cactus 21.06 2.4 23.39 23.92 23.70 25.29 25.66 

building 19.33 2.5 20.90 21.34 21.11 23.07 23.45 
animal 22.54 2.4 24.32 24.85 24.68 26.06 26.45 

Table 6. Table showing SSIM values of the restored images blurred with Gaussian blur of 
standard deviation 2.5 

Name L2 Sobolev TV Sparsity ASDS 
boat 0.574 0.577 0.577 0.579 0.779 

cameraman 0.603 0.606 0.606 0.608 0.855 
lena 0.588 0.591 0.591 0.593 0.797 

cactus 0.572 0.574 0.574 0.576 0.717 
building 0.574 0.577 0.577 0.581 0.751 
animal 0.609 0.612 0.612 0.613 0.727 
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5 Conclusion 

In this paper, we proposed a new method for estimating the blur type and its 
parameter. The blurring filter PSF constructed from this estimation is used for 
deblurring the images. Image restoration is performed in the Bayesian framework 
where L2, Sobolev, Total variation, sparse, sparse and redundant priors are used. The 
performance measures used are Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity Index (SSIM). From the deblurred images obtained and performance 
measured used, it can infer that the sparse and redundant prior gives better result. 
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