
Recent Developments in Scheduling

and Allocation of High Level Synthesis

M. Chinnadurai1 and M. Joseph2

1 E.G.S. Pillay Engineering College
Nagore, Nagapattinam - 611002, India

chinnaduraimurugan@yahoo.com
2 Mother Terasa College of Engineering and Technology

Illuppur, Pudukkottai - 622102, India
mjoseph mich@yahoo.com

Abstract. We survey the recent developments of scheduling and allo-
cation techniques in high level synthesis. Technology driven High-Level
Synthesis is a customized high-level synthesis tool to make an optimal
hardware generation, it makes the present knowledgeable of the target
Field Programmable Gate Array. We then describe the different tech-
niques and applications of different scheduling and allocation concepts
in high level synthesis. To maximize the benefits of HLS, this paper de-
scribes the scheduling and allocation algorithms using Technology Spe-
cific Library (TSL).

Keywords: High Level Synthesis, Scheduling, Allocation, Optimiza-
tion, Technology Specific Library.

1 Introduction

Todays VLSI technology allows companies to build large, complex systems con-
taining millions of transistors on a single chip. To exploit this technology, design-
ers need sophisticated Computer Aided Design (CAD) tools that enable them to
manage millions of transistors efficiently. Rapid increases in chip complexity, in-
creasingly faster clocks, and the proliferation of portable devices have combined
to make power dissipation an important design parameter [7]. This paper targets
Technology driven High Level Synthesis (THLS) systems, and introduces an ex-
act approach to the scheduling and allocation problem for Technology Specific
Library (TSL).

1.1 High-Level Synthesis

High Level Synthesis (HLS) is a sequence of tasks that transforms a behavioral
representation into a Register Transfer Level (RTL) design. The input to the
high-level synthesis process is given in an algorithmic level specification, such as
behavioral VHDL. This type of specification gives the required mapping from
sequences of inputs to sequences of outputs [5]. The specification should constrain

N. Meghanathan et al. (Eds.): CCSIT 2012, Part III, LNICST 86, pp. 327–336, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

328 M. Chinnadurai and M. Joseph

the internal structure of the system to be designed as little as possible. From
the input specification, a synthesis system produces a description of a data path,
that is, a network of registers, functional units, multiplexers and buses.

1.2 Technology Driven High Level Synthesis

To retain designers technology knowledge coded into the design, and to exploit
the target technology to its potential, HLS tool should be aware of target tech-
nology. THLS, is a customized HLS tool for a particular target technology. It
infers the hardware rightly, based on the target domain knowledge and gener-
ates optimized RTL netlist [1]. All the phases of this tool are knowledgeable of
the target technology. In this tool, parses uses AGs (Attribute Grammar), to
attach target specific attributes to generate technology attributed parse tree.
Elaboration then generates Target Specific Intermediate Representation (TSIR)
from that annotated parse tree. Synthesizer converts this TSIR into hardware
after optimization. It uses the Technology Specific Library (TSL) not a generic
library like Library of Parameterized Modules (LPM).

1.3 Target Technology

At the highest level, FPGAs are reprogrammable silicon chips. Using prebuilt
logic blocks and programmable routing resources, you can configure these chips
to implement custom hardware functionality without ever having to pick up a
breadboard or soldering iron [6]. You develop digital computing tasks in soft-
ware and compile them down to a configuration file or bitstream that contains
information on how the components should be wired together.

2 Related Surveys

There is no paper, which comprehensively survey the scheduling and algorithm
techniques in HLS. The scheduling problem will undoubtedly remain an area of
research for years to come, so this survey becomes an essential one.

Azeddien M. Sllame et.al. [9] designed the list based efficient algorithms for
high level synthesis, it concentrated on the scheduling process because the main
design decisions such as the number of hardware resources, clock cycle time,
and implementation styles (pipeline, multi-cycle operation, micro-operations,
etc.) are made during the scheduling process. The proposed methodology for
the proposed schedule exploits some inherent properties of the behavioral flow
graphs of Digital Signal Processing systems. It also allows us to incorporate
some information extracted from DFG structure to guide the scheduler to find
near-optimal/optimal schedules quickly. The method of [12] follows to find a sym-
bolic representation of all minimal latency schedules allowed by a given set of
resources. Furthermore, each schedule is (symbolically) associated with all valid
subsets of allocated resources, so that the combined space can be explored for
efficient allocation purposes. This is achieved by encoding all possible allocations

Recent Developments in Scheduling and Allocation of High Level Synthesis 329

of resources within the given limits. The method also gives target both combi-
national resource and register minimization. A goal to challenge for crosstalk
estimation or optimization at higher abstraction levels is the non-availability of
neighborhood details of interconnects until the routing stage in the design flow
[14].

3 Basic Techniques

Due to its complexity, high level synthesis is divided into a number of distinct
yet inter-dependent tasks:

– Selection: What kind of resources are required?
– Allocation: How many resources are necessary?
– Binding: Which operations have to be performed by a specific resource?
– Scheduling: When should specific operations be activated?

A lot of research is done in finding algorithms that solve these tasks satisfac-
tory. The algorithms used, and the order in which they solve the tasks depend
on the constraints and objectives given. Scheduling and allocation are the most
important tasks in order to synthesize circuits that are efficient in terms of area
and performance. They are strongly related and inter-dependent. For example,
scheduling attempts to minimize the number of required control steps subject
to the amount of available hardware which depends on the results of allocation.
Likewise, allocation exploits concurrency among operations to allow sharing of
hardware resources, where the degree of concurrency is determined by schedul-
ing. The essentiality of a Control and Data Flow Graph in High Level Synthesis
and Hardware/Software Cosynthesis has been highlighted in [10].

3.1 Scheduling

Operation scheduling, or in short scheduling, deals with the assignment of each
operation to a time slot corresponding to a clock cycle or time interval. Typically,
the input to this task consists of a control and data flow graph (CDFG), a set
of available hardware resources and a performance constraint [10]. A schedule
will be generated such that the data/control dependency defined by the CDFG
will not be violated and the performance constraint is satisfied. Since scheduling
determines which operations can be assigned to the same time slot, it affects the
degree of concurrency of the resulting design and thus its performance. Further.
the maximum number of concurrent operations of a given type in a schedule is
a lower bound on the number of required hardware resources for that operation.
Therefore, the choice of a schedule affects the cost of the implementation and
consequently scheduling plays an important role in high-level synthesis.

3.2 Data Path Allocation

In general, data path allocation and binding deal with the problem of which re-
sources are used to realize in the physical implementation. Such resources include

330 M. Chinnadurai and M. Joseph

registers, memory units and different functional units as well as their commu-
nication channels. The basic principle is to share resources as much as possible
provided that the performance and other design criteria can be satisfied. Alloca-
tion and binding carry out selection and assignment of hardware resources for a
given design. Allocation determines the type and number of hardware resources
for a given design. Binding assigns the instance of an allocated hardware resource
to a given data path node [2]. Different data path operations can share the same
hardware resource if they are not executed at the same time. For example, an
adder can be shared by two additions if they are not executed during the same
clock cycle.

4 Efficient Scheduling and Allocation Algorithms

Over the years researchers have tried to come up with various kinds of solutions
to the scheduling problem. Several algorithms have been put forth and each one
has it own advantages and disadvantages. Scheduling algorithms can be broadly
classified into time constrained and resource constrained scheduling, based on
the goal of the scheduling problem.

4.1 The Basic Scheduling Problem

In more complex behaviors, the CDFG can also represent conditional branches,
loops, etc., hence the name ”Control/Data Flow Graph”[10]. We give different
scheduling algorithms with example.

Time and Resource Constrained Scheduling (TRCS). To find a feasible
(or optimal) schedule and also meets resource constraints.

Chaining and Multicycling. Each operation type requires the same amount
of time to execute, and that the control step length(i.e. the clock period) is equal
to that execution time.

The Hierarchical Conditional Dependency Graph (HCDG) is a powerful in-
ternal design representation and can effectively accommodate design descrip-
tions with dataflow-intensive and/or control flow intensive behaviors. Existing
HLS heuristics successful for dataflow designs can be easily adapted to HCDG
and novel scheduling heuristics for conditional behaviors. The hierarchical con-
trol representation, mutual exclusiveness identification capabilities, and formal
graph transformations lead to HCDG-based scheduling approach effectively ex-
ploiting all of the existing scheduling optimization techniques and enjoying their
combined benefits. Both speculative execution and conditional resource sharing
are combined in a uniform and consistent framework. Recent work applying a
constraint logic programming algorithm on HCDGs [10] indicates that schedules
provided by the described heuristic are close to optimal.

Recent Developments in Scheduling and Allocation of High Level Synthesis 331

4.2 Some Common Scheduling Algorithms

The following is the list of some commonly preferred scheduling algorithms.

– ASAP / ALAP Scheduling
– List Scheduling
– Force Directed Scheduling
– Integer Linear Programming formulation

For a given data path, the minimum execution time is basically equal to the
length of the critical path which consists of a sequence of control places which
dominating the time needed for a token of variables allocation to flow from the
initial place to the final place. This type of method to detect the critical path
is based on the reachability tree. When two modules are merged, the operations
executed on these modules must be scheduled in different control steps, so that
they can share the same component. Similar for registers, the variables stored
in these registers must be disjoint and present the rescheduling transformation
which is performed by a efficient merge-sort algorithm based on a controllabil-
ity/observability enhancement strategy [8].

A goal to challenge for crosstalk estimation or optimization at higher abstrac-
tion levels is the non-availability of neighborhood details of interconnects until
the routing stage in the design flow [14]. In the proposed approach, design by a
typical input sequence and synthesize it to an RTL netlist through HLS System.
Crosstalk is a function of data correlations as well as physical characteristics. It
gives 23.5% of the optimization for bus based designs. To achieve efficient inter-
connect solutions; data path synthesis approaches in the past have targeted their
schedules on to architectures using register files and multiport memories. The
proposed approach of [15] is uses the tight packing function for scheduling pro-
cessing efficiently. The allocation of hardware resources and pipeline processing
can be implemented by this approach and also apply this technique to registers,
MUXes and Functional units also.

4.3 Efficient Scheduling of Conditional Behaviours for HLS

As hardware designs get increasingly complex and time-to-market constraints get
tighter there is strong motivation for High-Level Synthesis (HLS) [10]. HLS must
efficiently handle both data flow dominated and control flow dominated designs
as well as designs of a mixed nature. In the past efficient tools for the former
type have been developed but so far HLS of conditional behaviors lags behind.
To bridge this gap an efficient scheduling heuristic for conditional behaviors is
presented.

Heuristic and the techniques it utilizes are based on a unifying design rep-
resentation appropriate for both types of behavioral descriptions, enabling the
proposed heuristic to exploit under the same framework several well-established
techniques (chaining, multicycling) as well as conditional resource sharing and
speculative execution which are essential in efficiently scheduling conditional
behaviors.

332 M. Chinnadurai and M. Joseph

4.4 Optimization on HLS Scheduling for Conditional Statements

As-Fast-As-Possible (AFAP) is a path-based scheduling algorithm that ensures
the minimum number of control steps for all possible sequences of operations in
the control flow graph, under given resource constraints. This technique requires
scheduling one operation into different states depending on the path. Although
the worst case computational complexity is non-polynomial, there are no execu-
tion time problems in practice. The Condition Vector List Scheduling (CVLS)
algorithm exploits a more ”global parallelism” [4].

5 A New Approach to Scheduling and Allocation
Algorithms Using TSL

5.1 TSL

Technology Specific Library (TSL) is not a generic library like LPM and it is a
library of technology specific devices, defined based on the target technology.

5.2 TSIR

Target Specific Intermediate Representation (TSIR) is a technology details that
are embedded into the CDFG to make it technology specific. Elaboration process
generates Technology Specific Intermediate Representation (TSIR) from this an-
notated parse tree. The optimizer then applies compiler optimization techniques
on the CDFG, to improve it, keeping speed, silicon area and power as optimiza-
tion factors.

5.3 Scheduling Strategies Using TSL

In HLS, each segment of register availability in the shift register operation cre-
ates register variables with ranges in associates with elaborator. But this solution
gives only sub-optimal optimization, since it occupies more silicon area and con-
sumes more power. But, THLS converts [1] the same code segment into a parses
by determining the range i.e. register width. Elaboration associates register vari-
able with range. Then it infers a structural shift register object, a TSIR node.
The choice between register and shift register is possible based on the width
of the identifier. Scheduling strategies to the operation in the TSL for register
variables after association with Elaboration. Optimizer then improves this.

In figure 1 shows the range based scheduling and allocation is performed an
optimistic binding solutions, which has a minimized the resource usage. So, the
minimization of the resources like functional units, registers and MUXes. It is
may be based on the better solutions for the scheduling and allocation concepts.
In step 1, the creation of feasible solutions of the register variables and ranges
are evaluated. In step 3, the different constraints is performed to generate a valid
scheduling which improves the performance of the THLS systems.

Recent Developments in Scheduling and Allocation of High Level Synthesis 333

Fig. 1. Scheduling and Allocation design flow using TSL

In the proposed approaches, the merging approach has to be applied for the
repeated operations into a single or optimized solution and optimize the oper-
ations during scheduling and allocation is mainly concentrated on the design
[13]. A unique approach to scheduling and allocation using the above mentioned
approaches in the Technology driven High Level Synthesis. M.J.M. Heijiligers,
et.al.[11] also described a unique approach to scheduling and allocation problem
using genetic algorithm(GA).

Hardware Constraints for the New Approaches. Constraints are restric-
tions imposed on the implementation stage which are used to guide the schedul-
ing. Constraints are the following:

– Variables can be assigned only once in one control state.
– IO ports can be read or written only once in one control state.
– Functional units can be used only once in a control state.
– The maximal delay within one control state limits the number of operations

that can be chained.

Constraints are represented as intervals in the control flow graph. This type of
representation allows constraints to be applied on a path basis. A constraint [13]
interval involves a sequence of operations and it implies that these operations
cannot all be executed in the same cycle step. In other words a new state must
start at some point within the interval, for the constraint to be met.

5.4 Allocation Strategies Using TSL

Allocation chooses the type and number of functional units and registers, and
thus determines part of the final cost (the interconnection cost still has to be

334 M. Chinnadurai and M. Joseph

identified) and performance (the clock cycle is affected by this stage). The de-
signer must still explore the design space by defining the acceptable maximum
numbers of functional units and registers. Believe that this data path architec-
ture definition is too critical to be left to a tool, and provide the designer with a
quick feedback on the effect of his decisions. In TSL, each resources of funcational
units and registers is to be allocated efficiently by the new approach.

5.5 New Scheduling Method for Low Power Design

Chi-Co Lin proposed a new scheduling method for low power design is the in-
ternal data structure, CDFG, which represents both the control flow and data
flow effectively[3], is constructed. The CDFG represents the constraints which
limit the hardware design such as conditional branch, sequential operation and
time constraints. In order to represent control flow, data dependency and such
constraints as resource constraints and timing constraints effectively, the CDFG
represents the constraints which limit the hardware design in such a way:

– no variable is assigned more than once in each control step
– no I/O port is accessed more than once in each control step
– the total delay of operations in each control step is not greater than the

given control step-length
– all designer imposed constraints for scheduling particular operations in dif-

ferent control steps are satisfied.

In order to satisfy any of the above conditions, the proposed scheduling algorithm
generates constraints between two nodes that must be scheduled into different
control steps.

6 Power Optimization

Table 1 gives the details of power consumption for the FPA implementation
under these three synthesis tools. In this process, the device XC4VLX15 are used
in Virtex-IV for this experimentation. Total power consumption is 161 mW for
ISE tool and 160 mW for THLS tool. THLS is able to reduce the dynamic power
1 mW and thus optimizes power [1]. It has 0.6% reduction in power consumption
over ISE. (Note: Power consumption is significant for larger volume applications
only. On the other hand, power consumption is less and insignificant in low
volume applications.)

Icaurs compiler cannot handle floating-point algorithms. ISE cannot handle
floating-point algorithms. THLS customizes the floating-point algorithms into
fixed-point and synthesizes. THLS compiler has 26% reduction in silicon usage
over the conversion (fixed-point) and compiler methodology (ISE). It has 0.6%
reduction in power consumption over ISE.

Recent Developments in Scheduling and Allocation of High Level Synthesis 335

Table 1. Power Consumption for FPA

No. Metric THLS ISE

1 Quiescent Power 160 mW 160 mW

2 Dynamic Power 000 mW 001 mW

3 Total Power 160 mW 161 mW

6.1 Power Aware High Level Synthesis

High-level synthesis determines which step the operations will be processed in,
resources number and the power of resources. They describes three points impact
power dissipation in both temporal and spatial aspect. The resources number is
the crucial factor of final area of the design [4]. Due to the interaction of two
factors, it is essential to make a tradeoff of two objects in the design process.

6.2 Dynamic FU Allocation

As we all know, the behavioral synthesis process consists of three phases: alloca-
tion, assignment and scheduling. These processes determine how many instances
of each resource are needed (allocation), on what resources a computational op-
eration will be performed (assignment) and when it will be executed (scheduling)
[4]. The FU allocation is the vital step to determine the final area and power
dissipation. It is widely accepted that the total switching activity (SW) between
FUs minimal, the dynamic power dissipation will be lowest with the same other
conditions. To achieve dynamic power minimal, the total SW must be smaller.
All above we need to do is the proper FU allocation, if the FU allocation is op-
timal, after applying better scheduling and binding algorithm, the power value
will be close to minimal. Since the number of FU is integer, the extremely opti-
mal allocation hardly achieves. The closest integer solution is identified instead,
and it is called the proper solution.

7 Summary

This paper presented the detailed survey of different scheduling and allocation
techniques in High Level Synthesis. It described the several scheduling algo-
rithms commonly used today in high level synthesis. Then this paper described
the technologies used in the Technology driven High Level Synthesis and also
presented a new techniques for scheduling and allocation algorithms using TSL
to improve the Speed, (silicon)Area and Power.

Acknowledgments. We thank to the anonymous reviewers for their numerous
insightful and constructive comments.

336 M. Chinnadurai and M. Joseph

References

1. Joseph, M., Bhat, N.B., Chandra Sekaran, K.: Technology driven High-Level Syn-
thesis. In: International Conference on Advanced Computing and Communication
- ADCOM 2007. IEEE, Indian Institute of Technology Guwahati, India (2007)

2. Harish Ram, D.S., Bhuvaneswari, M.C., Logesh, S.M.: A Novel Evolutionary Tech-
nique for Multi objective Power, Area and Delay Optimization in High Level Syn-
thesis of Datapaths. In: ISVLSI 2011, pp. 290–295 (2011)

3. Lin, C.-C., Yoon, D.-H.: New Efficient High Level Synthesis Methodology for Low
Power Design. In: International Conference on New Trends in Information and
Service Science (2009)

4. Wu, F., Xu, N., Zheng, F., Mao, F.: Simultaneous Functional Units and Register
Allocation Based Power Management for High-level Synthesis of Data-intensive
Applications (2010)

5. McFarland, M.C., Parker, A.C., Campasona, R.: Tutorial on High-Level Synthesis.
In: 25th ACM IEEE Design Automation Conference (1998)

6. Brown, S.D., Francis, R.J., Rose, J., Vranesic, Z.G.: Field Programmable Gate
Arrays. Kluwer Academic Publishers (1992)

7. Gajski, D.D., Dutt, N.D., Wu, A., Lin, S.: High-Level Synthesis: Introduction to
Chip and System Design. Kluwer Academic Publishers (1992)

8. Yang, T., Peng, Z.: An efficient algorithm to integrate scheduling and allocation
high-level test synthesis. In: Proceedings of Design Automation Test Eur., vol. 81,
pp. 74–81 (1998)

9. Sllame, A., Drabek, V.: An Efficient List-Based Scheduling Algorithm for High-
Level Synthesis. In: Proceedings Euromicro Symposium on Digital System Design
DSD 2002, pp. 316–323. IEEE Computer Society (2002)

10. Kountouris, A., Wolinski, C.: Efficient Scheduling of Conditional behaviors for
High Level Synthesis. ACM Transactions on Design Automation of Electronic Sys-
tems 7(3), 380–412 (2002)

11. Heijligers, M.J.M., Clutmans, L.J.M., Jess, J.A.G.: High-Level Synthesis Schedul-
ing and Allocation using Genetic Algorithms. In: Proceedings of Asia and Pacific
Design Automation Conference, Chiba, Japan, pp. 61–66 (1995)

12. Cabodi, G., Nocco, S., Lazarescu, M., et al.: A Symbolic Approach for the Com-
bined Solution of Scheduling and Allocation. In: Proceedings of ISSS 2002, Kyoto,
Japan, pp. 237–242 (2002)

13. Sait Sadique, M., Ali, S., Benten, M.S.: Scheduling and Allocation in High Level
Synthesis using Stochastic Techniques. Microelectronics Journal 7 27(8), 693–712
(1991)

14. Sankaran, H., Katkoori, S.: Simultaneous Scheduling, Allocation, Binding, Re Or-
dering, and Encoding for Crosstalk Pattern Minimization During High Level Syn-
thesis. IEEE Transaction on Very Large Scale Integration (VLSI) Systems 19(2)
(2011)

15. Burns, F., Shang, D., Koelmans, A., Yakovlev, A.: Scheduling and allocation using
closeness tables. IEE Proceedings - Computers and Digital Techniques 151(5), 332–
340 (2004)

16. Free Floating-Point Madness, http://www.hmc.edu/chips
17. Electronic Design Interchange Format, http://www.edif.org
18. FPGA, CPLD, and EPP Solutions, http://www.xilinx.com
19. Icarus Verilog Simulation and Synthesis Tool, http://www.icraus.com

http://www.hmc.edu/chips
http://www.edif.org
http://www.xilinx.com
http://www.icraus.com

	Recent Developments in Scheduling and Allocation of High Level Synthesis
	Introduction
	High-Level Synthesis
	Technology Driven High Level Synthesis
	Target Technology

	Related Surveys
	Basic Techniques
	Scheduling
	Data Path Allocation

	Efficient Scheduling and Allocation Algorithms
	The Basic Scheduling Problem
	Some Common Scheduling Algorithms
	Efficient Scheduling of Conditional Behaviours for HLS
	Optimization on HLS Scheduling for Conditional Statements

	A New Approach to Scheduling and Allocation Algorithms Using TSL
	TSL
	TSIR
	Scheduling Strategies Using TSL
	Allocation Strategies Using TSL
	New Scheduling Method for Low Power Design

	Power Optimization
	Power Aware High Level Synthesis
	Dynamic FU Allocation

	Summary
	References

