
N. Meghanathan et al. (Eds.): CCSIT 2012, Part III, LNICST 86, pp. 357–366, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

The Effect of Design Patterns on Aspect Oriented
Software Quality–An Empirical Evaluation

Sirbi Kotrappa1,* and Kulkarni Jayant Prakash2

1 Department of Computer Science & Engineering,
K L E’s College of Engineering & Technology, Belgaum, India

2 Department of Computer Science & Engineering,
Walchand College of Engineering, Sangli, India

kotrappa06@gmail.com, pjk_walchand@rediffmail.com

Abstract. In recent times, software engineers attempted to measure software
quality using various approaches and techniques such as metric suites. Aspect
oriented programming (AOP) a new technology addressing issues of scattering
and tangling of code spread throughout the system. Today, Aspect oriented
programming (AOP) is gaining wide attention both in industry and research.
OO DPs (design patterns) have difficulties in implementation of crosscutting
concerns because of lack of features in OO languages and crosscutting concerns
affecting software quality. In this paper, we evaluate metrics of OO Vs AO DPs
for separation of concern, size, coupling and cohesion metrics from the C & K
metric suite, which was modified to AOP. This empirical evaluation provides a
new knowledge about AOP software quality and software developer can adopt
in a specific situation. We claim that the AOP has significance effect on design
quality than OOP.

Keywords: Aspect oriented programming (AOP), design patterns (DPs),
software metrics, quality model.

1 Introduction

When a novel method is planned, this has to provide evidences for its supremacy over
presented participants. AOP emerged as a new technology to improve software
quality attributes whose implementations would otherwise have been spread
throughout the whole application because of the limited abstractions of the underlying
programming languages. Since then several studies [3], [6], [7], [8], [9],[10], [11],
[12] have suggested that AOP is successful in improving software quality crosscutting
concerns. But these studies either provide strong evidences for better software quality
offered by AOP or wrongly measure metrics of AO systems. We found in some cases
in which an AO implementation was better quality than its OO DPs counterpart.

* Corresponding author.

358 S. Kotrappa and K.J. Prakash

Many OO DPs methods have been adapted to indicate and employ DPs effectively.
But several DPs that impact system quality, when core objects are especially affect by
the formation that the DPs needs .AOP AspectJ[24] will help us on separating few of
the system’s DPs, mentioning and implementing those as a single units of abstraction.
Here our objective is to show the OO Vs AO DPs implementation of observer pattern
and its effect on software quality [11]. The software developer who wants to apply
AOP for implementation of design patterns crosscutting concern will be benefited.
Many researchers written at length on the nature of aspect oriented programming [4],
[6], [7], [10],[11], [13], [14],[15],[16],[17],[18],[19],[20],[21]. AOP has evolved as a
technology for combining separately created software components into working
systems. It requires new assessment frameworks specifically tailored to measure the
evolution, reusability, security and maintainability of aspect-oriented systems. Our
results show that it is possible to use standard Object Oriented Programming (OOP)
quality metrics to measure the advantages of AOP, even after adaptation [4]. But very
few existing evaluations have been performed at qualitative and quantitative levels in
AOP [8]. This paper presents an evaluation of effect of observer pattern OO DPs on
AOP quality metrics, which is composed of three components: G-Q-M model, a suite
of metrics and a quality model.

2 Measurement Process and a Quality Model

To provide comparison between OO DPs Vs AO DPs of software quality, we can
apply the ISO/IEC 9126-1 quality model and Goal-Question-Metric (G-Q-M) [12].
G-Q-M defines a measurement system on three levels (Figure. 1) starting with a goal.
The goal is refined in questions that break down the issue into quantifiable
components. Each question is associated with metrics that, when measured, will
provide information to answer the question. Our goal is to compare AOP and OOP
systems with respect to software quality from the viewpoint of the software
developer.

Fig. 1. G-Q-M Model

 The Effect of Design Patterns on Aspect Oriented Software Quality 359

Our quality model defines a terminology and clarifies the relationships between the
reusability, maintainability and the metrics suite. It is a useful tool for guiding
software developers in data interpretation. The quality model has been built and
refined using Basili’s GQM methodology [12] (see Figure 2). The metrics are
comparable because they both measure properties of concerns at the class and aspect
level (see Table 1 and Figure 2).

Fig. 2. Association of software quality attributes and their metrics

Table 1. Software quality metrics definitions

360 S. Kotrappa and K.J. Prakash

3 Empirical Evaluation

This empirical evaluation uses implementations of the 23 GoF design patterns made
freely available by Hannemann & Kiczales [9], [25]. In [9] every pattern explained
with an example that uses pattern, which are implemented both in OO DPs (Java) and
AO DPs (AspectJ).Observer pattern, known as Model-View is indented to “define a
one-to-many dependency between objects so that when one object changes state, all
its dependents are notified and updated automatically”.OO DPs Observer pattern
implementation generally add a field to every Subjects that stores a record of
Observers attracted in that exact Subject. Whenever Subject report state change to its
Observers, it calls its own notify method, which in turn calls an update method on all
Observers in the record. The sample OO DPs Observer patterns shown in figure 3 and
AspectJ [24] AO DPs shown in figure 4 in the perspective of a trivial figure example
[9]. In such a system the Observer pattern is used to cause mutating operations to
figure elements to update the screen. The code spread across the all classes in this
pattern. This method includes code which in important to adopt example of such
pattern. Every member i.e., Point and Line has to be familiar with about their
responsibility in the pattern and accordingly have pattern code in them. Addition or
deletion needs corresponding changes in that particular class [9].Changing the
notification mechanism requires changes in all participating classes. In the AspectJ
version [9] all code pertaining to the relationship between Observers and Subjects is
moved into an aspect, which changes the dependencies between the modules. Subject
and Observer roles crosscut classes, and the changes of interest (the subjectChange
pointcut) crosscuts methods in various classes. In this paper, we have decided to
assess the implementation of observer design patterns in both Java and AspectJ. First,
we applied the metrics in Hannemann and Kiczales original code [9]. Afterwards,
we changed their implementation to add new participant classes to play pattern roles.

Fig. 3. Observer pattern-Java

 The Effect of Design Patterns on Aspect Oriented Software Quality 361

Fig. 4. Observer pattern-AspectJ

These changes were introduced because Hannemann and Kiczales’ implementation
encompasses few classes per role (in most cases only one) [9]. Hence we have
decided to add more participant classes in order to investigate the pattern crosscutting
structure. Finally, we have applied the selected metrics to the changed code. We
analyzed the results after the changes, comparing with the results gathered from the
original code (i.e. before the changes) [9].

4 Software Quality Assessments through OO and AO Metrics

In this paper authors have evaluated the popular C & K metrics [2] on effect of DPs
on quality when we change system from OOP to AOP. For an empirical evaluation
OO Vs AO metrics, we considered the simple observer patterns DPs to determine the
effect of quality attributes on OO Vs AO DPs .In the evaluation of metrics authors
have used the AOPMetrics tool [23] to measure the quality metrics related to
separation of concern, size, coupling and cohesion. The goal of the AOPMetrics
project is to provide a common metrics tool for the object-oriented and the aspect-
oriented programming [24]. The project aims to provide CK metrics, Robert Martin’s
and Henry and Li metrics suite [23]. Table 2 gives total, mean, maximum, and
minimum and standard deviation statistical values of OO DPs and AO observer
pattern DPs C & K metrics.

5 Descriptive Statistics

Table 2 gives descriptive statistics of OOP and AOP C & K metrics for observer
patterns. Also it compares values of total, mean, maximum, standard deviation for
both OO and AO observer pattern. Here we present the measurement results for the
observer design patterns; we focus on the presentation of results related to RFC,
CBM, LCO and WMC from the C&K metric suite and their effects on software
quality (see table 2). The relatively high value of standard deviation for CBM and
LCO indicates a high variation among the values of these metrics. The results shows

362 S. Kotrappa and K.J. Prakash

that smaller average for number of operations per class (WOM (WMC)), response for
class (RFM (RFC)), coupling between objects (CBO (CBM)) and lack of Cohesion
(LCO (LCOM)) values for AOP observer patterns. The rest of the metrics shows
almost same trends. Additionally, low standard deviation for almost all of the AOP
metrics make these averages more meaningful and consistent. At times, mean value of
an entity may be misleading particularly when there is a very large variation among
the values.

Firstly general observation is that the overall quality of OO and AO metrics values.
Table 2 indicates smaller variations of standard deviation for all of AO metrics as
compared to their OO version. This is because of the reason that almost all metrics
values fall in line a small range with very small outliers.

Table 2. OO Vs AO Observer pattern DPs Software Quality Metrics

6 Results and Discussions

6.1 Results

Here we present the empirical results for the observer patterns; we focus on the
presentation of results related to quality attributes metrics i.e., separation of concern,
size, coupling and cohesion.

6.1.1 SoC: Separation of Concerns
The use of aspects clearly provided better support for separation of observer pattern
concerns [4]. This result is supported by all separation of concern metrics. The results
shows that CDC measurement identifies each observer pattern concern need many
components for their implementation in the OO solution as compared to the AO

 The Effect of Design Patterns on Aspect Oriented Software Quality 363

solution. In addition, all concerns required more operations (methods/advices) in the
OO system than in the AO system (CDO metric). Finally, the CDLOC measures also
pointed out that the AO solution was more effective in terms of modularizing the
observer pattern concerns across the lines of code. The resulting metrics present the
gathered data before and after the changes applied to the pattern implementation.
These metrics support an analysis of how the introduction of new classes and aspects
affect both solutions with respect to the selected metrics. Those changes also allow us
to understand which solution is better to assist the modularization quality of concerns
from the application and the pattern points of view. For separation of concerns, we
have verified the separation of each role of the patterns on the basis of the three
separations of concerns metrics [4], [6].

6.1.2 Coupling, Cohesion and Size
These results show that for the Observer patterns, the AO DPs implementation
apparently has much more associated profit. As the changes were accomplished, the
AO solution exhibited superior results with respect to DIT, RFC, CBM/CBO, LCO,
CIM, CFA, CMC and WMC .The differences were typically higher in favor of the
aspect-oriented solution for both OO and AO observer design patterns. The aspect-
oriented project produced a more concise system according the number of lines of
code. However, the use of aspects produced more complex operations, i.e. advices,
than the use of the OO patterns (WOC metric) [4]. The AO system incorporated
components with higher coupling (CBC metric). The OO DPs has led to the abuse of
the inheritance mechanism, which was fundamental for establishing high inheritance
coupling (DIT metric) [4], [6]. The LCOO metric detected some components of the
OO system and produced better results in terms of cohesion than the components of
the AO system. In the aspect-oriented implementation of this pattern, the major
improvements were detected in the LOC, LCOO and NOA measures [4]. The use of
aspects led to reduction of LOC in relation to the OO code. Thus aspects solve the
problem of code replication related to the implementations of the method
notifyObservers().The cohesion in the AO implementation was mostly higher than the
OO implementation because the latter incorporates a number of classes that play the
Subject and Observer roles and, as a consequence, implement role-specific methods
that in turn do not access the attributes of the classes. In the aspect-oriented design,
these methods are localized in the aspects that implement the roles, increasing the
cohesion of both classes and aspects. The tally of attributes in the OO implementation
was respectively higher than in the AO code before and after the introduction of new
components into the implementations [4]. In the OO solution, the “subject” classes
need attributes to hold references to their “observer” classes; these attributes are not
required in the aspect-oriented design [4].

6.2 Discussion

Based on the results, we have observed that the measures relative to quality metrics
DIT, RFC, CBM/CBO, LCO, CIM, CFA, CMC and WMC.In general, the AO
solutions were superior in terms of quality measures, since the use of AspectJ reduces

364 S. Kotrappa and K.J. Prakash

the overuse of inheritance mechanisms. However, as illustrated in table 2, most
measures indicated that AspectJ implementations resulted in higher coupling (CBC)
and more lines of code (LOC) than the respective Java implementations. The
superiority of AspectJ is CDO, CDC, and CDLOC metrics measures were higher than
OO DPs for observer pattern. The AO DPs solutions were better-quality in terms of
DIT, RFC, CBM/CBO, LCO, CIM, CFA, CMC and WMC measures. However, in
many measurements point to those AspectJ implementations provides in upper
coupling (CBC) and extra lines of code (LOC) than particular java implementation.
However, a careful analysis of the implementation show that these higher CBC and
LOC values for AO solutions in general are related to presence of generic aspects in
several AspectJ pattern implementations, which have the intension of making the
solution more reusable. We claim that the AOP has significance effect on design
quality than OOP.

7 Related Works

As new software development method evolved, it is essential that empirical studies
are carried out to provide evidences about benefits to the software developer
[10],[22]. Software metrics provide quality indicators of software development. The
AOSD community has been developing significant work on quantitative and
qualitative analysis of AOP software [22]. Sant’Anna et al. provided one of the
exceptional research works on AOP metrics: a suite of metrics for quantifying
modularity-related attributes, published in a SBES paper [14], [18], [20]. This metric
suite includes coupling, cohesion and size metrics custom-made from existing OO
metrics to deal with AOP quality measures [22]. A set of existing metrics has been
used to evaluate the quality of different AOP implementations [6], [7], [14].The
metric suite also includes novel concern-driven metrics, aimed at quantifying unusual
aspect of separation of concerns [22]. Concern-driven metrics endorse the notion of
concern as a measurement abstraction. This kind of metric relies on the identification
and documentation of the pieces of source code that implement each concern of the
system. Experimental studies [14], [15], [16] measured up to the quality of Java and
AspectJ solutions of the 23 design patterns from the Gang of Four [22]. One more
study methodically examined how AOP degrees up to treaty with modularization of
23 design patterns in the occurrence of pattern interfaces [26]. The investigator
completed both qualitative and quantitative evaluation of 62 pair-wise compositions
of patterns taken from 3 medium-sized systems implemented in Java and AspectJ
programming languages. Kulesza et al. [17] presented an empirical study in which
they quantified the effects of AOP in the maintainability of a web-based information
system. Figueiredo et al. [13] carry out an experimental study for appraise whether
AOP endorse better quality and changeability of product lines than conventional
variability mechanisms, such as conditional compilation [22].

 The Effect of Design Patterns on Aspect Oriented Software Quality 365

8 Concluding Remarks

In this paper, we investigate AOP and DPs effect on software quality. Our evaluation
is based on measurements on parameters of software quality attributes of separation
of concern, size, coupling and cohesion metrics from the C&K metric suite, which
was modified to AOP. An approach to re-implement OO observer pattern DPs by
AOP AspectJ is presented in this paper and analyzed for its software quality factors.
In this paper, we were focused on the evaluation of OO Vs AO DPs Observer Pattern
and software quality. We claim that the AOP has significance effect on design quality
than OOP.

Acknowledgments. We place on records and wish to thank the authors Maria Luca
Bernardi, Giuseppe Antonio Di Lucca, RCOST Research centre on Software
Technology, University of Sannio, Palazzo ex Poste, Benevento, Italy for their
valuable contributions to research on design pattern quality using Aspect orientation.

References

1. Fernando, C., Neilo, C., Eduardo, F.: On the modularization and reuse of exception
handling with aspects. Softw. Pract. Exper. 39(17), 1377–1417 (2009)

2. Shyam, R.C., Chris, F.K.: A Metrics Suite for Object Oriented Design. IEEE Trans. Softw.
Eng. 20(6), 476–493 (1994)

3. Lech, M., Lukasz, S.: Impact of aspect-oriented programming on software development
efficiency and design quality: an empirical study. IET Software Journal 1(5), 180–187
(2007)

4. Claudio, N.S.A., Alessandra, F.G., Uira, K.: Design patterns as aspects: a quantitative
assessment. Journal of the Brazilian Computer Society 10(2) (November 2004) ISSN
0104-6500

5. Erich, G.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading (1995)

6. Adam, P.: An empirical assessment of the impact of AOP on software modularity. In: 5th
International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE 2010), Athens, Greece (2010)

7. Adam, P.: What is wrong with AOP? In: 5th International Conference on Software and
Data Technologies (ICSOFT 2010), Athens, Greece (2010)

8. Avadhesh, K., Grover, P.S., Rajesh, K.: A quantitative evaluation of aspect-oriented
software quality model AOSQUAMO. ACM SIGSOFT Software (2009); Workshop on
Emerging Trends in Software Metrics, WETSoM (2010)

9. Jan, H., Gregor, K.: Design Pattern Implementation in Java and AspectJ. In: Proceedings
of OOPSLA 2002, pp. 161–173 (November 2002)

10. Mariano, C., Paolo, T.: Measuring the Effects of Software Aspectization. In: 1st Workshop
on Aspect Reverse Engineering, Delft, Netherlands (2004)

11. Mario, L.B., Giuseppe, A.D.L.: Improving Design Pattern Quality Using Aspect
Orientation Software Technology and Engineering Practice. In: 13th IEEE International
Workshop, September 24-25 (2005)

366 S. Kotrappa and K.J. Prakash

12. Victor, R.B., Gianluigi, C.H., Dieter, R.: The Goal Question Metric Approach. In:
Encyclopedia of Soft. Eng., vol. 2, pp. 528–532. John Wiley & Sons, Inc. (1994)

13. Figueiredo, E., et al.: On the maintainability of aspect-oriented software: A concern-
oriented measurement framework. In: CSMR, pp. 183–192 (2008)

14. Sant’Anna, C., et al.: Design Patterns as Aspects: A Quantitative Assessment. In: SBES
(2004)

15. Garcia, A., et al.: Modularizing design patterns with aspects: a quantitative study. In:
AOSD 2005, pp. 3–14 (2005)

16. Garcia, A., et al.: Modularizing design patterns with aspects: a quantitative study. Trans.
on AOSD I, 36–74 (2006)

17. Kulesza, U., et al.: Quantifying the effects of aspect-oriented programming: A
maintenance study. In: ICSM, pp. 223–233 (2006)

18. Sant’Anna, C.: On the modularity of aspect-oriented design: A concern-driven
measurement approach, Ph.D. dissertation, PUC-Rio (2008)

19. Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., Cacho, N.,
Sant’Anna, C., Soares, S., Borba, P., Kulesza, U., Rashid, A.: On the Impact of Aspectual
Decompositions on Design Stability: An Empirical Study. In: Bateni, M. (ed.) ECOOP
2007. LNCS, vol. 4609, pp. 176–200. Springer, Heidelberg (2007)

20. Sant’Anna, C., et al.: On the modularity assessment of aspect-oriented multiagent
architectures: a quantitative study. IJAOSE 2, 34–61 (2008)

21. Silva, B., et al.: Concern-based cohesion as change proneness indicator: an initial empirical
study. In: ICSE WETSoM, pp. 52–58 (2011)

22. Chavez, C., Kuleszay, U., et al.: The AOSD Research Community in Brazil and its
Crosscutting Impact, AOSD-BR (2011)

23. AOPMetrics Project home, http://aopmetrics.tigris.org
24. The AspectJ project, http://www.eclipse.org/aspectj
25. Jan, H.: Design Patterns, http://hannemann.pbworks.com/Design-Patterns

	The Effect of Design Patterns on Aspect Oriented
Software Quality–An Empirical Evaluation
	Introduction
	Measurement Process and a Quality Model
	Empirical Evaluation
	Software Quality Assessments through OO and AO Metrics
	Descriptive Statistics
	Results and Discussions
	Results
	Discussion

	Related Works
	Concluding Remarks
	References

