
N. Meghanathan et al. (Eds.): CCSIT 2012, Part III, LNICST 86, pp. 411–422, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Self-configurable Processor Schedule Window Algorithm

A. Prasanth Rao1, A. Govardhan2, and P.V.V. Prasad Rao3

1 Reasearch Scholar, Dept., of Computer Science and Engineering, JNTUH, Hyderabad
2 Professor, Dept., of Computer Science and Engineering, JNTUH, Hyderabad

3 Program Manager, SETU Software Systems Pvt.. Ltd., IIIT Gouchibowli, Hyderabad
adirajupppy@yahoo.com, govardhan_cse@yahoo.co.in,

prasad@setusoftware.com

Abstract. Most periodic tasks are assigned to processors using partition
scheduling policy after checking feasibility conditions. A new approach is
proposed for scheduling aperiodic tasks with periodic task system on
multiprocessor system with less number of preemptions. Our approach is self-
configurable and adjusts the periodic tasks to the processor such that different
types of tasks are scheduled without violating deadline constraints. The new
approach proves that when all different types of tasks are scheduled, it leads to
better performance.

Keywords: Scheduling, feasibility, multiprocessor, deadline, synchronous, free
slots, sporadic task system.

1 Introduction

Real-Time systems are specifically designed for situations where the correctness of an
operation depends not only upon its logical correctness, but also upon the time at
which it is performed. Generally real time applications are event driven and the task
should complete its execution within the deadline and so it should be completely
determinable. Events can be classified according to their arrival pattern. In this
context, events can be periodic if their arrival time is a constant or aperiodic when it is
not. A task set is said to be synchronous if all offsets are equal to zero and the
deadline of the task is equal to or less than its period. The polynomial test has been
proposed by Baruah et al [3]. If the deadlines are equal to period, a simple polynomial
test has been proposed by Liu and Layland in their seminal work [1]. A task set is
asynchronous if the task arrival time is not known in advance and for each
asynchronous set a synchronous set is identified. A task set can be categorized as
having implicit deadline, constraint deadline or arbitrary deadlines. An asynchronous
task is one which has an arbitrary deadline and should be modeled simply as a
synchronous set [13].

A task set is said to be have an implicit deadline if ∀i, taski, di=pi: For constraints
deadline the task set has ∀i, taski, di≤pi. Finally for a task set with arbitrary deadlines
no such relation stated. However, in general there are other types of tasks whose
arrival times are not known in advance and these tasks are scheduled together with the
periodic tasks set.

412 A. Prasanth Rao, A. Govardhan, and P.V.V. Prasad Rao

There are many partitioned scheduling algorithm[2,3,4,5,6,7] which is used to
schedule periodic tasks [8,9]. However using partitioned scheduling algorithm, tasks
are allocated to processors and each processor is allocated certain fixed number of
execution units. The main disadvantage of partitioned scheduling algorithm is that the
processor is not fully utilized. This means that there are certain execution time units
available and these units are fragmented in the processor. To overcome the
disadvantage of partitioned scheduling algorithm, we have to make use of unused
cycles properly. So other types of tasks such aperiodic tasks, constrained deadline or
arbitrary deadline are scheduled with periodic task sets which improve the overall
performance of the system.

There are certain free slots available at different intervals of time and any one of
the free slots may accommodate only a few execution time units. The individual
fragments may not be large enough, so we can combine all these small fragments to
execute a much bigger task. The size of these free slots is configurable with a
parameter, which controls the free cycles availability and allocation of dynamic tasks
to individual processor.

The main objective of this chapter to develop strategies to schedule aperiodic tasks
with periodic tasks and the same model can be extended to schedule a sporadic task
system.

 This paper is organized as follows. Section 2 describes Theoretical Concepts
Configuration Parameter presented in Section 3. Section 4 describes Reserving space
for newly created tasks Sections 5 demonstrate Results and Discussions. Finally, the
Conclusion and future scope are given in Section 6.

2 Theoretical Concepts

A periodically sampled control system which is modeled on time triggered approach.
Time-Triggered tasks (τ) are characterized by a quadruple (Ø, p, e, d). The periodic
task system involves execution of independent task system Γ = {τ1, τ2, τ3, τ4… τn},
where each task τj ∈ Γ. The period task generates a sequence of jobs at each integral
multiple of period pi. Each job must execute in at most ei execution units of time and
should complete before its relative deadline di(equals to period of task). The first job
of the given task is released at phase Ø (offset). Since periodic task system generates
an infinite sequence of jobs with the kth job arriving at an instance Øi + (k-1) pi ∀i=1,
2, 3,…, k and each job should complete before Øi + (k) pi . Before presenting finding
free-slots algorithm we need to define Basic Terminology.

2.1 Basic Terminology

In this section we look at definitions which help us to understand the partition
parameter and using this parameter we can dynamically configure processor window.

Definition 2.1 (Total Execution Period Pmax). The total execution time units of a
given task system Γ1 is equal to or less than total execution period (Pmax), then the task
system is feasible on uniprocessor system.

 Self-configurable Processor Schedule Window Algorithm 413

),.................,,.........,,max(321max nppipppP = (2.1)

Definition 2.2 (Maximum Execution Units emax). emax is maximum execution units
which is defined among a set of n tasks.

)e ..., ,e ,e ,max(e e m321max = (2.2)

Definition 2.3. (Configuration Parameter δ). The configuration parameter δ divides
the time axis into two windows. One window is used to schedule periodic task sets
and the other window is used to schedule aperiodic task sets.

Definition 2.4 (Scheduling Condition). The general scheduling condition given
RMCT [2]

[]
max(P)11maxmax

e + ep / P ≥P
 (2.3)

Using the above definitions we can understand partition condition which divides
processor window into two parts. Before defining partition condition we need to
explain about task execution modeling in next section.

2.2 Task Execution Modeling

A scheduling algorithm provides a set of rules that determine the processor(s) to be
used and tasks to be executed at any particular point of time. There many scheduling
algorithm were presented in the literature [7,10,11] and also scheduling heuristics
[8,13] developed. These entire algorithms are allocating tasks to the processors using
partition scheduling policy which results some unused free slots on each processor.
Also we configure these unused free slots to schedule different type of tasks together.
For further improvement in resource utilization if we make use of these free slots to
schedule dynamic tasks.

2.3 Scheduling Conditions

The schedulable condition for task sets scheduled under RM is based on utilization of
a processor and period oriented. All scheduling conditions which were mentioned
above are oriented towards utilizations i.e. the relative value of task utilization was
taken into account. The performance of these algorithms is limited because they fail
to consider the relative values of task periods. There are many period oriented
scheduling algorithms were developed RMGT [8] RMCT [2] and utilization based
algorithms [3][8].

The Rate Monotonic Critical Tasks (RMCT) algorithm is developed based on the
maximum execution period (Pmax) and assumes all tasks in a queue are arranged with
decreasing period. The total execution units (T) of all incoming periodic tasks can be
computed and the RMCT may allocate maximum possible tasks to given processor till
condition 2.4 satisfied. The RMCT Algorithm [2] identifies the number of processors
and also total execution time units (T) given to each processor. The δ in the if loop
known be configuration parameter.

414 A. Prasanth Rao, A. Govardhan, and P.V.V. Prasad Rao

If (T>δPmax) then
{ increment processor index. (2.4)

else
 { allocates to same processor.

 }

In the following section we show how this condition in 2.4 [2] helps to regulate the
task being scheduled.

3 Configuration Parameter

Let us consider task system Γ1 {τ1, τ2, τ3 } and τ1=(5,2), τ2=(7,1), τ3=(10,4). Apply
RMCT [2] algorithm, pmax=10, T=10 units, so all tasks are allocated to only one
processor. In this situation δ=1 and processor fully loaded with periodic set as shown
Figure 1.From figure we conclude that the processor fully loaded and there will be no
free slots available and these type of tasks should meet deadline.

 δ=1

Fig. 1. Task allocation to processor 1

However when we change δ=0.8, we require two processor to schedule above tasks
system as shown in Figure 2. From the figure we conclude that two processor required
to schedule above task system and each processor some free slots are available.

Fig. 2. Tasks allocation two processor system

 Self-configurable Processor Schedule Window Algorithm 415

However we can further increase these free slots by decreasing value of δ. The
δ=0.4 as shown in Figure 3.

Fig. 3. Task allocation three processor system

In this situation, minimum of three processor required and each processor can
allocate one periodic tasks. However it may increase number of processor but there
will be more number of free slots are available. This helps us to schedule different
type of tasks together and we mix up both high priority and low priority tasks. Not
only that an aperiodic tasks whose generation not known in advance can be scheduled
with periodic tasks. The configuration parameter dynamically can change depending
upon the application. So in order to regulate the proportion of aperiodic tasks we
consider a configuration parameter δ and must be selected such that both periodic and
aperiodic tasks can be scheduled together. δ is chosen such that at least one periodic
task is allocated to an individual processor. δ, the configuration parameter divides the
available window into parts ,where one part is reserved for fixed priority algorithm
[4]and other part is dynamic priority algorithm[10]. We observe that for further
decreases of δ value, there will be at least one periodic task cannot be allocated any
processing element (theorem 4.1).

By choosing an appropriate value of δ, we can use our scheduling algorithm in two
different ways. Firstly, it can be used to schedule the task set on an individual
processor after checking feasibility analysis. Secondly, it can be used to find free slots
on each processor and in turn these are used for allocation of dynamically created
tasks. This is called as the Partition Condition which is discussed in the next section.

416 A. Prasanth Rao, A. Govardhan, and P.V.V. Prasad Rao

3.1 Partition Condition

The partition condition divides window into two parts where one window can be used
for scheduling periodic tasks and other window is to schedule aperiodic tasks. We
propose here the theorem 3.1 states that the window is divided such that at least one
periodic task is allocated to each processor.

Theorem 3.1. For given periodic task system Γ1 the partition condition states that
each processor allocates at least one periodic task using configuration parameter δ and
its value lies between [δmin, 1].
Where δmin,=emax/pmax

Proof: Let {τ1, τ2, τ3, τ4… τn } be n tasks and all tasks are arranged with increasing
priorities and first in queue will be given least priority.

Let τn, τk is two tasks whose maximum periodicity (Def.3.2) and whose maximum
execution time (Def.3.7) are (pmax) and (emax) respectively.

If ei<pi then taski is schedulable on processor j otherwise the task is infeasible. This
implies that there will be a task whose maximum execution units are emax and all other
tasks are in a queue below this value. For any given task τk i.e. pk<pmax and that
implies emax <pmax. This means minimum δmin equals to emax/pmax and its maximum
value equals to 1.The configuration parameter value always lies in between [δmin, 1].
So the minimum execution units allocated to each processor equals to emax such that
selecting δ value in the range [δmin, 1]. There will be no task allocated to processor if
δ< δmin and so at least one periodic task allocated to processor if δ lies in the range
[δmin, 1].

Hence Proved

Fig. 4. Feasible Region Graph

 Self-configurable Processor Schedule Window Algorithm 417

The Figure 4 drawn between configuration parameter and processing elements
required for computing given load. The observations of three regions from Feasible
Region Graph are listed below.

Region I: Configuration parameter value in between [0, δmin). Task allocation cannot
done properly and some tasks are unassigned to processing elements. When δ =0,
none of the task assigned.

Region II: Configuration parameter value in between [δmin,1]. As we move δmin to
1,the number of processing elements required to compute for given task system get
decreases. However, more number of free slots available on each processor at δmin and
deceases further. In this region all tasks meet deadline and RM schedulable
conditions.

Region III: The parameter δ increases further after reaching its value 1, tasks are
assigned with lesser number of processing elements. However, they will not meet
deadline and also not RM schedulable.

Region II best suitable for scheduling periodic tasks and adjusting parameter δ, we
schedule different types of tasks are together.
Depending upon the type of an application we can set the value of δ and based on this
value the processor allocates fixed number of periodic tasks and also has few free
slots to accommodate aperiodic tasks. The same model can be extended to schedule
sporadic task system [13].

When new task arrives at processor mi , at phase Ø with deadline di and execution
time ei it is scheduled between the time interval Ø and Ø+di. When the new task
arrives the algorithm immediately searches for a free slot to schedule the task locally
otherwise it is sent to the group scheduler. Few processors are grouped together
and allocation of tasks among these processors can be monitored by group
scheduler. An integrated procedure is desirable to schedule different types of
periodic/aperiodic/sporadic task system. Before presenting an integrated approach we
need to find free-slot in given interval and discussed in the next section.

3.2 Availability of Slots at Fixed Interval

Initially, the centralized scheduler allocates a fixed number of execution time units to
an individual processor and in each processor available free slots are computed. The
total number of processing elements m will be divided into a number of small groups.
Each group maintains a group scheduler which contains information about all
processing elements within it. The Algorithm 3.1 is used to compute free slots and
this information is available at group scheduler. A group scheduler maintains a table
which contains information about each processor-ID, total-execution units, planning
cycle (M) and size of fixed free slots.

Let the number of tasks allocated by RMCT algorithm j = nj.
Planning cycle or LCM units of periodic tasks allocated to processor j=Mj
The number of occurrences l = Mj/phase

Initialize first task in priority queue and fixed slots in the interval given by

418 A. Prasanth Rao, A. Govardhan, and P.V.V. Prasad Rao

() 1,.....,0,.,. =∀+ kephaseKphasek ijii (3.1)

The rest of tasks which are present in the queue verify availability of free slots and
each task from queue is allocated free slots using algorithm 3.1. The fixed allocated
slots means that tasks which are assigned to particular processor execute only
mentioned slots. The condition which is used in RMCT is said to necessary and
sufficient i.e. property of RM algorithm is satisfied. The allocation of fixed time slots
means that the execution of the task is predefined in allocated time frame. This results
in a very low number of preemptions.

Algorithm 3. 1. Finding Free Slots

I for(j=0;j≤m;j++)
Read number of tasks (nij ,M,Phase);
for i=0;
//First task only.
Occurrences l = M/phase
for (k=0;k≤l; l++)
Slots fixed for taski= [k*phasei, K*phasei + eij]
Available slots =[K*phasei + eij, (K+1)phase)
II for (i=1;i≤nij ;i++)
{
Check in available slots.
Occurrences l=M/phasei
for (k=0; k<=l;k++)
{
Pick up one by one available slot
If (upperbound-lowerbound>=eij)
Slots fixed = [lower bound, lowerbound+eij]
Available slot =[lowerbound+eij, upper bound]
else
Keep available slot as it is.
}
}

4 Reserving Space for Newly Created Tasks

On processor p, identify free slots available in the interval Ø and Ø+ di. If any one of
the free slots are sufficient to accommodate newly arrived task then allocate that task
to processor otherwise it searches another processor in group scheduler. If one
processor not sufficient then task may split into two fragments.

Let the space reserved on processor mi for one portion of the split-task be x[mi] and
the space reserved for second portion of the split-task on processing element (mj) be
z[mj].Likewise all the parts of the split-task reserve spaces on processors which are

 Self-configurable Processor Schedule Window Algorithm 419

within the group. The dispatching is simple. If processor mi reserves at time t and
other portion of the split task assigned another processor mj reserve after time t + x
[mi].

Assume S1, S2…Sn are the sizes of free slots available on the processor in the
interval (0, M].The free slot which has the maximum size, has to be identified and has
to be denoted by Smax, then splitting of task can be done.

Smax = maximum slot size within the interval Ø and Ø+ di.
Smax = max (S1, S2,..Sk), where k free slots are available in mentioned Interval.

The space reserved for one portion of task should be equal to Smax i.e. x[mi]= Smax
Next a suitable processor mj should be searched for the remaining portion of split-

task such that Z[mj] = eij - Smax

The number of processing elements in given system will be m and this number
divided smaller groups. Each group contains smaller number of processing elements
in order to reduce communication latency. The next section presents an integrated
approach to schedule different type of tasks.

4.1 Integrated Procedure to Schedule Different Tasks

The integrated approach integrates all three schedulers (local, global and group) to
provide a complete solution to schedule real tasks among different processing
elements. This scheme has all the three components and also takes interactions among
different processing elements. Each processor has a local scheduler and is allocated a
fixed number of execution time units in a given planning cycle. As we know, there
will certain free slots available and these intervals were fixed.

The algorithm 4.2 locks those free slots in the given group of processing elements
which one optimal by adequate for given tasks taking its phase, periodicity, execution
time, deadline. When a dynamic task arrives at time t, the task tries to schedule
locally otherwise it searches free slots in that particular processor group. The
algorithm 4.1 is used for getting number of free slots in each processor and size of
each free slot. The size_free_slots [] gives us the size of free slot and no_free_slots
[req_size] gives us number of free slots in that particular interval for each and every
processing element. The algorithm 4.2 is used for finding optimal size of free slots in
the interval θ and θ + d.

Algorithm 4.1. Getting free slots in the interval t and t+d in given group

size_free_slots [req_size]
no_free_slots [req_size]
Locked [req_size]
for (i=0;i<req_size; i++)
{
 No_free_slots[i]=available_fslots(i,t,d);
 size_free_slots[i]=available_fssize(i,t,d)
}

420 A. Prasanth Rao, A. Govardhan, and P.V.V. Prasad Rao

Available_fslots (int i, int t, int d)
{
 get sizes of free slots in the interval t and t+d;
}

Algorithm 4.2. Finding optimal free-slot in the interval t and t+d for newly arrived task

//optimal allocation:
 optimal_fs_size=size_free_slots
 for (int i=0;i<req_size; i++)
 {
//pick one value greater than min_req and less than
remaining all
 If(size_freeslots[i]•min_req&& locked[i]=0)min_req&& locked[i]=0)
 {
 If (optimal_fs_size•sizesize-freeslots[i])
 optima_fs_size = size_freeslots[i];
 }
 }
If (optimal_fs_size<min_req)
 {
 //assign nearest fsize to splitting task
 //find out maximum value so that will get the
nearest value
 Optimal_fssize=Max(availability_fslot[]);
 //lock that processing element;
 Locked[j]=1;
 min_req=min-req-optimal_fssize;
 //repeat optimal allocation block for remaining
 }
 else
 {
 //no need to split task directly lock that
processing element;
 Locked[i]=1;
 Lock-index[j] with request processor[i]
 }

In order to use our algorithm, we need to ensure that each task is processed on only
one processor at any point of time. Task splitting must therefore address three
important challenges (i) Dispatching algorithm to be developed for ensuring that two
pieces of a task do not execute simultaneously (ii) Design a schedulable test for the
dispatching algorithm. (iii) Order of execution of two pieces is maintained properly.

 Self-configurable Processor Schedule Window Algorithm 421

5 Results and Discussions

The m processor system divides into smaller number of groups and splitting of task
can be made within the group. However, we illustrate our results with one example as
shown in Figure 3.When δ=.8,The task system requires three processor system and all
these processors are grouped together and free slots in each processor as shown table
5.1. Whenever an two aperiodic task1 (4, 4, 6) and aperiodic task2 (5, 5, 7).System
invokes finding free slots and also calls finding optimal slots among available free
slots in the interval θ and θ + d.

Table 1. Free slots in each processor for given group

Processor-ID Allocated Blocks Free Slots Locked slots
1 (0,2),(5,7),(10,12)… (2,5),(7,10)

(12,15)…..

2 (0, 1),(7,8),(14,15)… (1,7),(8,14),
(15, 21)….

(5,7),(8,11)

3 (0,4),(10,14),(20,24)… (4,10),(14,20),
(24, 30)……

(4,8)

For first aperiodic task when free slots algorithm invoked in the interval θ and

θ + d and it finds suitable slots are (4,10) on processor 3,(4,5),(7,10) on processor 1
and (4,7),(8,10) on processor 2.However (4,8) slot is more suitable and this slot is
locked for it. Similarly, the other aperiodic task arrives at phase 5 and again it
searches suitable slots in given group. So aperiodic task1 allocated to processor 3 and
aperiodic task2 allocated processor 2.We have shown only how our algorithm works
with simple example. Simulation works are under progress.

6 Conclusions

This paper provides a solution to make use of unused free-slots on existing
processors. Different types of tasks are scheduled with periodic task sets. Initially, the
system tries to schedule the newly created dynamic tasks to one of the available
processors. However, there are a few cases where CPU cycles are not sufficient to
execute a given task. In such scenarios, task splitting can take place between two
processors thus improving resource utilization. As a future enhancement, we will
group the processing elements using a Maekawa set which reduces communication
delay and there is a need develop an integrated scheduler (i.e. local scheduler, group
scheduler and centralized scheduler) for real-time task systems.

422 A. Prasanth Rao, A. Govardhan, and P.V.V. Prasad Rao

References

1. Liu, C., LayLand, J.: Scheduling Algorithms for Multiprogramming in Hard Real–Time
Environment. JACM 10(1), 174–189 (1973)

2. Prashanth Rao, A., Govardhan, A.: An Improved Period Oriented Scheduling Algorithm
for Real Time Systems. Ijesce Research Science Press 3(1) (January-June 2011)

3. Cheng, S., Stankovic, J.A., Ramamritham, K.: Scheduling Algorithm for Hard Real Time
Systems: A Brief Survey. In: Tutorial: Hard Real Time Systems, pp. 150–173. EFF Press
(1988)

4. Gafford, J.D.: Rate Monotonic Scheduling. IEE Micro, 34–39 (June 1991); Liu, J.W.S.:
Real Time Systems, IInd edn. Pearson Education (1991)

5. Johnson, D.S.: Near Optimal Bin Packing Algorithms, PhD Thesis. MIT (1973)
6. Buttazzo, G.C.: Hard Real-Time Computing Systems Predictable Scheduling Algorithms

and Applications. Kluwer Academic Publishers (1997)
7. Joseph, M. (ed.): Real-time Systems Specification, Verification and Analysis. Tata

Research Development & Design Centre (June 2001)
8. Burchard, A., Liebeherr, J., Oh, Y., Son, S.H.: New Strategies for Assigning Real-Time

Tasks to Multimocessor Systems. IEEE Transactions on Computers 44(12) (December
1995)

9. Lauzac, S., Melhem, R., Mossé, D.: An Improved Rate-Monotonic Admission Control and
Its Applications. IEEE Transactions on Computers 52(3) (March 2003)

10. Siva Ram Murthy, C., Manimaran, G.: Resource Management in Real-Time Systems and
Networks. PHI Learning Private Limited (2009)

11. Zmaranda, D., Gabor, G., Popescu, D.E., Vancea, C., Vancea, F.: Using Fixed Priority Pre-
emptive Scheduling in Real-Time Systems. International Journal of Computers,
Communications & Control VI(1), 187–195 (2011)

12. Pellizzoni, R., Lipari, G.: Feasibility Analysis of Real-Time Periodic Tasks with Offsets.
Real-Time Systems 30(1-2) (May 2005)

13. Anderson, B., Bletsis, K., Baruah, S.: Arbitrary-Deadline Scheduling Sporadic Tasks on
Multiprocessor, Technical Report HURRAY-TR-080501

	Self-configurable Processor Schedule Window Algorithm
	Introduction
	Theoretical Concepts
	Basic Terminology
	Task Execution Modeling
	Scheduling Conditions

	Configuration Parameter
	Partition Condition
	Availability of Slots at Fixed Interval

	Reserving Space for Newly Created Tasks
	Integrated Procedure to Schedule Different Tasks

	Results and Discussions
	Conclusions
	References

