

N. Meghanathan et al. (Eds.): CCSIT 2012, Part III, LNICST 86, pp. 188–192, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Generation of All Spanning Trees in the Limelight

Saptarshi Naskar1, Krishnendu Basuli2, and Samar Sen Sarma3

1 Department of Computer Science, Sarsuna College, India
sapgrin@gmail.com

2 Department of Computer Science, WBSU, India
krishnendu.basuli@gmail.com

3 Department of Computer Science and Engineering, University of Calcutta
92, A. P. C. Road, Kolkata – 700 009, India

sssarma2001@yahoo.com

Abstract. Many problems in science and engineering [1, 3, 8, 10] can be
formulated in terms of graphs. There are problems where spanning trees are
necessary to be computed from the given graphs. Connected subgraph with all
the n vertices of the graph G(V,E), where |V|=n, having exactly of n−1 edges
called the spanning tree of the given graph. The major bottleneck of any tree
generation algorithm is the prohibitively large cost of testing whether a newly
born tree is twin of a previously generated one and also there is a problem that
without checking for circuit generated subgraph is tree or non-tree. This
problem increases the time complexity of the existing algorithms. The present
approach avoids this problem with a simple but efficient procedure and at the
same time ensures that a large number of non-tree subgraphs are not generated
at all.

Keywords: Spanning Tree, Vertex Connectivity, KMTT, PRIES, SPRIES.

There are three distinct classes of existing tree generation algorithms, viz., (a) Trees
by examination of all eCn-1 sets of edges, where e and n are number of edges and
number of vertices of a simple, connected graph, respectively [2, 11] (b) Trees by
cyclic interchange method [3, 6, 10] and (c) Trees by decomposition method [3].
Generation of trees involves three basic questions: (a) What percent of eCn-1 edge
combinations turns out to be tree? (b) How efficient is the tree-testing algorithm? and
(c) How much storage is required?

In this context, the algorithm proposed in this paper generates a very small number
of non-trees; its storage requirement is independent of the number of trees and the
associated testing procedure is simpler and efficient. The works of Peikarski [7] and
Sen Sarma [1] contain the idea of the present method. The major achievements
include rejection of non-trees prior to testing and the removal of storage limitations
and a part of generated subgraph is tree without checking for circuit.

An undirected graph G=(V,E,F) consists of a set of vertices V, a set of edges E and
a function F that maps each edge e∈E onto an unordered pair of vertices. Here G is a
simple, symmetric and connected graph, i.e., G has no self-loops, parallel edges and
edge orientations. A tree T of a graph G of V vertices is a loop free subgraph
encompassing all the vertices of G [3, 8].

 Generation of All Spanning Trees in the Limelight 189

Kirchhoff’s Matrix Tree Theorem (KMTT): For a given a graph G with no self-
loops, parallel edges and edge orientations, let B0 be its incidence matrix with one row
removed, and B0

t
 be the transpose of B0, then determinant ⎢B0.B0

t ⎢gives the number of
spanning trees of G [5].

Since a tree T of G with n vertices has n–1 edges, one can generate all (n–1) edge
combinations and filter a subset of them by a testing sieve that allows only trees to
pass. A preferable algorithm will be that generates only trees. The present algorithm
though generates non-tree edge combinations, but the number of such combinations
relative to the number of trees is drastically reduced. For this we generate a set of
convenient data structures, namely PRIES and SPRIES of a graph, at the outset from
the incidence matrix of the given graph. Now the proposed algorithms are given
below:

Algorithm 1. Generation of SPRIES Matrix.

Input: The incidence matrix A of the given graph G.
Output: The SPRIES matrix.

Step 1: From the incidence matrix A find the maximum degree vertex, delete the row
and hence obtain PRIES [1].
Step 2: i 2; maxlim  ⎣2e/n⎦
Step 3: Choose next highest degree vertex.
Step 4: Keep all the edges in the ith column, leaving the edges already chosen and shift
other edges to the right.
Step 5: ii+1
Step 6: Repeat through Step 3 while i ≤ maxlim.
Step 7: For i=1 to n-1
Step 8: For j=1 to maxlim
Step 9: If A[i][j] != null
Step 10: arr[i]=A[i][j]
Step 11: break;
Step 12: End If
Step 13 jj+1
Step 13: End For
Step 14 ii+1
Step 15: End For
Step 16: For i=1 to n-1
Step 17: If arr[i] = null
Step 18: Insert all edges that are incident to the priority vertices of A[i] into
the priority columns.
Step 19: End If
Step 20: ii+1
Step 21: End For
Step 22: Stop.

190 S. Naskar, K. Basuli, and S.S. Sarma

Algorithm 2. Combination Generation for Trees only from Privileged Columns.

Input: The SPRIES matrix A (derived from Algorithm 1).
Output: The trees one at a time.

Step 1: Choose elements from SPRIES in such a way that (i) at least one element from
1st column, (ii) exactly one element from each row.
Step 2: If all elements are selected from privileged columns, then go to Step 3
otherwise go to Step 1.
Step 3: If all the selected elements are unique then output the combination as tree.
Step 4: Repeat through Step 1, while all privileged columns are exhausted.
Step 5: Stop.

Algorithm 3. Combination Generation for Trees from Non-Privileged Columns.

Input: The SPRIES matrix.
Output: The trees one at a time.

Step 1: Choose elements from SPRIES in such a way that (i) at least one element from
1st column, (ii) exactly one element from each row.
Step 2: If chosen elements are taken from non-privileged columns, go to Step 3 else
go to Step 1.
Step 3: If all the chosen elements or just subset of the elements are present in the
privileged columns and also they are present in the same row or the combination are
not distinct do not choose the combination as a tree.
Step 4: Repeat through Step 1, while all privileged columns are exhausted.
Step 5: Stop.

Algorithm 4. Tree Testing Algorithm [3]
Input: The adjacency matrix M of the given graph G.
Output: Checking whether an (n–1)-edge combination of G is a tree.

Step 1: Read G initialize subgraph g by G.
Step 2: Select vertex i in g.
Step 3: Fuse all vertices adjacent to i with i, and call the new vertex i.
Step 4: Is the number of vertices nonadjacent to i same as before fusion? If no, repeat
through Step 3.
Step 5: Delete from g, vertex i (along with all vertices fused with i) call the remaining
subgraph as g.
Step 6: Is any vertex left in g? If yes, do not take the combination as tree, else call the
combination as tree of the graph G.
Step 7: Stop.

In the present method the algorithms presented, graphs are represented by the
adjacency list, hence the storage requirement i.e. space complexity is proportional to

 Generation of All Spanning Trees in the Limelight 191

en, where e is number of edges and n is the number of vertices of the graph G. Hence,
the space complexity is O(en). The time complexity is given below:

For Algorithm 1: In worst case ⎣2e/n⎦ is (n−1), and choosing the highest degree
vertex then need to search total n2(n−1)/2 elements . So the time complexity is O(n3).

For Algorithm 2: In this algorithm the time complexity is O(n). Since n−1
combination is required for individual tree generation.

For Algorithm 3: In this algorithm the time complexity is O(n). Since n−1
combination is required for individual tree generation.

For Algorithm 4: In worst case all n−1 columns are fused with ith column and in
each fusion one perform at most n logical addition. Hence the time complexity is
O(n2).

Since exponential trees are the output of the algorithm, physical time measurement
is of no concern here. However we have noted that, for a large graph the computation
time is of the order of several minutes using a Pentium IV based Personal Computer.

V E C

No of Combinations
T % of Tree

(T/C)*100

No. of
vertices

No. of
edges

Brute-Force PRIES SPRIES Trees Brute-Force PRIES SPRIES

4 6 20 16 16 16 80 100 100
5 8 70 42 40 40 56 95 100
5 9 126 79 75 75 60 95 100
6 12 792 348 336 300 38 86 89
7 17 12376 3934 4025 3024 25 76 75
7 19 27132 10320 8575 8232 30 80 96

In this paper an algorithm is proposed for computing all possible spanning trees of

a simple, connected, non-oriented graph. This algorithm, in general, outperforms the
algorithm for computing the same in [1], where a large number of non-tree
combinations are generated. This algorithm is also generating such undesired non-tree
combinations, but the number of generating such combinations is much less here. In
every case of the experimental results, it is been verified that results computed by
present algorithm and by the method developed in [1] with the results computed using
KMTT [5]. The immediate objective is to enrich the algorithm so that no non-tree
combinations are obtained.

As the number n of vertices of a simple, connected, non-oriented graph increases,
the procedure predominantly surpasses the PRIES technique [1]. Observed that, for
the graphs with much less number of vertices of degree much higher than the rest, the
percentage of non-tree generation becomes negligibly small. Since the time required
in computing the trees is proportional to the number of combinations of edges to be
tested for trees, a little extrapolation shows how efficient the present algorithm is. The
efficiency criterion is still far behind the ideal situation, where no testing for trees is
necessary.

192 S. Naskar, K. Basuli, and S.S. Sarma

References

[1] Sen Sarma, S., Rakshit, A., Sen, R.K., Choudhury, A.K.: An Efficient Tree Generation
Algorithm. Journal of the Institution of Electronics and Telecommunications Engineers
(IETE) 27(3), 105–109 (1981)

[2] Rao, B., Murti, V.G.K.: Enumeration of All Trees a Graph Computer Program.
Electronics Letters 6(4) (1970)

[3] Deo, N.: Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall of India Private Limited, New Delhi (2003)

[4] Sen Sarma, S., Rakshit, A., Sen, R.K., Choudhury, A.K.: An Efficient Tree Generation
Algorithm. Journal of the Institution of Electronics and Telecommunications Engineers
(IETE) 27(3), 109 (1981)

[5] Bollobas, B.: Modern Graph Theory – Kirchhoff’s Matrix Tree Theorem, p. 54. Springer
International Edition, New York (2002)

[6] Hakimi, S.L.: On the Trees of a Graph and Their Generation. J. Franklin Inst. 270, 347–
359 (1961)

[7] Peikarski, M.: Listing of All Possible Trees of a Linear Graph, lbid, CT-12,
Correspondence, pp. 124–125 (1965)

[8] Sen Sarma, S., Rakshit, A., Sen, R.K., Choudhury, A.K.: An Efficient Tree Generation
Algorithm. Journal of the Institution of Electronics and Telecommunications Engineers
(IETE) 27(3), 109 (1981)

[9] Pak, I., Postnikov, A.: Enumeration of Spanning Trees of Graphs. Harvard University,
Massachusetts Institute of Technology (1994)

[10] Mayeda, W.: Graph Theory. Wiley Inter-science (1972)
[11] Mayeda, W., Seshu, S.: Generation of Trees without Duplications. IEEE Trans. CT-12,

181–185 (1965)

	Generation of All Spanning Trees in the Limelight
	References

