

N. Meghanathan et al. (Eds.): CCSIT 2012, Part III, LNICST 86, pp. 36–48, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Minimizing Boolean Sum of Products Functions Using
Binary Decision Diagram

Debajit Sensarma1, Subhashis Banerjee1, Krishnendu Basuli1,
Saptarshi Naskar2, and Samar Sen Sarma3

1 West Bengal State University, West Bengal, India
2 Sarsuna College, West Bengal, India

3 University Of Calcutta, West Bengal, India
{mail.sb88,debajit.sensarma2008,

Krishnendu.basuli,sapgrin}@gmail.com,
Sssarma2001@yahoo.com

Abstract. Two-level logic minimization is a central problem in logic synthesis,
and has applications in reliability analysis and automated reasoning. This paper
represents a method of minimizing Boolean sum of products function with bi-
nary decision diagram and with disjoint sum of product minimization. Due to
the symbolic representation of cubes for large problem instances, the method is
orders of magnitude faster than previous enumerative techniques. But the quali-
ty of the approach largely depends on the variable ordering of the underlying
BDD. The application of Binary Decision Diagrams (BDDs) as an efficient
approach for the minimization of Disjoint Sums-of-Products (DSOPs). DSOPs
are a starting point for several applications.

The use of BDDs has the advantage of an implicit representation of terms.
Due to this scheme the algorithm is faster than techniques working on explicit
representations and the application to large circuits that could not be handled so
far becomes possible. Theoretical studies on the influence of the BDDs to the
search space are carried out. In experiments the proposed technique is com-
pared to others. The results with respect to the size of the resulting DSOP are as
good or better as those of the other techniques.

Keywords and Phrases: Binary Decision Diagram, DSOP, Unate Function,
Binate Function.

1 Introduction

A DSOP is a representation of a Boolean function as a sum of disjoint cubes. DSOPs
are used in several applications in the area of CAD, e.g. the calculation of spectra of
Boolean functions or as a starting point for the minimization of Exclusive-Or-Sum-
Of-Products (ESOPs). In some techniques for minimization of DSOPs have been
introduced. They are working on explicit representations of the cubes and therefore
are only applicable to small instances of the problem.

BDDs in general are an efficient data structure for presenting and manipulating the
Boolean functions. They are well-known and widely used in logic synthesis and

 Minimizing Boolean Sum of Products Functions 37

formal verification of integrated circuits. Due to the canonical representation of Boolean
functions they are very suitable for formal verification problems and used in a lot of
tools to date [14, 15, 16].BDDs are well-suited for applications in the area of logic syn-
thesis, because the cubes in the ON-set of a Boolean function are implicitly represented
in this data structure. A hybrid approach for the minimization of DSOPs relying on
BDDs in combination with structural methods has recently been introduced in. It has
been shown that BDDs are applicable to the problem of DSOP minimization [5].

Given a BDD of a Boolean function, the DSOP can easily be constructed: each
one-path [6], i.e. a path from the root to the terminal 1 vertex, corresponds to a cube
in the DSOP, and moreover, different one-paths lead to disjoint cubes. For the con-
struction of the BDD the variables of the Boolean function are considered in a fixed
order. The permutation of the variables largely influences the number of one-paths in
the BDD and thus the number of cubes in the corresponding DSOP. Additionally, the
importance of choosing a good variable order to get a small DSOP has theoretically
been supported.

1.1 Motivation

The motivation of this project is to minimize the boolean sum of product function by
finding the minimal irridundant expression. Here Binary Decision Diagram(BDD) is
used for finding Disjoint cubes first, because BDD is the compact representation of a
boolean function, but it highly depends on variable ordering. Then this disjoint cubes
are minimizes to get the minimal expression. In Quine-McCluskey method, it can be
shown that for a function of n variables the upper bound on the number of prime im-
plicantes is 3n/n. In this project a heuristic algorihm is used to minimize the upper
bound of the prime implicant generation and it gives the near optimal solution.

1.2 Binary Decision Diagrams

A BDD is a directed acyclic graph Gf = (V, E) that represents a Boolean function f: Bn
→ Bm. The Shannon decomposition g = xigxi + xi’gxi’ is carried out in each internal
node v labeled with label (v) = xi of the graph, therefore v has the two successors then
(v) and else (v). The leaves are labeled with 0 or 1 and correspond to the constant
Boolean functions. The root node root (Gf) corresponds to the function f. In the fol-
lowing, BDD refers to a reduced ordered BDD (as defined in [8]) and the size of a
BDD is given by the number of nodes.

Definition: A one-path in a BDD Gf = (V, E) is a path
p = (v0 ,…, vl-1, vl);
vi € V; (vi, vi+1) є E
with v0 = root(Gf) and label(vl) = 1. p has length l + 1.
P1 (Gf) denotes the number of all different one-paths in the BDD Gf.

1.3 BDD and DSOP

Consider a BDD Gf representing the Boolean function f(x1,…, xn). A one path
p = (v0 ,…, vl) of length l + 1 in Gf corresponds to an (n - l)-dimensional cube that is a
subset of ON(f)1. The cube is described by:

38 D. Sensarma et al.

mp =n li for i=0…l-1; where
li = label (vi); if vi+1 = else (vi)
 label (vi); if vi+1 = then (vi)

Two paths p1 and p2 in a BDD are different if they differ in at least one edge. Since
all paths originate from root (Gf), there is a node v where the paths separate. Let label
(v) = xi. Therefore one of the cubes includes xi, the other xi. Hence, the cubes mp1
and mp2 are disjoint.

Now the DSOP can easily be built by summing up all cubes corresponding to the
one-paths.

Remark 1 : Let Gf be a BDD of f(x1 ,…, xn) and M1 be the set of one-paths in Gf .
Then Gf represents the DSOP

 ∑ mp where p є M1

where mp is the cube given above.
From this it is clear that the number of cubes in the DSOP represented by Gf is

equal to P1(Gf). Thus, as opposed to the usual goal of minimizing the number of
nodes in a BDD, here the number of one-paths is minimized. Known techniques to
minimize the number of nodes can be used to minimize the number of paths by
changing the objective function. One such technique is sifting. A variable is chosen
and moved to any position of the variable order based on exchange of adjacent va-
riables. Then it is fixed at the best position (i.e. where the smallest BDD results), af-
terwards another variable is chosen. No variable is chosen twice during this process.

2 Terms Related to Sop Minimization

Unite function: A function that is monotonically increasing or decreasing in each of
its variable is called unite function.

Binate function: a function that is not unate. This can also be used to mean a cover of
a function that is not unate.

Canonical cover/solution: the SOP cover of a function that contains only minterms,
and thus has not at all been reduced.

Cube: a one-dimensional matrix in the form of an implicant. Two cubes are said to be
Disjoint if their intersection of the set of minterms is null.The intersection is the oper-
ation of conjunction (i.e. the Boolean AND operation).

Espresso algorithm: an algorithm that minimizes SOP functions.

Essential prime implicant: a prime implicant that the cover of a function must con-
tain in order to cover the function

Implicant: an ANDed string of literals. It is a term in an SOP function.

Literal: an instance of a boolean variable. It may be the variable complemented, un-
complemented, or ignored (don’t-care). In matrix representations or the Q-M algo-
rithm, it may have a value of 0, 1, or 2/X, corresponding to complemented, uncom-
plemented, and don’t-care, respectively.

 Minimizing Boolean Sum of Products Functions 39

Matrix representation of a function or implicant: The rows of a two-dimensional
matrix representation of a function are the implicants of the function. The columns of a
one-dimensional matrix representation of an implicant are the literals of the implicant.
Minterm: an implicant that contains exactly one literal for each variable. It is not at
all simplified.

Monotone decreasing: A function is monotone decreasing in a variable if changing
the value of the variable from 0 to 1 results in the output of the function being 0.

Monotone increasing: A function is monotone increasing in a variable if changing
the value of the variable from 0 to 1 results in the output of the function being 1.

Prime implicant: an implicant that cannot be further reduced by adjacency

Quine-McCluskey (Q-M) algorithms: two algorithms that minimize a boolean func-
tion.The first algorithm finds all prime implicants, and the second algorithm elimi-
nates nonessential prime implicants.

3 Proposed Algorithm

In this method at first from the given truth table suitable variable order is chosen
based on Shannon entropy measurement, then binary decision diagram is made consi-
dering this variable order. After that disjoint cubes are calculated by following the 1-
path of the BDD. Then from that the covering matrix is created where columns
represent the variables and row represents the applicants or disjoints cubes. Then
selecting the most binate variables and by unite simplification the ultimate minimized
sop function is obtained.

3.1 Algorithm

Step 1: Generation of truth table.

Step 2:Variable reordering using Shannon entropy measure-ment [2,8] and create
Binary Decision Diagram[7,13,14].

Step 3: Finding Disjoint Cubes from Binary decision Diagram [5].

Step 4: Disjoint cube minimization using Binate Covering with Recursion and Unate
Simplification Method [11,12].

3.2 Explanation

Step 1:
The truth table is generated from given Boolean expression.
Step2:
Choosing right variable order is very important for constructing Binary Decision
Diagram, because if bad variable order is chosen then number of 1-paths can be
increased; even number of nodes in the BDD may be increased exponentially.

The measures of a variable’s importance are based on information theoretic
criteria, and require computation of entropy of a variable. Entropy measures can be

40 D. Sensarma et al.

quite effective in distinguishing the importance of variables. It is well known that a
central problem in using OBDD is the severe memory requirements that result from
extremely large OBDD size that arise in many instances.OBDD sizes are unfortunate-
ly very sensitive to the order chosen on input variables. Determining the optimal order
is a co-NP complete problem [8].Variable ordering heuristics can be classified as
either static or dynamic approaches. A static approach , analyzes the given cir-
cuit/function and, based on its various properties, determines some variable order
which has a high “Probability” of being effective. In dynamic approach to compute
variable ordering, one starts with an initial order, which is analyzed and permuted at
internal points in the circuit/function, such that some cost function is minimized.

Step 3:
In this step Disjoint Cubes from Binary decision Diagram are found by following
the 1-path [5].

Step 4:
Cover matrix is found from the resultant disjoint cubes and this is simplified using
Unate Recursive Paradigm [12].

4 Illustration with an Example

f(a,b,c,d)=∑(1,5,6,9,12,13,14,15)

Step1: Given the truth table.

 a b c d f
 0 0 0 0 0
 0 0 0 1 1
 0 0 1 0 0
 0 0 1 1 0
 0 1 0 0 0
 0 1 0 1 1
 0 1 1 0 1
 0 1 1 1 0
 1 0 0 0 0
 1 0 0 1 1
 1 0 1 0 0
 1 0 1 1 0
 1 1 0 0 1
 1 1 0 1 1
 1 1 1 0 1
 1 1 1 1 1

With this variable order the Binary Decision Diagram is:

 Minimizing Boolean Sum of Products Functions 41

 1

 0

 0 1 1 0

a

b b

c

d d

c

Number of nodes=7
Step 2: Variable ordering by calculating Entropy and choosing most ambiguous
variables.

I(a,0)=0.954
I(a,1)=0.954
E(a)=0.954
I(b,0)=0.811
I(b,1)=0.811
E(b)=0.811 Select ‘b’ as the first splitting variable.
I(c,0)=0.954
I(c,1)=0.954
E(c)=0.954
I(d,0)=0.954
I(d,1)=0.954
E(d)=0.954
For b=0 the truth table is:
 a c d f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

I(a,0)=0.811
I(a,1)=0.811
E(a)=0.811
I(c,0)=1
I(c,1)=0

42 D. Sensarma et al.

E(c)=0.5
I(d,0)=0
I(d,1)=1
E(d)=0.5

For b=1 the truth table is:

a c d f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

I(a,0)=1
I(a,1)=0
 E(a)=0.5 Select ‘a’ as the next splitting variable.
I(c,0)=0.811
I(c,1)=0.811
E(c)=0.811
I(d,0)=0.811
I(d,1)=0.811
E(d)=0.811

If we proceed like this we come up with the variable order->b,a,c,d
With this variable order the Binary Decision Diagram is:

 1

 0

0 1 1 0

b

a

c

d d

c

Number of nodes=6
Step 3: Finding Disjoint Cubes from Above Binary Decision Diagram.

The Disjoint Cubes are: ab + a’bcd’+ b’c’d + a’bc’d

 Minimizing Boolean Sum of Products Functions 43

Step 4: Binate Covering with Recursion.
The Covering Matrix is:

 a b c d
 ab 1 1 2 2
 a’bcd’ 0 1 1 0
 b’c’d 2 0 0 1
 abc’d 0 1 0 1
Case 1: Binate Select.

 (Most binate variable)
b’ = (2022) b= (2122)

2201 1222
0210 0201

 (Most binate variable)

 a’ =(0222) a=(1222)

 2222 2210
 2201
 (Most binate variable)

 c ’=(2202) c=(2212)

 2221 2220

b

a

c

Case 2: Merge.

 2221 2220
 c’ c

 2201

 2210 2222
 a’ a

 2201
 2210
 1222 2201
 b’ b

 2201
 2110
 1122

c

a

b

44 D. Sensarma et al.

cd

After simplification the expression is:
 ab + c’d + bcd’.
Karnaugh Map Representation:

5 Result

This program is done on Intel Pentium 4 CPU, 2.80 GHz and 256 MB of RAM and
with Visual c++ 6.0 standard edition. The result is presented here with the following
figures.

Fig. 1. growth of Binary Decision Diagram. Here X-axis represents the number of inputs and
Y-axis represents the required time.

Here growth of the creation of Binary decision diagram with proposed method is
shown with respect to 6 variables.

Here comparison of creation of number of disjoint cubes and time taken to create
the disjoint cube of Espresso Logic Minimizer and the proposed method is done with
respect to 4 variables.

Here number of literals and terms before and after minimizing the given Boolean
sum-of-product function is given with respect to 4,5 and 6 variables with the Pro-
posed method.

ab

00 01 11 10

00 1

01 1 1 1 1

11 1 1

10 1

 Minimizing Boolean Sum of Products Functions 45

 (a) (b)

Fig. 2. (a) Comparison of number of disjoint cubes generated by ESPRESSO heuristic logic
minimizer and the Proposed method. X-axis represents the number of variables and Y-axis
represents the number of disjoint cubes. (b) Comparison of time taken to generate disjoint
cubes by ESPRESSO heuristic logic minimizer and the Proposed method. X-axis represents the
number of variables and Y-axis represents the time.

46 D. Sensarma et al.

Fig. 3. Comparison of the number of literals and terms before simplification and generated by
above program for 4,5 and 6 variables

Fig. 4. Comparison of number of Prime implicantes generated by Quine-McCluskey algorithm
and the Proposed method for 7, 8 and 9 variables. Here QM stands for Quine-McCluskey

Prime implicants generated by the Quine-McCluskey procedure and the Proposed
method is compared here with respect to 7,8 and 9 variables.

 Minimizing Boolean Sum of Products Functions 47

5 Conclusions

An approach based on Binary Decision Diagram and Binate covering algorithm to
minimize the Boolean SOP function with DSOP representation of a Boolean function
was presented. It is completely based on heuristics and gives the near optimum
solution. But this procedure will only work for single output and completely specified
functions and gives the near optimal solution. Whether it will work for incompletely
specified function and multiple-output function is not tested yet.

6 Future Works

1.Generation of all possible minimal covers or
minimal expressions.

2.Compare with ESPRESSO logic minimizer.
3.Test whether it will work for incompletely specified function and multiple-output
functions.

References

[1] Yang, C., Ciesielski, M.: BDD-Based Logic Optimization System. IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems 21(7), 866–876 (2002)

[2] Popel, D.V.: Towards Efficient Calculation of Informationmeasures for Reordering of
Binary Decision Diagrams. Computing Research Repository - CORR, cs.AR/0207 (2002)

[3] Knuth, D.E.: The Art of Computer Programming, vol. 4
[4] Swamy, G.M.: An Exact Logic Minimizer Using Implicit Binary Decision Diagram

Based Methods. In: ICCAD 1994 Proceedings of the 1994 IEEE/ACM International Con-
ference on Computer-Aided Design (1994)

[5] Fey, G., Drechsler, R.: Utilizing BDDs for Disjoint SOP Minimization. In: 45th IEEE In-
ternational Midwest Symposium on Circuits and Systems (2002)

[6] Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G.,
Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.): EvoWork-
shops 2004. LNCS, vol. 3005. Springer, Heidelberg (2004)

[7] Andersen, H.R.: An Introduction to Binary Decision Diagrams. Lecture Notes, Technical
University of Denmark (October 1997)

[8] Jain, J., Bitner, J., Moundanos, D., Abraham, J.A., Fussell, D.S.: A new scheme to com-
pute variable orders for binary decision diagrams. In: Proceedings of the Fourth Great
Lakes Symposium on, Design Automation of High Performance VLSI Systems, GLSV
1994, March 4-5, pp. 105–108 (1994)

[9] Hilgemeier, M., Drechsler, N., Drechsler, R.: Minimizing the number of one-paths in
BDDs by an evolutionary algorithm. In: Congress on Evolutionary Computation (2003)

[10] Nosrati, M., Hariri, M.: An Algorithm for Minimizing of Boolean Functions Based on
Graph DS. World Applied Programming 1(3), 209–214 (2011)

[11] Coudert, O.: On solving Covering Problems. In: Proc. of 33rd DAC, Las Vegas (June
1996)

48 D. Sensarma et al.

[12] Brayton, R.K.: Logic minimization algorithms for VLSI synthesis
[13] Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transac-

tions on Computers C-35-8, 677–691 (1986)
[14] Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.

ACM Computing Surveys (1992)
[15] Bryant, R.E.: Binary decision diagrams and beyond: Enabeling techniques for formal ve-

rification. In: Int’l Conf. on CAD, pp. 236–243 (1995)
[16] Drechsler, R., Becker, B.: Binary Decision Diagrams – Theory and Implementation.

Kluwer Academic Publishers (1998)
[17] Kohavi, Z.: Switching and Finite Automata Theory

	Minimizing Boolean Sum of Products Functions Using
Binary Decision Diagram
	Introduction
	Motivation
	Binary Decision Diagrams
	BDD and DSOP

	Terms Related to Sop Minimization
	Proposed Algorithm
	Algorithm
	Explanation

	Illustration with an Example
	Result
	Conclusions
	References

