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Abstract. Many problems in science and engineering [1, 3, 8, 10] can be 
formulated in terms of graphs. There are problems where spanning trees are 
necessary to be computed from the given graphs. Connected subgraph with all 
the n vertices of the graph G(V,E), where |V|=n, having exactly of n−1 edges 
called the spanning tree of the given graph. The major bottleneck of any tree 
generation algorithm is the prohibitively large cost of testing whether a newly 
born tree is twin of a previously generated one and also there is a problem that 
without checking for circuit generated subgraph is tree or non-tree. This 
problem increases the time complexity of the existing algorithms. The present 
approach avoids this problem with a simple but efficient procedure and at the 
same time ensures that a large number of non-tree subgraphs are not generated 
at all. 
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There are three distinct classes of existing tree generation algorithms, viz., (a) Trees 
by examination of all eCn-1 sets of edges, where e and n are number of edges and 
number of vertices of a simple, connected graph, respectively [2, 11] (b) Trees by 
cyclic interchange method [3, 6, 10] and (c) Trees by decomposition method [3]. 
Generation of trees involves three basic questions: (a) What percent of eCn-1 edge 
combinations turns out to be tree? (b) How efficient is the tree-testing algorithm? and 
(c) How much storage is required? 

In this context, the algorithm proposed in this paper generates a very small number 
of non-trees; its storage requirement is independent of the number of trees and the 
associated testing procedure is simpler and efficient. The works of Peikarski [7] and 
Sen Sarma [1] contain the idea of the present method. The major achievements 
include rejection of non-trees prior to testing and the removal of storage limitations 
and a part of generated subgraph is tree without checking for circuit. 

An undirected graph G=(V,E,F) consists of a set of vertices V, a set of edges E and 
a function F that maps each edge e∈E onto an unordered pair of vertices. Here G is a 
simple, symmetric and connected graph, i.e., G has no self-loops, parallel edges and 
edge orientations. A tree T of a graph G of V vertices is a loop free subgraph 
encompassing all the vertices of G [3, 8]. 
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Kirchhoff’s Matrix Tree Theorem (KMTT): For a given a graph G with no self-
loops, parallel edges and edge orientations, let B0 be its incidence matrix with one row 
removed, and B0

t
 be the transpose of B0, then determinant ⎢B0.B0

t ⎢gives the number of 
spanning trees of G [5]. 

Since a tree T of G with n vertices has n–1 edges, one can generate all (n–1) edge 
combinations and filter a subset of them by a testing sieve that allows only trees to 
pass. A preferable algorithm will be that generates only trees. The present algorithm 
though generates non-tree edge combinations, but the number of such combinations 
relative to the number of trees is drastically reduced. For this we generate a set of 
convenient data structures, namely PRIES and SPRIES of a graph, at the outset from 
the incidence matrix of the given graph. Now the proposed algorithms are given 
below: 

 
Algorithm 1. Generation of SPRIES Matrix.  
 
Input: The incidence matrix A of the given graph G.  
Output: The SPRIES matrix. 
  
Step 1: From the incidence matrix A find the maximum degree vertex, delete the row 
and hence obtain PRIES [1]. 
Step 2: i 2; maxlim  ⎣2e/n⎦ 
Step 3: Choose next highest degree vertex. 
Step 4: Keep all the edges in the ith column, leaving the edges already chosen and shift 
other edges to the right. 
Step 5: ii+1 
Step 6: Repeat through Step 3 while i ≤ maxlim. 
Step 7: For i=1 to n-1 
Step 8:  For j=1 to maxlim 
Step 9:     If A[i][j] != null  
Step 10:  arr[i]=A[i][j] 
Step 11:  break; 
Step 12:     End If 
Step 13       jj+1 
Step 13:  End For 
Step 14    ii+1 
Step 15: End For 
Step 16: For i=1 to n-1 
Step 17:      If arr[i] = null 
Step 18:   Insert all edges that are incident to the priority vertices of A[i] into 
the priority columns. 
Step 19:     End If 
Step 20:      ii+1 
Step 21: End For  
Step 22: Stop. 
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Algorithm 2. Combination Generation for Trees only from Privileged Columns. 
 
Input: The SPRIES matrix A (derived from Algorithm 1). 
Output: The trees one at a time. 
 
Step 1: Choose elements from SPRIES in such a way that (i) at least one element from 
1st column, (ii) exactly one element from each row. 
Step 2: If all elements are selected from privileged columns, then go to Step 3 
otherwise go to Step 1. 
Step 3: If all the selected elements are unique then output the combination as tree. 
Step 4: Repeat through Step 1, while all privileged columns are exhausted. 
Step 5: Stop. 
 
Algorithm 3. Combination Generation for Trees from Non-Privileged Columns.  
 
Input: The SPRIES matrix. 
Output: The trees one at a time. 
 
Step 1: Choose elements from SPRIES in such a way that (i) at least one element from 
1st column, (ii) exactly one element from each row. 
Step 2: If chosen elements are taken from non-privileged columns, go to Step 3 else 
go to Step 1. 
Step 3: If all the chosen elements or just subset of the elements are present in the 
privileged columns and also they are present in the same row or the combination are 
not distinct do not choose the combination as a tree. 
Step 4: Repeat through Step 1, while all privileged columns are exhausted. 
Step 5: Stop. 
 
Algorithm 4. Tree Testing Algorithm [3] 
Input: The adjacency matrix M of the given graph G.  
Output: Checking whether an (n–1)-edge combination of G is a tree. 
 
Step 1: Read G initialize subgraph g by G. 
Step 2: Select vertex i in g. 
Step 3: Fuse all vertices adjacent to i with i, and call the new vertex i. 
Step 4: Is the number of vertices nonadjacent to i same as before fusion? If no, repeat 
through Step 3. 
Step 5: Delete from g, vertex i (along with all vertices fused with i ) call the remaining 
subgraph as g. 
Step 6: Is any vertex left in g? If yes, do not take the combination as tree, else call the 
combination as tree of the graph G. 
Step 7: Stop. 

 
In the present method the algorithms presented, graphs are represented by the 
adjacency list, hence the storage requirement i.e. space complexity is proportional to 
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en, where e is number of edges and n is the number of vertices of the graph G. Hence, 
the space complexity is O(en). The time complexity is given below: 

For Algorithm 1: In worst case ⎣2e/n⎦ is (n−1), and choosing the highest degree 
vertex then need to search total n2(n−1)/2 elements . So the time complexity is O(n3). 

For Algorithm 2: In this algorithm the time complexity is O(n). Since n−1 
combination is required for individual tree generation. 

For Algorithm 3: In this algorithm the time complexity is O(n). Since n−1 
combination is required for individual tree generation. 

For Algorithm 4: In worst case all n−1 columns are fused with ith column and in 
each fusion one perform at most n logical addition. Hence the time complexity is 
O(n2). 

Since exponential trees are the output of the algorithm, physical time measurement 
is of no concern here. However we have noted that, for a large graph the computation 
time is of the order of several minutes using a Pentium IV based Personal Computer. 

 
V E C 

No of Combinations 
T % of Tree 

(T/C)*100 

No. of 
vertices 

No. of 
edges 

Brute-Force PRIES SPRIES Trees Brute-Force PRIES SPRIES 

4 6 20 16 16 16 80 100 100 
5 8 70 42 40 40 56 95 100 
5 9 126 79 75 75 60 95 100 
6 12 792 348 336 300 38 86 89 
7 17 12376 3934 4025 3024 25 76 75 
7 19 27132 10320 8575 8232 30 80 96 

 
In this paper an algorithm is proposed for computing all possible spanning trees of 

a simple, connected, non-oriented graph. This algorithm, in general, outperforms the 
algorithm for computing the same in [1], where a large number of non-tree 
combinations are generated. This algorithm is also generating such undesired non-tree 
combinations, but the number of generating such combinations is much less here. In 
every case of the experimental results, it is been verified that results computed by 
present algorithm and by the method developed in [1] with the results computed using 
KMTT [5]. The immediate objective is to enrich the algorithm so that no non-tree 
combinations are obtained.  

As the number n of vertices of a simple, connected, non-oriented graph increases, 
the procedure predominantly surpasses the PRIES technique [1]. Observed that, for 
the graphs with much less number of vertices of degree much higher than the rest, the 
percentage of non-tree generation becomes negligibly small. Since the time required 
in computing the trees is proportional to the number of combinations of edges to be 
tested for trees, a little extrapolation shows how efficient the present algorithm is. The 
efficiency criterion is still far behind the ideal situation, where no testing for trees is 
necessary. 



192 S. Naskar, K. Basuli, and S.S. Sarma 

 

References 

[1] Sen Sarma, S., Rakshit, A., Sen, R.K., Choudhury, A.K.: An Efficient Tree Generation 
Algorithm. Journal of the Institution of Electronics and Telecommunications Engineers 
(IETE) 27(3), 105–109 (1981) 

[2] Rao, B., Murti, V.G.K.: Enumeration of All Trees a Graph Computer Program. 
Electronics Letters 6(4) (1970) 

[3] Deo, N.: Graph Theory with Applications to Engineering and Computer Science. 
Prentice-Hall of India Private Limited, New Delhi (2003) 

[4] Sen Sarma, S., Rakshit, A., Sen, R.K., Choudhury, A.K.: An Efficient Tree Generation 
Algorithm. Journal of the Institution of Electronics and Telecommunications Engineers 
(IETE) 27(3), 109 (1981) 

[5] Bollobas, B.: Modern Graph Theory – Kirchhoff’s Matrix Tree Theorem, p. 54. Springer 
International Edition, New York (2002) 

[6] Hakimi, S.L.: On the Trees of a Graph and Their Generation. J. Franklin Inst. 270, 347–
359 (1961) 

[7] Peikarski, M.: Listing of All Possible Trees of a Linear Graph, lbid, CT-12, 
Correspondence, pp. 124–125 (1965) 

[8] Sen Sarma, S., Rakshit, A., Sen, R.K., Choudhury, A.K.: An Efficient Tree Generation 
Algorithm. Journal of the Institution of Electronics and Telecommunications Engineers 
(IETE) 27(3), 109 (1981) 

[9] Pak, I., Postnikov, A.: Enumeration of Spanning Trees of Graphs. Harvard University, 
Massachusetts Institute of Technology (1994) 

[10] Mayeda, W.: Graph Theory. Wiley Inter-science (1972) 
[11] Mayeda, W., Seshu, S.: Generation of Trees without Duplications. IEEE Trans. CT-12, 

181–185 (1965) 


	Generation of All Spanning Trees in the Limelight
	References




