
Finite State Transducers Framework for

Monitors Conflict Detection and Resolution

Soha Hussein

University of Illinois at Urbana-Champaign
soha@illinois.edu

Abstract. Runtime monitoring and verification systems monitor tar-
get’s events and verify them against specifications during program exe-
cution. For such systems the same event might trigger different monitors
remedial actions, which can be contradictory in behavior or complemen-
tary (with a specific order). This urges the need to have a method to
detect and resolve potential conflict between monitors.

In this paper, we present a formal model for modeling monitors based
on Finite State Transducers. Monitors in the model are transducers with
events as their input and output alphabet. Monitors composition is used
for those monitors in conflict, where each monitor can add to the output
set of events, but it can never remove an event. The output set of events
is later evaluated using 2 rewrite rules and resulting in non-conflicting
behavior.

1 Introduction

Runtime monitoring and verification has become a widely used methodology
for testing and verification of systems. The idea is to encode system’s speci-
fications into monitors and observe them during system’s operation, not only
guaranteeing that the specifications of interests are monitored but issuing a re-
medial action upon violation that might as well resolve/prevent the problem
before actually occurring.

JavaMOP [15,4] is a generic runtime and monitoring verification systems,
whose output is an AspectJ file that can later be instrumented on the tar-
get program.

JavaMOP, by default, allows multiple specifications to coexist within a given
target program. However it makes no guarantees on how they will operate to-
gether if they are triggered by the same monitored event. By default, which
specification will be triggered first when events interfere is decidable only by the
order in which AspectJ [10] files are weaved into the program or by using an as-
pect precedence declaration, which is part of the AspectJ standard. These are, at
best, an incomplete way to allow for policy composition. To ensure proper compo-
sition, some sort of coordination and management among different specifications
is necessary, in order to allow precedence as well as handlers conflict resolution.

The work in this paper was motivated by resolving conflicts among Java-
MOP specifications, although it is not restricted to it. We provide a model that

N. Meghanathan et al. (Eds.): CCSIT 2012, Part III, LNICST 86, pp. 112–123, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Finite State Transducers Framework 113

models monitors as finite state transducers, we define what does it mean to
have two monitors in conflict and we provide a methodology using the model to
resolve potential conflicts and/or provide little management of monitors over
other monitors.

In our model, a monitor receives a set of events and output a set of events.
There are no restrictions on the input set of event, but for the set of output events
a monitor can output either the same received set of events or append either
{skip, proceed} events (these are two especial types of events see section 3.1)
with possibly some statements to execute. Thus the output set of events keeps
growing by visiting each monitor in conflict, or for which coordination is required.

The monitored program (usually we refer to it as just target) is modeled as a
special finite state transducer that propagates its events to other transducers in
the network. For each target step, an event the network of transducers operate
resulting in a set of output events which is later evaluated, using 2 rewrite rules,
into an action to be executed by the program.

The paper is organized as follows: the rest of this sections discusses some re-
lated work and some properties about conflicting specifications, then in section 2
general definitions used in the paper for finite state transducers are given. Section
3 represents the model, and finally conclusion and future work are in Sections 4.

1.1 Related Work

Policies composition with detecting and resolving potential conflicts are widely
addressed in security language specification languages, however they have not
received considerable attention in prior research in runtime monitoring systems
or execution monitoring systems. For instance, JavaMOP [14] and Tracematches
[1] are two runtime monitoring systems that do not specify means to detect and
resolve potential conflicts when multiple specifications co-exist together right at
the same time, thus causing non-determinism in the final output.

On the other hand, execution monitor systems such as SpoX [8,9], Naccio [7,6]
and PoET [5] does not define a means to detect or resolve conflicts between po-
tential specifications, whitelist Polymer [3,2,12,11,13], which defines a number of
Policy Combinators to enable different compositions of policies. However, there
is no formal definition for such combinators.

1.2 Properties about Monitors Conflicts Resolutions

Monitors Conflicts Definition: We say that two monitors are in conflict if
they monitor the same event yet each fires a different remedial action.

Types of Conflict: One can define two types of conflicts among monitors:

– Remedial Action Conflict: for instance for a file access event that is observed
by two monitors; one of the monitors might allow it with a warning while
the other prohibit the access. This is a flaw in the design of the policies, and
one needs to resolve such conflicts by allowing a single remedial action to
take place.

114 S. Hussein

– Remedial Action Execution Order: this happens when there is a dependency
between the remedial action of both specifications. For example if one specifi-
cations writes to a file a certain value while the other reads the old value and
outputs a warning message. In that case executing both remedial actions is
what one wants but it is the order of execution that should be coordinated.

Typical Procedure: A typical procedure to address such conflicts is usually
done in two steps:

1. Detect Potential Conflicts: this is the first step that should take place, one
needs to detect a conflict. It is better off automating this part, so as to ensure
that there are no conflict in the pool of policies that are going to co-exist in
the target.

2. Resolve Potential Conflicts: once a conflict is detected, resolving it is the
next step. There are cases resolving of conflicts can be automated but not
always. For instance, the remedial action of a a higher priority can be taken
instead of the lower conflicting remedial action (usually the lower bound
of the remedial action lattice defined earlier), like if one says Halt, and the
other prints out the warning, if one wants to be conservative then Halt should
be the dominated remedial action. However if both have the same priority
then a different procedure of conflict resolution should be taken, like a pre-
cise specification language that manages coordination between specifications
based on the user’s definition.

2 Finite State Transducers

Finite State transducers are widely used machines in natural language processing.
They are also a good candidate to represent monitors, the reason being, one can
think of monitors as that machine that, upon receiving an event, moves from
one state to another while possibly outputting another event. It thus abstracts
what a monitor is doing as a series of transitions on states when receiving events
and outputting other events.

In this section we first start by listing some definitions that we are going to
use in the model then we will represent out model and show how it can be used
to detect potential conflicts and then resolve them.

2.1 Definition of Finite State Transducers (FST)

Finite State Transducers FST [16] can be seen as a Finite State Automata, in
which each transition is labeled by a pair of symbols rather than by a single sym-
bol. A Finite State Transducer FST is a 6-tuple (Σ1, Σ2, Q, i, F, E) such that:

– Σ1: is a finite input alphabet.
– Σ2: is a finite output alphabet.
– Q is the set of states.

Finite State Transducers Framework 115

– i ∈ Q is the initial state.
– F ⊂ Q is the set of final states.
– E : Q×Σ∗

1 ×Σ∗
2 ×Q, is the set of edges.

An alternative definition consists in replacing the set of edges E by the transition
function d a mapping from Q×Σ∗

1 to 2Q and an emission function δ a mapping
from Q × Σ∗

1 × Q to 2Σ
∗
2 .

2.2 Sequential Transducers

A sequential transducer, is a six-tuple(Σ1, Σ2, Q, i,⊗, ∗) such that,

– Σ1 and Σ2 are two finite alphabets.
– Q is a finite set of states.
– i ∈ Q is the initial states.
– ⊗ is the partial deterministic transition function mapping Q×Σ1 on Q noted

q ⊗ a = q′.
– ∗ is the partial emission function mapping Q×Σ1 on Σ∗

2 , noted q ∗ a = w.

Sequential transducers can be seen as a subclass of finite state transducers with-
out final states and with deterministic transition function.

2.3 More about FST

Finite State Transducers are powerful because of the various closure and algo-
rithmic properties. We start by defining letter transducers then we represent
three closure properties for FST.

Extended Edges: The extended set of edges Ê, is the least subset of Q ×
Σ∗

1 × Σ∗
2 × Q such that:

– ∀q ∈ Q, (q, ε, ε, q) ∈ Ê
– ∀w1 ∈ Σ∗

1 , ∀w2 ∈ Σ∗
2 if (q1, w2, w2, q) ∈ Ê and (q2, a, b, q3) ∈ E then

(q1, w1a, w2b, q3) ∈ Ê.

Transducer Language: The above definition of extended edges us allows us
to define a relation L(T) on Σ∗

1 × Σ∗
2 for FST T as:

L(T) = {(w1, w2) ∈ Σ∗
1 ×Σ∗

2 | ∃(i, w1, w2, q) ∈ Ê} with q ∈ F

|T |(u) = {v ∈ Σ∗
2 | (u, v) ∈ L(T)}

Letter Transducers: If T1 = (Σ1, Σ2, Q, i.F, E1) is a transducer such that ε /∈|
T1 | (ε) then there is a letter transducer T2 = (Σ1, Σ2, Q2, i2, F2, E2) such that:

– | T1 |=| T2 |
– E2 ⊆ (Q1 × (Σ1 ∪ {ε})× (Σ2 ∪ {ε})×Q2)
– E2 ∩ (Q1 × {ε} × {ε} ×Q2) = φ

116 S. Hussein

2.4 Closure Properties of FST

Closure under Union: if T1 and T2 are two FST, there exists and FST T1∪T2

such that |T1∪T2| = |T1| ∪ |T2|, i.e., s.t. ∀u ∈ Σ∗, |T1∪T2|(u) = |T1|(u)∪|T2|(u).

Closure under Composition: Given two letter transducers FSTs
T1 = (Σ1, Σ2, Q, i, F, E1) and T2 = (Σ2, Σ3, Q2, i2, F2, E2), there exists an FST
T2 � T1 such that for each u ∈ Σ∗

1 , | T2 � T1|(u) = |T2(|T1|(u)). Furthermore
the transducer

T3 = (Σ1, Σ3, Q1 ×Q2, (i1, i2), F1 × F2, E3) such that

E3 = ((x1, x2), a, b, (y1, y2))|∃c ∈ Σ2 ∪ {ε} s.t.

(x1, a, c, y1) ∈ E1, (x2, c, b, y2) ∈ E2

satisfies
| T3 |=| T2 � T1 | (u) =| T2(| T1 | (u)), ∀u ∈ Σ∗

1

3 Modeling of Monitors as FST

3.1 Events Definition

Let ξ be the set of all possible events that can be exhibited by the program or
propagated by the transducers. Each member in ξ is defined by ename < a > (we
sometimes refer to it as just ename), where a ∈ A such that A is a set of all system
actions and where a is defined by the pair (r, s) such that r is the range or scope of
interest, i.e., before or after, and s is the statement(s) enclosed inside the action.

For example, if we want to have a monitor event that monitors just before the
creation of files then the monitored event will be in the form of createF ile <
before, s >, where createFile is the monitoring event for the method of file
creation, s is the enclosed statement(s) inside the file creation method, and r
is the range of the event that can take one of three values: ”before” (marking
the position before the execution of the action), ”after” (marking the position
after execution of the action) and ”.” (this is only used for result events R, see
Section 3.1, since their intended meaning does not carry position on their own
instead they depends on the action on which they refer to (i.e., follow).)

Events Types: In this model we distinguish between two types of events that
can exist mainly:

– Specification Events: These are the events that are the monitors want to
observe in the target, like the createFile event example above. We refer to
this type of events as Espec such that Espec ⊂ ξ.

– Result Events: These are exactly two events, that each monitor output to
indicate its recommended remedial action for the seen events. Precisely we
define the set of result events R ⊂ ξ as follows:

R = {proceed < (., sρm) >, skip < (., sρm) >} (1)

Finite State Transducers Framework 117

with the meaning to ”proceed” or ”skip” the execution of the previous events
while executing statements ”s” in the environment ρm of their monitor ”m”.

Events Matching: We define matching of events and matching of sets of
events as follows:

– Two events e < (r, s) > and e′ < (r′, s′) > match iff e = e′.
– Two ordered sets of event τa and τb, s.t τa, τb ∈ ξ∗, match iff eai = ebi ,

where i is the index of the event in each set.

3.2 Monitors Modeling Architecture

The model is composed of two main layers of transducers, the first is a simple
transducer (we call it TMpgm) that models the targets’ events and is responsible
for propagating them to the next layer of transducers (we call the TMnet) which
in turn is responsible for enforcing different specifications.

We define a composition function between the two layers of monitor trans-
ducers as:

comp = TMpgm;TMnet;TMpgm (2)

The above function specifies how the composition between monitor transduc-
ers should take place, such that the output of the TMpgm is read by TMnet and
the output of the TMnet is read by the TMpgm. The TMpgm should only react to
the output of final TM in the TMnet transducers, thus it should not be able to see
any internal events that are used for internal communication between monitors.

We next define the model of TMpgm and TMnet.

3.3 Modeling of a Program Monitor TMpgm

We define the program monitor TMpgm (Σ1, Σ2, Q, i, F,⊗, ∗) as a letter trans-
ducer as follows:

– Q: three states, Read, Wait and End.
– Σ1: is the set of input events {ein : ein ∈ ξ∗}. That is Σ1 ⊆ {R ∪Espec}.
– Σ2: is the set of output events {eout : eout ∈ {ξ ∪ ε}∗}. That is Σ2 ⊆

{R ∪Espec ∪ ε}
– i: Read
– F : End
– ⊗ is a deterministic transition function for letter transducers from Q × Σ∗

1

to Q : q ⊗ τ = q′.
– ∗ is the partial emission function for letter transducers mapping from Q×Σ∗

1

to Σ2 : q ∗ τ = τ ′.

Figure 1 shows the Transducer of the program monitor TMpgm, where we write
the notation x/y to refer to the input and output events respectively.

118 S. Hussein

Fig. 1. TMpgm

Semantics for TMpgm:

– Reading Program Events-Step:

if q = ”Read”, then

q ⊗ e < a >= ”Wait” , q ∗ e < a >= e < a >
(3)

– Reading TMpgm Monitor Result-Step:

if q = ”Wait” and τ ′ ∈ Σ∗
1 , then

q ⊗ τ = ”Read” , q ∗ τ = ε
(4)

– Stop-Step:

if q = ”Read” & e < a >= done < . >,then

q ⊗ e < a >= ”End”,q ∗ e < a >= ε

(5)

3.4 Modeling Monitor Transducers in TMnet Monitor

Construction of TM monitors (Transducer Monitor) in TMnet is simple, it fol-
lows the definition of finite state transducer monitors in Section 2.1.

A TM Monitor is defined as a variation of a finite state transducer TM , as
the tuple (Σ1, Σ2, Q, 1,⊗, ∗) such that ε /∈ |TM |(ε) and:

– Σ1: is the the set of input events such that Σ1 ⊆ {ξ ∪ ε}, such that Σ1 =
{ein : ein ∈ {ξ ∪ ε}}.

– Σ2: contains the same alphabet of Σ1, that is, it is the set of output events,
such that Σ2 ⊆ ξ, such that Σ2 = {eout : eout ∈ ξ}.

– Q is the set of states.
– 1 is the initial state.
– ⊗ is a deterministic transition function from Q×Σ∗

1 to Q : q⊗ τ = q′, where
q and q′ are the current and next states of the monitor and τ ∈ Σ∗

1 is the
input set of events.

– ∗ is the partial emission function mapping from Q × Σ∗
1 to Σ∗

2 : q ∗ τ = τ ′,
where τ ∈ Σ∗

1 and τ ′ ∈ Σ∗
2 are the set of input and output events respectively.

Informally speaking, each monitor is defined in our model as a variation of finite
state transducer which upon receiving a set of events it moves from one state to
another (could be the same state) while outputting either the same set of events

Finite State Transducers Framework 119

(thus propagating them)or else appending an element of R to the received set of
events, the following specify the restrictions on the emission function:

q ∗ τ = τ , where τ ∈ Σ∗
2 (6)

OR

q ∗ τ = τ ; e < a >, where e < a >∈ R (7)

3.5 Identifying Potential Conflicts

Informally speaking, conflicts among monitors happens when the same program
event invokes more than one monitor with possibly different remedial actions.
Thus conflicts between TM monitors, before composition (i.e., the design of the
TM monitor instrumented as a single specification on the program), can simply
be identified by using intersection of the input alphabet (excluding R) of the n
existing transducers in the system: ∀i

⋂{Σ1i −R} �= ∅ for i = 1..n.

Or in other words we define conflict between two monitor transducers TMx =
(Σx1, Σx2, Qx, 1, Qx, Ex) and TMy(Σy1, Σy2, Qy, 1, Qy, Ey) as:

∃TMxi =(qxi , e < a >, e′ < a′ >, q′xi
) and ∃TMyj =(qyj , e < a >, e′′ < a′ >, q′yj

)
(8)

where e < a >/∈ R and e < a > �= ε

3.6 Conflict Resolution with TM Composition

For those monitor transducers that have conflicts as show in Section 3.5, one
can distinguish between three types of scenarios to resolve conflicts:

– Allow only a single remedial action.
– Allow both remedial action but in a precise order.
– Allow one monitor to delay its remedial action and base it on the remedial

action taken place by the other monitor.

Our model of TM monitors support all the above scenarios, which scenario to
be used however should be provided by a monitor specification language that
would express which way to go.

Our solution to resolve conflicts among TM monitors is by composing them.
The idea behind composition of two or more transducers is that each TM monitor
transducer actually gives a distinct output for events that it cares about, while
acting as identity function on all other inputs, i.e., propagating other irrelevant
events to the next transducer in the chain of conflicting TM monitors. This pro-
vides a natural way of composition that does not change almost anything in the
original transducers since the identity transition can be easily added as follows:

q ⊗ τ = q and q ∗ τ = τ , where τ is a set of input events (9)

120 S. Hussein

Transducer Composition: Since our TM monitors are such transducer where
ε /∈ |TM |(ε), a letter conflicting TM monitors TMx and TMy can be resolved
by finding their composed letter TM monitor. Thus, if

TMx = (Σx1, Σx2, Qx, 1, Qx, Ex) and TMy = (Σy1, Σy2, Qy, 1, Qy, Ey)

Then there exists an TMcomp = TMy � TMx such that for each τ ∈ Σ∗
1 ,

|TMy � TMx|(τ) = |TMy|(|TMx|(τ))

3.7 Modeling Monitors Not in Conflict

Monitors that do not lay in conflict with others do not need to be in composition,
since they potentially have different interests in event. Thus an equivalent union
TM can represent those with disjoint interests, even though their composition
to the rest of the network is also correct and thus can always be an option.

3.8 Other Composition Usages

As mentioned in Section 3.6 allowing composition of TM monitors can be used
for more than just for resolving conflicts. TM monitors up in the chain of com-
position can be used to alter received events from other transducers (instead of
acting as identity function) and thus changing the resulting output for the set
of transducers. This change requires user’s intervention and it is based on user’s
definition and the privileges each TM monitor is granted.

With such allowances, the output for the set of transducers will require a
different interpretation, since it is going to be the decomposed output for each
transition. We now define how to interpret the resulting output for a series
of TM monitors.

Interpreting Transducers Results: The output of a composed set of TM
monitors is a set of events that keeps growing (element in ξ∗). Suppose we have
composition between n TM monitors in the form TM1;TM2; ...;TMn, and if
e < a > is a the current monitored event generated by the program, and if q1 to
qn represent the current state for TM1, ..TMn respectively then, the generated
set of output O of the last TMn in a composed chain would be:

O = {qpgm ∗ e < a >, q1 ∗ (qpgm ∗ e < a >), q2 ∗ (q1 ∗ (qpgm ∗ e < a >))...} =

O = {e < a >, e′ < a′ >, e′′ < a′′ >, ..}
where {e < a >, e′ < a′ >, e′′ < a′′ >, ..} represents the set of events results
from each transition.

The output of the transducers can be evaluated (from left to right) using these
two rewrite rules for skip and proceed. We use the notation [.., x], [x, ..], [.., x, ..]

Finite State Transducers Framework 121

Fig. 2. TM (letter transducer version) for No System Calls Specification

to refer to an open set either from the right side, left side or both sides. Also, in
the following rules mi refers to the monitor that generated an event:

[...e < (r, Sρtarget) >, proceed < (., Sρmi) >, ...]
rewrites to−−−−−−−−→

[e′ < (r, Sρmi ;Sρtarget) >, ...]
(10)

[...e < (r, Sρtarget) >, skip < (., Sρmi) >, ...]
rewrites to−−−−−−−−→ [e < (r, Sρmi) >, ...]

(11)
Rule 10 has two versions depending on the scope of the event e < a >, the

one shown assumes that r = before. The rule matches when a proceed event is
first encountered (since an event can be repeatedly propagated from one TM
monitor to another). The rule basically resumes with the action of the event
< r, Starget > while executing the monitor’s statements in the monitor’s own
environment ρmi.
Rule 11 also matches when the first skip event is encountered. It evaluates to
another event that skips the action statement < Starget > and executes the
statements S in the environment of the monitor ρmi

Few notes to observe here:

– An around scope can be expressed in this model by passing the same e < a >
twice, each with a different scope.

– Also, even though skipping of action e < a > that has an after scope, will
basically have no effect on the monitored program, since the transducers are
skipping an already executed event.

– When a skip rule is encountered it actually skips all actions of monitors,
including skipping the original action of the program. And that actually
makes sense since the events and their actions will be wrapped with other
proceed of skip.

– A TM should not have a transition of the form (q, x, y, q′) where y ∈ R
unless it has certain privileges on the pervious composed transducer in the
chain. This privileges should be defined using the monitoring specification
language.

3.9 Example

Shown in figure 2 and figure 3, the TM monitors for composition of the speci-
fication of No System Calls and File Network Wall. We use the notation ? to

122 S. Hussein

Fig. 3. File Network Wall TM (letter transducer version) after Composition with No
System Calls TM

refer to other events (or statements) that are not of concern to the specification,
it should generally be taken as anything. Also, f < a > is a file access event,
n < a > is a network access event and ε can be read only when the input events
from the pervious TM in the chain are consumed.

The No System Calls specification prevents system calls from happening by
skipping the event along with its action. while the File Network Wall specifica-
tion halts the program whenever there is a file access after a network access
or vise versa.

The two specifications are dependent on each other, since a file access can
in fact be a system call invocation, and if the two specifications were composed
together in such a way that the No System Calls would be checked first, then
there would be no violation to the File Network Wall specification if the event
was already skipped by the previous specification.

4 Conclusion and Future Work

This paper describes a framework for modeling monitors which can be used to
resolve conflicts between conflicting monitors. In the model we express monitors
as a finite state transducer, where conflicting monitors are composed and other
non-conflicting monitors can be grouped with union.

The model gives a little power of control of one monitor on another, by al-
lowing one monitor to change in the output set of events previously received
from other monitors.

A future work for the model is to build a specification language on top of
the TM framework to define TM monitors and to build the appropriate com-
position among them.

Finite State Transducers Framework 123

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L.J., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA 2005), pp. 345–364. ACM (2005)

2. Bauer, L., Ligatti, J., Walker, D.: A language and system for enforcing run-time
security policies. Tech. Rep. TR-699-04, Princeton University (2004)

3. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. SIG-
PLAN Not. 40, 305–314 (2005)

4. Chen, F., Roşu, G.: MOP: An efficient and generic runtime verification framework.
In: Object-Oriented Programming, Systems, Languages and Applications (OOP-
SLA 2007), pp. 569–588. ACM (2007)

5. Erlingsson, U., Schneider, F.B.: IRM enforcement of java stack inspection. In: IEEE
Symposium on Security and Privacy (SOSP 2000), pp. 246–255. IEEE (2000)

6. Evans, D.: Policy-Directed Code Safety. Ph.D. thesis, MIT (2000)
7. Evans, D., Twyman, A.: Flexible policy-directed code safety. In: IEEE Symposium

on Security and Privacy (SOSP 1999), pp. 32–45. IEEE (1999)
8. Hamlen, K.W., Jones, M.: Aspect-oriented in-lined reference monitors. In: Work-

shop on Programming Languages and Analysis for Security (PLAS 2008), pp. 11–20.
ACM (2008)

9. Jones, M., Hamlen, K.W.: Enforcing IRM security policies: two case studies. In:
Intelligence and Security Informatics (ISI 2009), pp. 214–216. IEEE (2009)

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

11. Ligatti, J.A.: Policy Enforcement via Program Monitoring. Ph.D. thesis, Princeton
University (2006)

12. Ligatti, J., Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mecha-
nisms for run-time security policies. Journal of Information Security 4, 2–16 (2003)

13. Lomsak, D., Ligatti, J.: PoliSeer: A tool for managing complex security policies.
In: International Federation for Information Processing Conference on Trust Man-
agement, IFIP-TM (2010)

14. Meredith, P.O., Jin, D., Griffth, D., Chen, F., Roşu, G.: An overview of monitor-
ing oriented programming. Journal on Software Tools for Technology Transfer (to
appear, 2011)

15. Meredith, P.O., Jin, D., Griffth, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. Journal on Software Techniques for Technology
Transfer (to appear, 2011)

16. Roche, E., Schabes, Y. (eds.): Finite-State Language Processing. Bradford Book,
MIT Press, Cambridge, Massachusetts (1997)

	Finite State Transducers Framework for Monitors Conflict Detection and Resolution
	Introduction
	Related Work
	Properties about Monitors Conflicts Resolutions

	Finite State Transducers
	Definition of Finite State Transducers (FST)
	Sequential Transducers
	More about FST
	Closure Properties of FST

	Modeling of Monitors as FST
	Events Definition
	Monitors Modeling Architecture
	Modeling of a Program Monitor TMpgm
	Modeling Monitor Transducers in TMnet Monitor
	Identifying Potential Conflicts
	Conflict Resolution with TM Composition
	Modeling Monitors Not in Conflict
	Other Composition Usages
	Example

	Conclusion and Future Work
	References

