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Abstract. This paper initially discusses how Geometric Filters
(G-Filters) are useful as an efficient shape filter when compared to other
shape filter such as mathematical morphology. The algorithm for
constructing complete distributive lattice of polyhedrons for three
dimensional rectangular grid is divided in to two algorithms. The first al-
gorithm proposes a new way automatic construction of 256 convex poly-
gons by removing the duplicate subsets. The second algorithm proposes
a way for hierarchical path enumeration in visualizing the relationships
between convex polyhedron sets and their corresponding subsets. The
final lattice is generated based on the information provided by these two
algorithms.
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1 Introduction

In very broad set-theoretic terms, a system is a filter which has a separate, to
partition a given set of entities in to disjoint subsets, based on whether they
have or do not have a stipulated property. One does, in principle, conceive of a
procedure for such a partitioning, one that is a function of time and space, and
which depends for its realization on physical device, be it a sieve, or on electronic
circuit, or a computer.

In the study and design of such filtering procedures for signals, one crucial
underlying principle seems to be the following: System models of signal processing
operations and those of sources from which signals originate should belong to the
same class. This principle was introduced by Rajan and Sinha , and is referred
here as R-S Principle(RSP). It is implied here that signals are to be thought of
as outputs of sources, and that their description is not really complete unless we
specify source models.
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The existing time invariant systems which can serve as filters, are governed by
differential equations do not serve as canonical models. These systems of filter
theory cannot be able to serve the purpose of efficient image processing oper-
ations. In general, complex systems that are traditionally modelled in terms of
differential equations and partial differential equations could be ideally modelled
and studied in the framework of cellular automatal2].

Alternatively, one can create generalized spatial domain techniques for pro-
cessing images and pictures, which make use of shape based filters. Morphological
image processing is one such technique[I][7][8] [9)[10], which deals with processing
of form and structure of digital images. Yet this technique does not measure up
to fulfil the requirements of shape based filtering similar to traditional frequency
based filtering. The question that arises now is whether it is possible to develop
a technique or at least set a trend which leads to the formulation of a theory for
shape based filtering. The theoretical foundations for such shape based filters
are studied in the framework of Geometric filters also called G-Filters[2][4][5][6].
The G-Filters are practically implemented in the processing of 2-D images to
effectively and efficiently identifying the shape features such as corners, curves,
lines, dots and skeleton[2][4][5]. The Logical Image processing system (LIPS)
version 3.0 implemented these G-Filters for efficient shape feature detection for
2-D images.

There are no such techniques formulated till now for the 3-D images under
the rectangular grid. The algebraic intricacies and algorithms development to
simulate these theoretical foundations of 3D G-filters are separated in to two
papers.

The paper (Part I) [11] discusses the theoretical foundations of 2-D and 3-D
G-Filters over the rectangular grid. The same paper initially discusses the 2-D
Geometrical filters, and then proposes the 3-D Geometrical filters (3-D G-Filters)
and their algebra.

In this paper we deal with the implementation and algorithms related to 3-
D G-Filters. The algorithm in the section 2 discusses automatic construction
of 255 convex polyhedrons used for constructing complete distributive lattice[3]
of polyhedrons for rectangular grid. In Section 3, we discuss the algorithm for
hieararchical path enumeration of convex polyhedron set and their relationships
formed in hierarchical fashion. Section 4 discusses the results.

2 Algorithm for Automatic Construction of Convex
Polyhedron Sets and Their Corresponding Subsets
over Rectangular Grid

Consider a 3x3x3 rectangular grid, in which there are 27 neighbourhood elements
including central pixel. The central idea is to construct 256 unique convex poly-
hedrons in a 3-D rectangular grid(3x3x3 array of cells), by dropping one corner,
two corners, three corners, four corners, fiver corners, six corners, seven corners
and eight corners at a time with different probable combinations. The initial set
A contains all the eight different corner voxels of the 3x3x3 voxel grid. (for more
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details on numbering the corner voxels refer the paper [11] published in the same
conference) i.e.

A={1,3,7,9, 19, 21, 25, 27}

By dropping one voxel at a time we can construct 8 different subsets as follows:
B1={3, 7,9, 19, 21, 25, 27}

B3={1, 7,9, 19, 21, 25, 27}

B7=11, 3,9, 19, 21, 25, 27}

B9={1, 3, 7, 19, 21, 25, 27}

B19={1, 3,7, 9, 21, 25, 27}

B21={1, 3, 7,9, 19, 25, 27}

B25={1, 3, 7,9, 19, 21, 27}

B27={1,3,7,9, 19, 21, 25}

The dropped voxel can be easily identified by looking at the subset index. For
example, the voxel 1 is dropped from the set of corners i.e. A and formed a
subset B1, here one can observe that the dropped voxel is considered as a index
of the new subset B. For complete list of the 256 convex polyhedrons refer to
Paper (Part I)[11].

For reducing complexity in finding subsets from the set, only one element is
removed from the set at each level. For example by removing one element from
the set A (level 1) we found subsets B1, B3, B7, B9, B19, B21, B25, B27 (level
2). In the similar way by removing one element from B1 we found C1,3, C1,7,
C1,9, C1,19, C1,21, C1,25, C1,27 (level 3). In the level 3 we found 28 such unique
C subsets. In the similar way we have 56 D subsets in level 4 by discarding one
element from C sets, 70 E subsets in level 5 by discarding one element from
D sets, 56 F subsets in level 6 by discarding one element from E sets, 28 G
subsets in level 7 by discarding one element from F sets, 8 H subsets in level 8
by discarding one element from G sets, and 1 E subset in level 9 by discarding
one element from H sets. When all the subsets are properly arranged we get a
complete distributive lattice structure as shown in Figure 3. The total number
of convex polyhedrons is calculated by adding all the subsets i.e. 256. The list
of all the subsets and their corresponding elements are discussed in Paper (Part
I)[LT].

So this section discusses the algorithm for automatic generation of convex
polyhedron subsets from the set A.

Algorithm 1: Automatic Generation of Convex Polyhedrons

Input: Set A. i.e. A= {1, 3, 7, 9, 19, 21, 25, 27}

Output: 255 subsets

Steps:

Stepl: Declare a array al ] and initialize it with
{1, 3, 7, 9, 19, 21, 25, 27}

Step 2:
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For Subset Group B:
for ( int i = 0; i <8; i++)
{
for (int j = 0; j <8; j++)
{ Print B+ al[i]l+{=
if ((G == 1) )
{
//Dont do anything

Print alj] + ,
b
} print }\n
X
Group C:
for(int i=0;i<=7;i++)
{
for (dnt j =1 + 1; j <= 7; j++)
{
Print C+al[i]+al[jl+{=
for (int d = 0; d <= 7; d++)
{
if (d==1 || == 3j)
{ //Dont do anything
}
else
{
Print al[d]+,
X
X
} print }\n
X
Similarly the group D subset can be generated with four for
loops. Expect out for loop and inner most for loop every for
loop is intialized to its previous for loop variable+l.
For Group E 5 Nested for loops
Group F 6 Nested for loops
Group G 7 Nested for loops
Group H 8 Nested for loops
Group I 9 Nested for loops

The output of the above said algorithm is discussed in the results section i.e. Section 4
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3 Algorithm for Constructing Hierarchical Relationships
among Convex Polyhedron Sets and Their
Corresponding Subsets

The purpose of this algorithm is to make hierarchical path enumeration among
convex polyhedron sets and their subsets. As discussed in the previous section
the sets C1,3, C1,7, C1,9, C1,19, C1,21, C1,25, C1,27 are subsets of B1. This
algorithm will construct a tree view of the relationships mention above such sets.
The algorithm present in this section will form a hierarchical relationship among
sets and subsets.

Algorithm 2: Hierarchical Path Enumeration

Input: Set A. i.e. A= {1, 3, 7, 9, 19, 21, 25, 27}
Output: Tree view of convex polyhedron sets and their
corresponding polyhedron subsets

Steps:

Stepl: Declare a array al ] and initialise it with
{1, 3, 7, 9, 19, 21, 25, 27}

Step 2:

For Subset Group B:

Create Empty tree

Add set A as root node to the tree

for ( int i = 0; i <8; i++)

{
Create Empty BNode
Name node as "B" + al[i];
Add the node generated to the
Root node i.e. A.
for (int j = 0; j <8; j++)
{
// Logic for Subset Creation
}
}
Group C:
for(int i=0;i<=7;i++)
{
for (dnt j =1 + 1; j <= 7; j++)
{

Create Empty CNode

Name node as C+al[il+,+al[j]

Add the node generated to the
Parent node as follows:
mainNode.Nodes[i] .Nodes.Add (CNode) ;
for (int d = 0; d <= 7; d++)
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{
// Logic for Subset Creation
}
}
}
Group D:
for (int i = 0; i <= 7; i++)
{
for (int k =1 + 1; k <= 7; k++)
{
for (int j
{
Create Empty Node
Name node as D+al[i]+al[k]+al[j]
Add the node generated to the
Parent node as follows:
m= ((k-1) - i);
mainNode.Nodes[i] .Nodes [m] .
Nodes.Add (DNode) ;
for (int d = 0; d <= 7; d++)
{
// Logic for Subset Creation
}
}
}

k+1; j<=7; j++)

X
Similarly the group E subset can be generated with five for loops.
For Group F 6 Nested for loops

Group G 7 Nested for loops

Group H 8 Nested for loops

Group I 9 Nested for loops

The output of the above said algorithm is discussed in the results section i.e. Section 4
4 Results

The algorithms discussed in the section 2 and 3 are implemented in C#.NET
language. The results of the convex polyhedron construction are shown in the
Fig 1. The Fig 1(a) shows results of some of the convex polyhedrons. The other
subsets ending with F, G, H and I are shown in the Fig 1(b). The algorithm
discussed in the section 2 is able to generate all 255 convex polyhedrons. The
complete list of convex polyhedrons can not be listed here as output. So the
partial list is shown in the Fig 1(a) & 1(b). The results of algorithm discussed
in the section 3 is shown in Fig 2. This figure shows the relationships among
polyhedron sets and their corresponding subsets. The Fig 2(b) shows the lower
part of the some more results of the algorithm for hierarchical subset construc-
tion. By looking at the output one can clearly understand that H is subset of
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Fig. 1. (a) Results window showing subsets from A to D1, 19, 27(b) Results of subsets
showing F, G, H and I
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Fig. 3. Lattice Formed By 256 Convex Polyhedrons
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G, G is subset of F, F is subset of E, E is subset of D, D is subset of C, C is
subset of B and finally B is subset of A. The final lattice generated by using
these hierarchical relations, including ambiguous relations is shown in figure 3.

5 Conclusion

Manual construction of 256 convex polyhedrons in a 3X3X3 rectangular grid is
cumbersome and highly error prone. One may end up with constructing subsets
repeatedly and above all it has been empirically verified that constructing all 256
convex polyhedrons does consume 48 man hours. To overcome this problem, we
proposed a new algorithm automatic construction of convex polyhedrons. This
algorithm is discussed in the section 2, which generates 255 polyhedron subsets
in a fraction of a second.

Secondly, manual construction of paths in the lattice from supremum to infi-
mum is almost impossible task. Each path defines a GE(Evolutionary G-Filter)
filter. Each GE filter is of some use in processing 3-D images. So, one comes
across the usual problem of enumerating potentially very large GE filters de-
fined over a finite set. To overcome this problem, we proposed in this paper a
novel algorithm for Hierarchical Path Enumeration of 256 convex polyhedrons.
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