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Abstract. This paper presents a development of a new hybrid fuzzy multi-
objective evolutionary algorithm (HFMOEA) for solving complex multi-
objective optimization problems. In this proposed algorithm, two significant 
parameters such as crossover probability (PC) and mutation probability (PM) are 
dynamically varied during optimization based on the output of a fuzzy 
controller for improving its convergence performance by guiding the direction 
of stochastic search to reach near the true pareto-optimal solution effectively. 
The performance of HFMOEA is examined and compared with NSGA-II on 
three benchmark test problems such as ZDT1, ZDT2 and ZDT3. 
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1 Introduction 

In last couple of decades, a number of multi-objective evolutionary algorithms 
(MOEAs) have been suggested for solving complex multi-objective problems [1]-[3]. 
The main purpose behind the development of the MOEA approach is that it has 
ability to find multiple Pareto-optimal solutions in one single simulation run. The 
non-dominated sorting genetic algorithm (NSGA) proposed in [1] was one of the first 
such EAs. Over the years, NSGA was criticized in [2] on the basis of some aspects 
such as high computational complexity of non-dominated sorting, lack of elitism and 
need for specifying the sharing parameter. In reference [3], an improved version of 
NSGA called as NSGA-II. Two other contemporary MOEAs: Pareto-archived 
evolution strategy (PAES) [4] and strength Pareto EA (SPEA) [5] were also reported 
in the literature. In reference [6], a survey of different multi-objective evolutionary 
and real coded genetic algorithms is presented.  

In present paper, a new Hybrid Fuzzy Multi-Objective Evolutionary Algorithm 
(HFMOEA) has been proposed for solving complex multi-objective problems. In 
proposed HFMOEA, a fuzzy logic controller (FLC_HMOEA) is developed, which 
would cause variation in two HFMOEA parameters such as crossover probability (PC) 
and mutation probability (PM) dynamically during optimization process after each k 

                                                           
* Corresponding author.  



 A Novel Hybrid Fuzzy Multi-Objective Evolutionary Algorithm: HFMOEA 169 

 

number of iterations. These parameter variations provide HFMOEA a kind of 
adaptability to the nature of targeted optimization problem and help to reach the near 
global optimal solutions and hence arrive near to true pareto-optimal front. The 
performance of HFMOEA is examined on three benchmark test problems such as 
ZDT1, ZDT2 and ZDT3. 

2 Proposed HFMOEA for Solving Multi-Objective Problems 

The flowchart of proposed HFMOEA for solution of complex multi-objective 
problems is outlined in Fig.1. Details of proposed algorithm are discussed as below: 

Initialization: HFMOEA based optimization starts with initialization of various input 
parameters of HFMOEA such as population size (popsize), maximum numbers of 
iterations (max_iteration), number of control variables, system constraints limits, 
crossover probability (PC), mutation probability (PM) etc.  

Generation of Initial population: it is generated randomly according to following 
procedural steps: 

Step 1: Generate a string of real valued random numbers within their given 
variable limits to form a single individual; 

Step 2: Place the individual as valid individual in initial population; 
Step 3: Evaluate fitness value for valid individual; 
Step 4: Check if the initial population has not completed then go to step 1; 

Non-Domination Sorting: The generated initial population is sorted on the basis on 
non-domination sorting algorithm proposed by Deb [2].  

For producing the new population for next iteration, the following operators are 
applied to parent population: 

Selection: The Binary Tournament selection as proposed in reference [2] is used as a 
selection operator for reproducing the mating pool of parent individuals for crossover 
and mutation operations.   

Crossover: The BLX-α  crossover as proposed in reference is applied on randomly 

selected pairs of parent individuals ( )(1, ) (2, ),t t
i ix x  with a crossover probability ( )CP

 
which is a combination of an extrapolation/interpolation method.  

Mutation: The PCA based Mutation as proposed in reference [7] with mutation 
probability ( )mP  is applied to generate the offspring population. 

Criterion to prepare population for next iteration: After the execution of above 
genetic operators, offspring population is checked to prepare new population for next 
iteration by going through following procedural step:  
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Fig. 1. Flowchart for Hybrid Fuzzy Multi-Objective Evolutionary Algorithm (HFMOEA) 
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Step 1: Evaluate the fitness values for each individual in offspring 
population; 

Step 2: Combine the parent and offspring population to obtain the 
intermediate population; 

Step 3: Perform the non-domination sorting algorithm on intermediate 
population; 

Step 4: Remove the worse individuals to maintain the new population size 
constant. Here the new population for next iteration is prepared; 

Step 5: Check if kth iterations (let k = 10) has completed go to next step 6 
otherwise go to step 7. 

Step 6: Update HFMOEA parameters (i.e. PC and PM) by using fuzzy logic 
controller (FLC_HMOEA). 

Step 7: Check the termination condition of HFMOEA. i.e. if the current 
iteration number is equal to max_iterations, terminate the iteration 
process otherwise go to next iteration.  

Step 8: Select the best compromise solution using fuzzy set theory. 
 

Best compromise solution: Upon having the Pareto-optimal set of non-dominated 
solution using proposed HFMOEA, an approach proposed in [8] selects one solution 
to the decision maker as the best compromise solution [9]. This approach suggests 
that due to imprecise nature of the decision maker’s judgment, the ith objective 

function iF  is represented by a membership function iμ defined as in reference [8]: 
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Where min
iF and max

iF are the minimum and maximum values of the ith objective 

function among all non-dominated solutions, respectively. For each jth non-dominated 
solution, the normalized membership function jμ is calculated as: 
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Where domN is the number of non-dominated solutions. The best compromise solution 

is that having the maximum value of jμ . 
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Fitness function: The fitness function corresponding to each individual in the 
population is assigned based on their respective generalized augmented functions as 
evaluated in equation (3). Thus the fitness function ( mH ) for mth objective is 

evaluated as:  

,

; 1:
1

m
m obj

obj m

K
H m N

f
= ∀ =

+
    (3)

 

Where Nobj is the total number of objectives and mK is the appropriate constant 

corresponding to mth objective, in this paper. 

 

 

Fig. 2. Input and Output membership functions for Fuzzy Logic Controller 

Fuzzy logic controller: It has been experienced that after few iterations, the fitness 
values of each of the individuals are becoming equal to other individuals in same 
population and hence the effect of crossover operator beyond that stage becomes 
insignificant due to lack of diversity. Therefore, the increased mutation probability 
(PM) remains the only alternative to produce the better offspring for achieving a more 
diversified population. A fuzzy logic controller (FLC_HMOEA) is designed to vary 
PC and PM dynamically during the optimization process. These parameters (PC and 
PM) are varied based on the fitness function values as per following logic given in 
reference [10]: 

• Ideally the best compromized fitness (BCF) using (1)-(3) should change for 
each iteration, but if no significant change take places over a number of 
iterations (UN) then the values of both PC and PM must be modified. 

• In multi-objecteive problems, the diversity in population supports the 
stochastic search to reach the perato-optimal fronts. The variance of the 
fitness values of objective function (VF) of a population is a measure of 
diversity in population. Hence, it is considered as another factor on which 
both PC and PM  may be changed. 
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Thus the ranges of three input fuzzy parameters such BCF, UN and VF and also two 
output fuzzy parameters such as PC and PM are repersented by three lingustic terms as 
LOW, MEDIUM and HIGH. The details of membership functions for input and 
output variables of FLC_HMOEA are shown in Fig. 2. 

Fuzzy Rule Base for HFMOEA 

1. If (BCF is Low) then (Pc is High) (Pm is Low) (1)                                  
2. If (BCF is Medium) and (UN is Low) then (Pc is High) (Pm is Low) (1)               
3. If (BCF is High) and (UN is Low) then (Pc is High) (Pm is Low) (1)                 
4. If (BCF is Medium) and (UN is Medium) then (Pc is Medium) (Pm is Medium) (1)       
5. If (BCF is High) and (UN is Medium) then (Pc is Medium) (1)                       
6. If (UN is High) and (VF is Low) then (Pc is Low) (Pm is High) (1)                 
7. If (UN is High) and (VF is Medium) then (Pc is Low) (1)                          
8. If (UN is High) and (VF is High) then (Pc is Medium) (1)                         
9. If (BCF is High) and (VF is Medium) then (Pm is Low) (1)                          
10. If (BCF is High) and (VF is High) then (Pm is Low) (1)                           
11. If (VF is High) then (Pc is High) (Pm is Low) (1)                                
12. If (VF is Medium) then (Pc is High) (Pm is Low) (1)                              
13. If (BCF is High) and (VF is Low) then (Pc is High) (Pm is Low) (1)                
14. If (BCF is Medium) and (VF is Medium) then (Pc is Low) (Pm is High) (1)           
15. If (BCF is Low) and (UN is Low) and (VF is Low) then (Pc is High) (Pm is Low)  

3 Simulation Results 

The proposed HFMOEA is implemented according to the procedure explained in 
previous sections and all the simulations are carried out in MATLAB 7.0 
programming environment on Pentium IV 2.27 GHz, 2.0 GB RAM computer system.  
In present case study, the proposed HFMOEA is examined and compared with a 
popular multi-objective evolutionary algorithm i.e. NSGA-II presented in reference 
[2]. The detailed specifications of both NSGA-II and HFMOEA are summarized in 
Table 1. The NSGA-II comprises a simulated binary crossover (SBX) operator and a 
polynomial mutation [11] like real coded GAs. For real-coded NSGA-II, distribution 
indexes [11] as 20, 20c mandη η= = are used for crossover and mutation operators 
respectively (see Table 1). Whereas in HFMOEA, a BLX-α crossover and PCA-
mutation [7] operators are used with dynamically varying after each 10 iterations with 
probabilities (PC and PM) based on fuzzy logic controller (FLC_HMOEA) as 
described in section 2.  

Three benchmark test problems such as ZDT1, ZDT2 and ZDT3 out of six as 
suggested by Zitzler, Deb and Thiele [12] are taken for testing and comparison of 
proposed HFMOEA. In this paper, the whole simulation is divided into four cases such 
that in each case, both the algorithms (NSGA-II and HFMOEA) are evaluated for deferent 
population sizes and number of maximum iterations. Thus, the Population size and 
number of maximum iterations are taken as (100 and 300), (100 and 500), (200 and 500) 
and (300 and 500) in Case: 1, Case: 2, Case: 3 and Case: 4 respectively (see Table 2). For 
all three test problems, the best compromised solutions obtained after optimization using 
NSGA-II and HFMOEA are summarized in Table 2. The best compromised solution is 
calculated according to (1) and (2) described in previous section. 
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The pareto-optimal fronts obtained by NSGA-II and HFMOEA for ZDT1 test 
problem in all four cases are depicted in Fig.3. It has been observed that NSGA-II 
could not be fully converged in case 1 and Case: 2 when the population size is 100 
and maximum numbers of iterations are 300 and 500 respectively. While, proposed 
HFMOEA has been converged and able to achieve near global pareto-optimal front 
even in case: 1 (see Fig.3). Similar investigations are conducted on other to 
benchmark test problems such as ZDT2 and ZDT3 for Case: 1, Case: 2 and Case: 3, 
the pareto-optimal fronts are obtained shown in Fig.4 and Fig.5, respectively. During 
the execution of optimization based on proposed HFMOEA, it’s two parameters such 
as crossover probability (PC) and mutation probability (PM) are varied dynamically 
after each ten iterations. These variations are taken place based on the output of fuzzy 
controller (FLC_HMOEA) as described in section 2. The variations in PC and PM for 
all three test problems (ZDT1, ZDT2 and ZDT3) in Case: 3 are shown in Fig.6. It has 
been observed that the variations in crossover and mutation probabilities are such that 
if PC is going to reduce, PM will increase (see Fig.6.). These variations in parameters 
are helping the HFMOEA in searching the global optimal solutions. Therefore, this 
property will enhance the capability of HFMOEA to achieve the near global pareto-
optimal front. 

Table 1. Specifications of optimization algorithms 

Algorithm Parameters NSGA-II HFMOEA 
Selection operator Tournament Tournament 
Crossover operator Simulated Binary (SBX) BLX-α crossover 

Mutation operator polynomial mutation  PCA mutation 
Crossover probability (PC) 0.9 varying based on FLC output 

Mutation probability (PM) 20, 20c mandη η= =  varying based on FLC output 

Table 2. Best Compromised solutions obtained by NSGA-II and HFMOEA 

Test 

Case 

Pop. 

Size 

Max. 

Iterations 

optimization 

Algorithm 

Best Compromised Solution after optimization 

Test Problem : 

ZDT1 

Test Problem : 

ZDT2 

Test Problem : 

ZDT3 

f1(x) f2(x) f1(x) f2(x) f1(x) f2(x) 

Case:1 100 300 
NSGA-II 0.1557 0.9129 0 1.2949 0.2505 0.6376 

HFMOEA 0.2838 0.4693 1 0.002 0.2507 0.2579 

Case:2 100 500 
NSGA-II 0.2593 0.6503 1 0.2403 0.2503 0.4431 

HFMOEA 0.2543 0.4967 1 0.0011 0.2485 0.2565 

Case:3 200 500 
NSGA-II 0.2236 0.5951 0 1.053 0.2485 0.3706 

HFMOEA 0.259 0.4921 1 0.0007 0.2507 0.2519 

Case:4 300 500 
NSGA-II 0.2354 0.5543 1 0.0803 0.2498 0.3071 

HFMOEA 0.2614 0.4893 0 1.0001 0.2495 0.2529 
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Fig. 3. Comparison of Pareto-optimal fronts obtained using NSGA-II and HFMOEA for ZDT1 
test problem for different population sizes after various iterations 
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Fig. 4. Comparison of Pareto-optimal fronts obtained using NSGA-II and HFMOEA for ZDT2 
test problem for different population sizes after various iterations 
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Fig. 5. Comparison of Pareto-optimal fronts obtained using NSGA-II and HFMOEA for ZDT3 
test problem for different population sizes after various iterations 
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Fig. 6. Variations PC and PM during optimization based on HFMOEA for three test problems 
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4 Conclusion 

A fuzzy logic controller called as FLC_HMOEA has been developed and successfully 
applied in a proposed multi-objective optimization algorithm i.e. HFMOEA. This 
implementation returns the advantage in terms of improvement in the performance of 
HFMOEA i.e. good convergence with better quality of the pareto-optimal solutions 
and consequently arrives to a near pareto-optimal front. FLC_HMOEA helps in 
guiding the direction of stochastic search to reach the near global optimal solution 
effectively. HFMOEA has been tested on three benchmark test problems such as 
ZDT1, ZDT2 and ZDT3 and compared with NSGA-II. The simulation results 
revealed the effectiveness of HFMOEA for solving multi-objective problems. 
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