
N. Meghanathan et al. (Eds.): CCSIT 2012, Part III, LNICST 86, pp. 26–35, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Collaborative Framework for Distributed Computing
in P2P Network

B. Swsssaminathan* and Sheila Anand**

Rajalakshmi Engineering College, Chennai, India
{Swamikb,sheila.anand}@gmail.com

Abstract. In this paper, we propose a Collaborative Framework for P2P to
enable distribution processing of tasks or application among multiple peers.
P2P networks provide a completely decentralized environment wherein each
peer can provide services to other peers in the network. Most of the current
work on P2P is in the area of data or content sharing. We propose a generic
collaborative framework to facilitate distributed processing among peers by
enabling provision for job or task scheduling, distributing of a task among
multiple peers, messaging between peers, monitoring job execution, follow up
and obtain the results of the completed tasks. Peer profiles are maintained to
enable peers to discover other willing peers and explore their capacity and
capability for distributed processing. Job profiles are proposed to maintain the
details of submitted jobs, the job steps or granules and the order of execution of
these job granules. A Job Manager component is present in each peer to
schedule the jobs and follow up with the participating peers to obtain the result.
We have tested the collaboration framework with an example and have
presented the results and conclusion.

Keywords: P2P, Collaborative framework, Distributed processing, Distributed
computing.

1 Introduction

In P2P system, each computer system or peer node acts as both client and server. As a
server, it provides resources to be shared by other peers and as a client it uses or
access resources of other peers. P2P networks enable peers to share data and content,
communicate through message passing and also distribute the processing and
computing. In a pure P2P network, the overlay links between peers are established
arbitrarily. [5]. A new peer joining a network of peers can form its own links or copy
the existing links of other peers by exchange of messages and route information.
When a peer wishes to find a data or other resource, it normally floods the network
with its query for the data. Peers having the resource will respond to the query. More
than one peer can have the resource and respond to this query. The requesting peer
chooses a peer, establishes a direct link with the peer and downloads the data. P2P

* Associate Professor, Research Scholar.
** Dean (Research), Computer Studies.

 Collaborative Framework for Distributed Computing in P2P Network 27

systems provide a completely decentralized environment wherein each system can
provide services to each other systems in the network. The network of peers can thus
be easily scaled up to any number and is more reliable. P2P can offer a robust solution
that uses optimum bandwidth and network utilization. Some of the popular P2P
networks are Napster, Gnutella and Kazaa which were primarily designed to share
files and other data resources among multiple peers [15].

Distributed computing involves using many autonomous computer systems that
come together to complete a task. One of the common applications of distributed
computing is to process large amounts of data in a short span of time. An application
or task can be broken up into many discrete and semi-independent parts which can be
distributed for processing over multiple computer systems. With Internet as the
communicating medium, peers can establish a flexible and reliable computational
platform with enormous distributed computing potential. Distribution computing uses
message passing whereby objects (code, data) can be exchanged between the
computer systems that have come together to perform a large task or application.
CORBA and DCOM example of distributed computing that provide a set of standards
for object communication.

Many applications like BitTorrent and Limeware have been developed to facilitate
sharing of data, music, video etc. There has been less focus on applications for
distributed processing or computing. In this paper, we propose a Collaborative
framework for P2P networks to enable distributed processing The objective of the
framework is to facilitate distributed processing among peers by enabling provision
for job or task scheduling, distributing of a task among multiple peers, messaging
between peers, monitoring job execution, follow up and obtain the results of the
completed tasks. The collaborative framework can also provide to establish the
credibility and reliability of peers to enable peers to choose reliable partners for
execution of jobs. The rest of the paper is organized as follows. Section 2 provides
related work on this area and Section 3 describes the proposed P2P collaborative
framework. In Section 4, we have applied the framework for a sample job and present
the results. Section 5 concludes the paper.

2 Related Work

In this section, we briefly discuss research work relating to distributed computing. A
Distributed computing system [10] consists of a set of independent computers
connected by a computer network and operational with distributed system software.
Jobs are split into independent small parts and processing of each of the job parts is
done on individual PCs and the results are collected on a central server. The central
server distributes the job parts among different PCs on the Internet and is also
responsible for job coordination and completion. The clients take advantage of
inactive periods to perform computation requested by the server.

There are two primary reasons for using distributed systems and distributed
computing [1]. The nature of the application may need the use of a communication
network to connect many numbers of computers. Data produced at one physical
location may be required at another location and the communication network is used
to make this possible. Secondly, it may be a case of using in principle a single

28 B. Swaminathan and Sheila A.

computer to perform a specific job, but the use of a distributed system
is advantageous from the viewpoint of time, efficiency and performance. For example,
several low-end computers may together provide a more cost-efficient solution as
compared to a single high-end computer.

SETI@home (Search for Extra Terrestrial Intelligence) is an Internet-based
volunteer computing system which employs the Berkeley Open Infrastructure for
Network Computing (BOINC) platform [13]. Originally, it was designed to search for
radio signals emitted in the outer space and thus search for any signs of extra-
terrestrial beings. Later, it has branched out into many activities such as parallel and
distributed computing. The aim of SETI@home is to demonstrate viability of public-
participation distributed scientific computing, and to increase public knowledge and
awareness of SETI and radio astronomy. The original design of SETI was centralized
with one server and data was distributed to clients using proxy servers. The clients
process the job given to them and submit the results to server. As all interactions are
with the server, there is a problem of load handling.

Distributed object systems are based on object-oriented programs where objects
consisting of code and data are distributed across a network. Remote Method
Invocation (RMI) and Common Object Request Broker Architecture (CORBA) are
instances of such systems. Client-specific optimization is required for efficient
performance thus making such systems difficult to maintain. RMI passes the objects
as parameters to remote methods. Remote Procedure Call (RPC) is a dominant
technique for constructing distributed, client-server based applications [7]. It is based
on extending the notion of conventional or local procedure calls to making remote
calls without the need to know the details of network interfaces. RPC tries to isolate
the data communication layer from the application layer. RPC makes the client/server
model of computing more powerful and easier to program, but the remoteness is not
truly transparent to the client.

We have applied the concepts of distributed computing to P2P networks to develop
a collaborative framework for distributed processing among many peers.

3 Collaborative Framework for P2P Networssk

In this paper, we propose a P2P collaborative framework to distribute and share the
processing load among multiple peers. We propose a generic framework with the use
of profiles to stores the details of peers who are willing to collaborate with other peers
for job execution. Job profiles are proposed to maintain the details of submitted jobs,
the job steps and the order of execution of these job steps.

Peers could be of types: initiator and participating peers. The initiator peer submits
jobs to the participating peers which in turn work on the job steps or granules and
send the results back to the initiator. The initiator peer collects the response of all the
job steps from the participating peer and aggregates the results. The initiator peers can
also provide feedback on job execution of the participating peers; thereby providing a
method to evaluate the credibility and reliability of peers for collaboration on
execution of jobs. The proposed collaborative framework for distributed computing in
P2P network is given in Figure 1.

 Collaborative Framework for Distributed Computing in P2P Network 29

Job Granules

Job
profile

Peer
profile

Job
profile

Peer
profile

Job
profile

Job
profile

Peer
profile

Peer
profile

Initiator Peer(IP)

Result

Participant Peer n
(Job Execution)

Result n

Participant Peer 1
(Job Execution)

Result 1

Participant Peer 2
(Job Execution)

Result 2

Job Manager
(JM)

Fig. 1. Collaborative Framework For P2P Network

Peers, who are willing to collaborate with other peers for job execution, advertise
their services. Such peer details are maintained as peer profile by each individual
peer. The peer profile contains information on the processing capabilities of the peer
node; such as CPU specification, memory available for processing, secondary storage
space available for temporary storage of data of intermediate steps and final result,
operating system, software installed etc. When a job has to be executed, the initiating
peer will select the peers based on peer profile and their capacity to execute the job.

The Initiating Peer (IP) which would like to submit a job for distributed processing
would first have to break the job into steps or modules which we call as job granules.
These job granules are to be executed by the participating peers. Job profile maintains
details of each submitted job, the job granules and the order of execution of these job
granules. Details of which of the job granules can be executed in parallel and those
that have to be executed in sequence and in which order are maintained.

Peers who wish to submit a job would first determine from the peer profile, the
peers suitable for execution of the concerned job. The initiating peer will then send a
request message to the peers to check their availability and willingness to do the job.
Willing peers will respond with an affirmative message while other peers would send
back a decline message. No response from peers within a specified time would also be
treated as decline message. Based on the response from the peers, a set of peers are
selected by the IP as the Participating Peers (PP) for the job execution. A Job
Manager (JM) module is present in each peer to schedule the job granules and follow
up with the respective peers to obtain the result. JM will send the job granule to the
PPs for execution. The participating peers will execute the job granule and send back
a successfully completed message and the result. In case of failure of job execution,

30 B. Swaminathan and Sheila A.

Jo
b
G
ra
nu

le
s

D
ec
lin
e

A
ff
ir
m

at
e

Re
qu

es
t

Er
ro
r
M
es
sa
ge

Su
cc
es
sf
ul
&
Re

su
lt

Initiation Peer (IP)

Participating Peer (PP)

Fig. 2. Interaction among Peers for Job Execution

then an error message would be sent by the PP to the JM. The interactions between IP
and PP for job execution are depicted in Figure 2.

JM would ensure that job execution follows the steps and order specified in the job
profile. JM would wait for a specified time to obtain the result. If the successful or
error message is not obtained within this specified time, then JM would look for
another peer to execute the job granule. In case of execution errors, depending on the
error type, JM would decide to send the same job granule to another peer. JM would
abandon the job in case of serious or critical errors. JM would also abandon the job if
required peers are not available for job execution, or there is a delay in obtaining the
result. A threshold limit is set for the job execution and if the job is not completed
within the threshold, then JM would abandon the job. IP would then examine why the
job execution was abandoned. In case of errors in job processing, IP would first need
to make necessary corrections before re-submitting the job. If the job was abandoned
because of other reasons like network failure, peer non-availability etc, IP could wait
and re-submit the job after an interval.

The collaborative framework can also provide feedback mechanisms to establish
the credibility and reliability of peers. This would assist peers in choosing reliable
partners for execution of jobs

4 Implementation and Results

We have implemented the proposed P2P collaborative framework using JXTA and
Windows operating system. We have used JXTA services for peer registration, peer
discovery, peer messaging and content communication and management. The nature
and details of the job are kept partially hidden from the PP as IP sends only the data
and execution module as class file.

 Collaborative Framework for Distributed Computing in P2P Network 31

As the first step, the peers advertise giving details of their processing capability.
The peer details are updated in the Peer Profile which is maintained in XML format
and a sample peer profile is given below. The Peer profile has been described using
XML tag for Peer Name, Peer ID, Hardware details like Processor, processor details,
Memory, etc. Tags have also been provided for installed software and versions. A
typical peer profile is given below.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPEjxta:Profile>
<jxta:Profile type="jxta: Peer Profile" xmlns:jxta="http://jxta.org">
 <PID>urn:jxta:uuid-

59616261646162614A78746150325033CB4691E17A5E49DB89F0A6CADB9C60
2E03

 </PID>
 <Name>
 peer1
 </Name>
 <Desc>
 Profile of the peer
 </Desc>
 <HWArch>
 X86
 </HWArch>
 <NoCores>
 2
 </NoCores>
 <RAM>
 3 GB
 </RAM>
 <OS>
 Windows
 <OS>
 <OSVer>
 XP
 </OSVer>

</jxta:Profile>

The profile can be extended to provide complete and generic details of the peers.

The IP uses the peer profile to select PP for execution of jobs.
The Job Profile is also maintained in XML format and we give below a sample

format. A job profile has the following specifications about a job, Job ID, Step ID,
File Name, Class Name of executable module. The Dependency tag is used to indicate
job granules which have to be completed the prior to execution of the concern job
granules. For example GranID 2 can be executed only after completion of GranID 1.

32 B. Swaminathan and Sheila A.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPEjxta:JobProfile>
<jxta:JobProfile type="jxta: Peer Profile" xmlns:jxta="http://jxta.org">

<JobID>
 1

</JobID>
<GranID>

 1
</GranID>
<FileName>

 Input.txt
</FileName>
<ClassName>

 ExecuteClass2
</ClassName>
<Dependency>
 0
</Dependency>
< GranID>

 2
</ GranID >
<FileName>

 Input.txt
</FileName>
<ClassName>

 ExecuteClass2
</ClassName>
<Dependency>
 1
</Dependency>

</jxta:JobProfile>

We explain the job submission and execution process using a standard deviation
calculation. A Job Manager (JM) module is present in each peer to schedule the job
granules and follow up with the participating peers to obtain the result. We have
calculated the time taken by a single peer to execute the job. A threshold limit is set for
the complete job execution which is twice the time taken by a single peer to complete the
job. We have assumed the same time as threshold limit for each job step as well.

Standard deviation σ is calculated using the formula:

Where

N

xx
Ni

i
i

2

1

)(∑
=

=
−

=σ

N
x

Ni

i
ix∑

=

−= 1

 Collaborative Framework for Distributed Computing in P2P Network 33

x is a list of numbers and x is the average of the numbers. xi is the ith number in
the list. N is the count of the list of numbers.

The execution of the equation among multiple PP was tested using a range of 10 –
20 lakh numbers. Since the list of numbers is huge, it is a time consuming process
when only one peer is doing the calculation. The job is divided into granules and
represented as steps below:

Step1: The list of numbers N are divided into sets S of lakh of numbers
Step2: Each set is sent to a different PP for summing up. The count of the numbers in

the set can is determined in parallel.
Step3: The total of all the individual sums is determined from the results of the

previous step and average is calculated.

Step4: ∑
=

=

−
ni

i
i xx

1

2
)(is calculated in parallel for each of the set of numbers S by PPs

Step5: Final step is to calculate theσ

We have compared the performance for calculating standard deviation using a single
peer and multiple peers as shown in Table 1. There was no significant difference in
time when the dataset was small, that is, 1 or 2 lakh of data entries. Likewise, when
the number of peers (1 - 10) was small, there was an increase in the computation time
because of the communication delay. Also when the number of peers was large, there
was no significant difference in the total processing time. For a dataset of 10 or 20
lakhs, we obtained optimum result with 20 peers.

Table 1. Dataset for Standard Deviation

The results are graphically depicted in Figure 3.

34 B. Swaminathan and Sheila A.

Fig. 3. Graph for the dataset

It can be concluded that for large jobs and datasets, it is significantly faster with
multiple peers sharing the processing load. In analyzing the performance benefits of
the proposed system, it is clear that as the number of peers in a P2P environment
increases, the time taken to process the job modules reduces.

5 Conclusion and Future Work

The proposed collaborative framework for P2P provides a scalable and reliable means
for processing large jobs. The proposed framework is a generic one where peer
capability and job details are described using peer profile and job profiles. In the
given example, execution modules in the form of class files are sent to the
participating peers so that the nature of the job is kept hidden from the peers.
Likewise, the peers do not have access to the full dataset thereby providing a certain
level of data security. As future work, we propose to use well known P2P data
distribution protocols and applications like FTP, Bit Torrent, etc. We also aim to
develop an efficient scheduler for job execution and management.

References

[1] Berry, K.: Distributed and Grid Computing via the Browser Computing Research.
Villanova University, Villanova (2009),
http://www.csc.villanova.edu/~tway/courses/csc3990/f2009/
csrs2009/Kevin_Berry_Grid_Computing_CSRS_2009.pdf

[2] Costa, F., Silva, L., Kelley, I., Fedak, G.: Optimizing Data Distribution layer of BOINC
with Bit Torrent. In: IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2008, pp. 1–8 (2008)

[3] Boldrin, F., Taddia, C., Mazzini, G.: Distributed Computing Through Web Browser. In:
IEEE 66th Vehicular Technology Conference, VTC-2007, September 30-October 3,
pp. 2020–2024. Univ. of Ferrara, Ferrara (2007)

[4] Ho, K., Wu, J., Sum, J.: On the Session Lifetime Distribution of Gnutella. Providence
University, Sha-Lu (2007) http://www.citeseerx.ist.psu.edu/

 Collaborative Framework for Distributed Computing in P2P Network 35

[5] Awan, A., Ferreira, R.A., Jagannathan, S., Grama, A.: Unstructured Peer-to-Peer
Networks for Sharing Processor Cycles, vol. 1. Purdue University, USA (2005)

[6] Petrie, D.: A Framework for Session Initiation Protocol User Agent Profile Delivery.
PingtelCorp (October 24, 2004)

[7] Tilevich, E., Cook, W.R., Jiao, Y.: Explicit Batching for Distributed Objects, Computer
Science Department, Virginia Tech

[8] Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins,
S., Xu, Z.: Peer-to-Peer Computing (July 3, 2003),
http://www.hpl.hp.com/techreports/2002/HPL-2002-57R1.html

[9] Brookshier, D., Govoni, D., Krishnan, N., Soto, J.C.: JXTA: JavaTM P2P Programming.
Sams Publishing (March 22, 2002)

[10] Preliminary Research on Grid-based Remote Sensing Image distributed Processing-2007
IFIP International Conference on Network and Parallel Computing

[11] JXTA Java Standard Edition V2.5: Programmer’s Guide
[12] Client-Server Model, http://www.cs.umbc.edu/~mgrass2/cmsc645/
[13] SETI@home, http://www.setiathome.berkeley.edu/
[14] Gnutella, http://www.gnutella.org
[15] JXTA Protocol, https://jxta.dev.java.net/
[16] RPC and RMI,

http://www.careerride.com/
RMI-advantages-and-disadvantages-of-RPC.aspx

[17] ClassLoader,
http://download.oracle.com/javase/1.4.2/docs/
api/java/lang/ClassLoader.html

	Collaborative Framework for Distributed Computing in P2P Network
	Introduction
	Related Work
	Collaborative Framework for P2P Networssk
	Implementation and Results
	Conclusion and Future Work
	References

