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Abstract. The Reconstruction Conjecture is one of the most engaging problems 
under the domain of Graph Theory. The conjecture proposes that every graph 
with at least three vertices can be uniquely reconstructed given the multiset of 
subgraphs produced by deleting each vertex of the original graph one by one. 
This conjecture has been proven true for several infinite classes of graphs,  
but the general case remains unsolved. In this paper we will outline the  
problem and give a practical method for reconstructing a graph from its  
node-deleted. 
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1 Introduction 

The Reconstruction Conjecture, formulated by Kelly and Ulam in 1942 [11, 16], 
asserts that every finite, simple, undirected graph on at least three vertices is 
determined uniquely (up to isomorphism) by its collection of 1-vertex deleted 
subgraphs. 

Harary [7] formulated the Edge-Reconstruction- Conjecture, which states that a 
finite simple graph with at least four edges can be reconstructed from its collection of 
one edge deleted sub graphs. 

The Reconstruction Conjecture is interesting not only from a mathematical or 
historical point of view but also due to its applicability in diverse fields. 
Archaeologists may try to assemble broken fragments of pottery to find the shape and 
pattern of an ancient vase. Chemists may infer the structure of an organic molecule 
from knowledge of its decomposition products. In bioinformatics the Multiple 
Sequence- Alignment problem [1] is to reconstruct a sequence with minimum gap 
insertion and maximum number of matching symbols, given a list of protein or DNA  
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sequences. In computer networking, a reconstruction problem can appear in the 
following scenario: given a collection of sketches depicting partial network 
connection in a city from different locations, reconstruct the network of the entire 
city. 

In this paper we will give a solution to this problem, using Matching Polynomial of 
the graph. In general, the reconstruction of graph polynomials can shed some light on 
the Reconstruction Conjecture itself. For example, reconstruction was investigated by 
several authors. In particular, Gutman and Cvetkovic [6] investigated the 
reconstruction of the characteristic polynomial. The existence of a reconstruction for 
the characteristic polynomial was eventually established by Tutte [15]. Tutte also 
established the reconstructibility of the rank polynomial and the chromatic 
polynomial. 

Although the reconstruction of several graph polynomials has been established, no 
practical means of reconstruction exists for any of them. Farrell and Wahid [4] 
investigated the reconstructibility of matching polynomial and gave a practical 
method for reconstruction. 

Although Farrell and Wahid gave a method for reconstruction of the matching 
polynomial they did not provide a practical method for generate the matching 
polynomial for a graph. 

In this paper we will first give an algorithm that can generate the matching 
polynomial of a graph in polynomial time. Then we will give an algorithm for 
reconstructing a graph from its node deleted sub graphs. 

2 Preliminaries 

2.1 Some Definitions 

Multiset. In mathematics, a Multiset (or bag) is a generalization of a set. While each 
member of a set has only one membership, a member of a multiset can have more 
than one membership (meaning that there may be multiple instances of a member in a 
multiset).  
 
Card. A Card of G is an unlabelled graph formed by deleting 1 vertex and all edges 
attached to it.  
 

Deck. The Deck of G, D (G), is the collection of all G‘s cards. Note this is in general 
a multiset. 
 

Graph Isomorphism. Let V(G) be the vertex set of a simple graph and E(G) its edge 
set. Then a graph isomorphism from a simple graph G to a simple graph H is a 
bijection f: V(G) →V(H) such that u v Є E(G) iff f(u) f(v) Є E(H) (West 2000, p. 7). 
If there is a graph isomorphism for G to H, then G is said to be isomorphic to H, 
written G ≈ H.  



 The Reconstruction Conjecture 19 

2.2 Notations 

Our alphabet set is Σ={0, 1}. We use {., ., ., } to denote sets and [ :; : : : ; : ] to denote 
multiset. We use U to denote set union as well as multiset union. We consider only 
finite, undirected graphs with no self-loops. Given a graph G, let V(G) denote its 
vertex set and let E(G) denote its edge set. For notational convenience, we sometimes 
represent a graph G by (V; E), where V=V(G) and E=E(G). By the order of a graph G 
we mean | V(G) |, i.e., the cardinality of its vertex set. 

3 Matching Polynomial and Reconstruction Conjecture   

3.1 Matching Polynomial [4, 5] 

Matching. A matching cover (or simply a matching) in a graph G is taken to be a 
subgraph of G consisting of disjoint (independent) edges of G, together with the 
remaining nodes of G as (isolated) components. 
 

K–matching. A matching is called a K–matching if it contains exactly K edges. 
 

Matching Polynomial. If G contains P nodes, and if a matching contains K edges, 
then it will have P–2K component nodes. Now assign weights W1 and W2 to each 
node and edge of G, respectively. Take the weight of a matching to be the product of 
the weights of all its components. Then the weight of a K–matching will be 
W1

P−2KW2
K. The matching polynomial of G, denoted by m(G), is the sum of the 

weights of all the matchings in G. The matching polynomial of G has been defined as 
m(G)=∑akW1

P–2K W2
K. ak is the number of matchings in G with k edges. 

 
Example.  
 
 
 
 
 

0 – matching = 1 W1 
5 W2 

0 

1 – matching = 6 W1 
3 W2 

1 

2 – matching = 6 W1 
1 W2 

2 

No 3–matching. 
 

m( G ) = W1 
5 + 6 W1 

3 W2 + 6 W1 W2 
 
 
Perfect Matching. A perfect matching is a matching of a graph containing n/2 edges, 
the largest possible. Perfect matchings are therefore only possible on graphs with an 
even number of vertices. We denote the number of perfect matchings in G by δ(G). 
Clearly δ(G) is the coefficient of the term independent of W1 in m(G).  
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e : ViVj Є E(G) 

3.2 Matching Polynomial Generation Using Tree Decomposition 

Algorithm: gen_mpoly( Graph G ) 
 

Input: A simple connected graph G. 
Output: The Matching Polynomial m( G ) of this graph.   

 

Steps: 
1.  if | V(G) | = 1 then  
  return ( create_mpoly( “W1” ) ); 
2. else if | V(G) | = 0 then 
  return ( create_mpoly( “1” ) ); 
3. else 
 return ( create_mpoly(W1 + gen_mpoly(G –Vi) + W2X∑gen_mpoly(G – e))); 
     
 end if. 
4. End 
 

Example.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

m( G ) = W1[W1[(W1XW1)+W2]+W1XW2]+W2[W1XW1+W2]+W2[W1XW1] 
            = W1

4+4W1
2
 W2+W2

2 

1

W2         W1 

Del(3) 
W1 

W1 [ W1 [ (W1 X W1) + W2 ] + W1 X W2 ]  

Del(1 – 3) 

W2 

Del(1 – 2) 

W2 

Del(1) 

W1 

4

3 

2 

W1

W1

W1 

W2 [ W1 X  W1 + W2 ] 

W2 [ W1 X W1 ] 

Del(2) 

W1

1 

W1 Del(3 – 4) 

W2 

Del(2) 

W1 

Del(3 – 4) 

W2 

4

4 

3 

21

3

Del(2 – 3)  Del(3)

42
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  d 

d W1 i = 1

n

i = 1 

n 

i = 1 

n 
 d

d W1 

3.3 Reconstruction of Matching Polynomial [4, 6, 7] 

In order to establish our main result, we will need the following lemma. 
 

LEMMA 1 :  Let G be a graph with n nodes. Then 
 

   m(G) = ∑ m(G -Vi ) 
 
Proof.  
 We establish (1) by showing that the two polynomials A =         m(G) and    
B = ∑ m ( G – Vi ) have precisely the same terms with equal coefficients. 

 
     Let  W1

j W2
k  be a term of A. Then m(G) has a term in W1

j + 1 W2
k . It follows that G 

has a matching S with (j + 1) nodes and k edges. Let Vr Є V(G). Then G – Vr  will 
contain the matching S – Vr . Hence B also contains a term in W1

j W2
k . 

    Conversely, if B contains a term in W1
j W2

k , then there exists a node Vr such that 
G – Vr  has a matching with nodes and k edges. Therefore G has a matching with 
(j+1) nodes and k edges. It follows that m(G) has a term in W1

j + 1 W2
k . Hence A has a 

term in W1
j W2

k . We conclude that A and B have the same kinds of terms. 
We will show that the coefficients of like terms are equal. Let ak W1

j W2
k  be a term 

in m(G). Then the corresponding term in A will be jak W1
j - 1 W2

k . Hence the 
coefficient of W1

j W2
k  in A will be jak. Now, for each matching in G with j nodes, 

there will be exactly corresponding matchings in the graphs G – Vr  with  
j–1 nodes. Since G contains ak such matchings, then B will contain the term W1

j - 1 
W2

k with coefficient jak . Therefore the coefficients of like terms are equal. Hence the 
result follows. 

 
Theorem 1:  
 
 m( G ) = ∑  ∫ m( G – Vi ) dW1 + δ(G) 
 
Proof. This is straightforward from the lemma(1), by integrating with respect to W1. 

4 Node Reconstruction of a Graph   

4.1 Algorithm 

Input: Deck D=[H1;H2;H3;···;Hk] (multiset of subgraphs produced by deleting each 
vertex of the original graph). 
Output: S={G1,G2,G3,···,Gn} where n≥1 and G1≈G2≈G3≈··.≈Gn [≈ : Isomorphic ]. 
 

Steps: 
1. Reconstruct the matching polynomial [ m1( G ) ] of the graph from the given 

deck D by using Theorem 1. 
2. Select any card [ vertex deleted sub graph of the original graph ] Hi  from the 

deck D. 
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3

4

1

2 

V5 

3. Add a new vertex VK to Hi  and connect it with any vertex of Hi by a tentative 
edge, obtaining a graph Gtentative on K vertices. 

4. for i←1 to k – 1 do 
   label the tentative edge between i and VK as XiK . 

5. Generate the 2nd matching polynomial[m2(G)] with variable coefficient using 
the Tree Decomposition method [m2(G)=tree_decomposition(Gtentative) ].  

6. Compare coefficients of m1(G) and m2(G) and generate one or more 
solutions. Store the solutions in solution vectors Soln1 , Soln2 , ··········· Solnn . 
In each solution vector a variable  coefficient Xij can have only two values 0 
or 1. 0 means the tentative edge will be deleted from Gtentative , and 1 means 
the tentative edge will be converted in to a permanent edge. Also calculate 
the Perfect Matching by substituting the solutions into m2( G ).    

7. for every solution [ Soln1 to n ] generate a new graph Gi [ i ≤ n ] from the 
Gtentative according to step6 and add the generated graph in to the output set S 
[S=SU{Gi}].  

 
All of the graphs in the set S are isomorphic. So, select any one of them and this is the 
reconstructed graph isomorphic to the original graph. 

4.2 Example 

Input: 
 
Deck D =  
  
Step 1:[Reconstruct the matching polynomial [ m1( G ) ] of the graph from the given 
deck D by using Theorem 1.] 
 
m( H1 ) = W1

4 + 4 W1
2 W2 + W2

2 ∫ m( H1 ) = W1
5 / 5 + 4/3 W1

3 W2 + W1 W2
2 

m( H2 ) = W1
4 + 3 W1

2 W2 + W2
2  ∫ m( H2 ) = W1

5 / 5 + 3/3 W1
3 W2 + W1 W2

2 
m( H3 ) = W1

4 + 4 W1
2 W2 + 2W2

2  ∫ m( H3 ) = W1
5 / 5 + 4/3 W1

3 W2 + 2 W1 W2
2 

m( H4 ) = W1
4 + 4 W1

2 W2 + W2
2  ∫ m( H4 ) = W1

5 / 5 + 4/3 W1
3 W2 + W1 W2

2 
m( H5 ) = W1

4 + 3 W1
2 W2 + W2

2  ∫ m( H5 ) = W1
5 / 5 + 3/3 W1

3 W2 + W1 W2
2 

 

m1( G ) = W1
5 + 6 W1

3 W2 + 6 W1 W2
2 + δ( G ) [δ( G ) : Perfect Matching] 

 

Step 2: [ Select any card (vertex deleted sub graph of the original graph) Hi  from the 
deck D. ] 
  Here we select   H5 
 
Step 3: [ Add a new vertex VK to Hi  and connect it with any vertex of Hi by a 
tentative edge, obtaining a graph Gtentative on K vertices. ] 
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3 

V5 

X35

X45

X25

X15 

4

1

2

W1
3 + W1 W2 (X25 + X35 + 1) 

W1
3+W1

2  

W1
3 + W1 W2 ( X35 + X45 ) 

Del( 3 ) 

 W1 W1
4+W1

2W2(X25+X35+X45+2) 
+W2

2X45 

V5 

Del(1–4) 

X35 

V5 X15 Del(1–5) 

Del(1–2) 

W2 Del(1) 
 W1 

3 2

X25 

3

4 

X35 

X45 

3
V5

4 

2 

Del(3–5) 
      W2 X35 

4
X35 

V5 

1

Del( 4 – 5 ) 
        W2  X35 

W1 

W1

4 

X45 

2 

X35 

X25 

3 

V5 

V5 

X35 

X45 

X25 

X15 

4

1 

2 

Step 4: [ for i ←1 to k – 1 do 
        label the tentative edge between i and VK as XiK . ] 
 
 
 
  
 
 
 

Step 5: [ Generate the 2nd matching polynomial [ m2( G ) ] with variable coefficient 
using the Tree Decomposition method  [ m2(G) = tree_decomposition( Gtentative ) ]. ]   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
m2(G) = W1

5+W1
3W2(X15+X25+X35+X45+3)+W1W2

2(X15+X25+2X35+2X45+1) 
 

Step 6 : [Compare coefficients of m1(G) and m2(G) and generate one or more 
solutions. Store the solutions in solution vectors Soln1, Soln2,···,Solnn .] 
by comparing coefficients of m1( G ) and m2( G ) we get  
 X15 + X25 + X35 + X45  = 3  X15 + X25 + X35 + X45  = 5 
It is clear that the only solutions to these equations are 
 Soln1 = [ 0, 1, 1 ,1 ]  and  Soln2 = [ 1, 0, 1, 1 ]  
by substituting into m2( G ) we get in both cases δ( G ) = 0. 
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ViVjЄE(G) 

Soln2 = [ 1, 0, 1, 1 ] 

Soln1 = [ 0, 1, 1 ,1 ] 

3 

V5 

X35 

X45 

X25

X15 

4

1

2

3 

V5 

X35

X45

X25 4

1

2

1 

2 3 

V5 

X35

X45

X15 

4

Step 7: [for every solution [Soln1 to n ] generate a new graph Gi[i ≤ n] from the Gtentative 

according to step6 and add the generated graph in to the output set S [S=SU{Gi}] ]. 
We can now use Soln1 to constructed a graph G1  and Soln2 to constructed a graph G2 

from Gtentative .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It can be easily confirmed that the mapping defined by φ:G1 → G2 such that   
φ(1) ≡  3; φ(2) ≡ 5; φ(3) ≡ 4; φ(4) ≡ 2 and φ(5) ≡ 1 is an isomorphism. Hence GI≈G2.     

4.3 Analysis 

On arbitrary graphs or even planar graphs, computing the matching polynomial is #P–
Complete(Jerrum 1987)[10]. 

But using Tree Decomposition we can compute the matching polynomials for all 
the subgraphs for the given deck in polynomial time. 

Tree Decomposition contains recursive calls to itself, its running time can often be 
described by a recurrence. The recurrence for Tree Decomposition – 
 
  O(1)  if n ≤ 1 

T(n)  = 
  T( n–Vi ) + ∑ T( n–ViVj ) otherwise [for i←1 to n-1] 
  
 
     T(n) = O(n2) 
Step 1 requires  O(n2) time. Step 2 & 3 require O(1) time. Step 4 requires O(n) times. 
Step 5 ( Tree Decomposition ) requires  O(n2) time. Step 6 requires exponential time 
O(2n), and Step 7 requires O(n) times. 
   So, if we can find a polynomial time algorithm for solving this Underdetermined 
system in Step7 then we can easily reconstruct the original graph in polynomial time. 
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5 Conclusions   

As presented in this paper, if G is a simple undirected graph with at least three 
vertices then we can use the proposed algorithm for reconstruct G from its vertex 
deleted subgraphs. Although the proposed algorithm is not tested for all classes of 
graph, but we can conclude that suppose that a graph G is characterized by a 
particular matching polynomial and suppose that the matching polynomial is 
reconstructible, then G is reconstructible. 
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