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Abstract. In this paper, we propose an unconventional method of representing 
and classifying text documents, which preserves the sequence of term 
occurrence in a test document. The term sequence is effectively preserved with 
the help of a novel datastructure called ‘Status Matrix’. In addition, in order to 
avoid sequential matching during classification, we propose to index the terms 
in B-tree, an efficient index scheme. Each term in B-tree is associated with a list 
of class labels of those documents which contain the term. Further the 
corresponding classification technique has been proposed. To corroborate the 
efficacy of the proposed representation and status matrix based classification, 
we have conducted extensive experiments on various datasets.  
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1 Introduction 

Bag of Word (BoW) is one of the basic methods of representing a document. The 
BoW is used to form a vector representing a document using the frequency count of 
each term in the document. This method of document representation is called as a 
Vector Space Model (VSM) [1]. The major limitation of VSM is that the correlation 
and context of each term is lost which is very important in understanding a document. 
Jain and Li [2] used binary representation for given document. The major drawback 
of this model is that it results in a huge sparse matrix, which raises a problem of high 
dimensionality. Hotho et al., [3] proposed an ontology representation for a document 
to keep the semantic relationship between the terms in a document. This ontology 
model preserves the domain knowledge of a term present in a document. However, 
automatic ontology construction is a difficult task due to the lack of structured 
knowledge base. Cavanar., (1994) [4] used a sequence of symbols (byte, a character 
or a word) called N-Grams, that are extracted from a long string in a document. In a 
N-Gram scheme, it is very difficult to decide the number of grams to be considered 
for effective document representation. Another approach [5] uses multi-word terms as 
vector components to represent a document. But this method requires a sophisticated 
automatic term extraction algorithms to extract the terms automatically from a 
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document. Wei et al., (2008) proposed an approach called Latent Semantic Indexing 
(LSI) [6] which preserves the representative features for a document. The LSI 
preserves the most representative features rather than discriminating features. Thus to 
overcome this problem, Locality Preserving Indexing (LPI) [7] was proposed for 
document representation. The LPI discovers the local semantic structure of a 
document. Unfortunately LPI is not efficient in time and memory [8]. Choudhary and 
Bhattacharyya (2002) [9] used Universal Networking Language (UNL) to represent a 
document. The UNL represents the document in the form of a graph with words as 
nodes and relation between them as links. This method requires the construction of a 
graph for every document and hence it is unwieldy to use for an application where 
large numbers of documents are present.  

After giving an effective representation for a document, the task of text 
classification is to classify the documents to the predefined categories.  In order to do 
so, many statistical and computational models have been developed based on Naïve 
Bayes classifier, K-NN classifier, Centroid Classifier, Decision Trees, Rocchio 
classifier, Neural Networks, Support Vector Machines [10].  

Although many text document representation models are available in literature, 
frequency-based BoW model gives effective results in text classification task. Indeed, 
till date the best multi-class, multi-labeled categorization results for well known datasets 
are based on BoW representation [11]. Unfortunately, BoW representation scheme has 
its own limitations. Some of them are: high dimensionality of the representation, loss of 
correlation with adjacent words and loss of semantic relationship that exist among the 
terms in a document [12]. Also the main problem with the frequency based approach is 
that given a term, with lesser frequency of occurrence may be appropriate in describing 
a document, whereas, a term with the higher frequency may have a less importance. 
Unfortunately, frequency-based BoW methods do not take this into account [9]. Hence 
there is a need for developing a new scheme for document representation preserving the 
correlation among adjacent words. This motivated us to use a new datastrcuture called 
“Status Matrix” [13] which effectively represents a text document and thereby giving a 
better classification results. 

The paper is organized as follows. The working principle of the proposed method 
is presented in section 2. Details of experimental settings and results are presented in 
section 3. The paper is concluded in section 4. 

2 Proposed Method 

In this section, we propose a new method of representing documents based on 
preserving the sequence of term occurrence in a document. Subsequently, we present 
the corresponding classification model. 

2.1 Representation Stage 

Let there be k  number of classes each containing  n  number of documents. A simple 
text processing algorithm is employed to extract the terms (words) present in each 
document. From the extracted set of words, stop words are removed. For each class 
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say jC , 1, 2,...,j k= , set of all words present in the documents of that class is formed. 

From these set of words an inverted list structure is formed for each of the word by 
associating the labels of the class of the documents that contain that particular word. 
The list of class labels associated with a word may contain many class labels as it is 
not uncommon that the documents of different classes contain the same word. The 
words and their associated lists of class indices are recommended to be stored in the 
knowledge base to support classification of an unknown test document. 

However, this representation requires a linear time searching, which is not 
acceptable in real pragmatic scenario. Thus in order to speed up classification and to 
make the representation scheme dynamic supporting addition and deletion of 
documents, we recommend to index the documents using an existing indexing data 
structure. To do this task, one may think of many indexing structures like 
multidimensional binary trees [14], G-Tree [15], KDB Tree [16] and BD Tree [17]. 
However, each structure has got its own limitations [18] with respect to handling the 
data and storage methods. Thus, in our work we make use of B-Tree structure as it is 
simple and less complex. Moreover, B-Tree is used because of its availability, its 
simplicity and less complexity in addition to its balanced nature. 

The proposed B-tree based system can be easily extended towards dynamic 
databases, as it is very easy to include new documents. In addition, insertion of new 
documents is as simple as just the insertion of set of words into the existing set and 
updating the associated term lists. With respect to the proposed representation scheme, 
insertion of a document into the database is simply a process of inserting the terms 
present in the document into the B-tree. In order to insert a term T  corresponding to the 
document to be inserted, the B-tree is accessed through to find out the location of T  in 
the B-tree. If T  is already present in the database, the insertion problem is reduced to 
the problem of getting the list of documents updated by appending the index of the 
document to be inserted. On the other hand, if a term T  is not present in the database 
then no doubt we are at the node U where T  is expected to be present. If U contains 

fewer than ( )1r − terms ( r  is the order of the B-tree), T  is simply inserted into U in a 

sorted order. Otherwise, unlike conventional B-tree insertion procedure where the node 
is eventually split into two nodes, in our work, we recommend to look at the siblings of 
the node to find if any a free location, so that by data movements we can get the T  term 
accommodated at the node U  itself without splitting it up. Indeed this modification 
suggested to the conventional B-tree insertion process significantly enhances the 
efficacy of the insertion procedure particularly on a very large B-tree. The complexity of 
using the B-tree is of ( )logrO t , where t  is the number terms stored in the B-tree and 
r is the order of the B-tree. 

For an illustrative purpose, we consider four different classes of documents. For 
each class we have created a knowledge base as follows. Given a set of training 
documents of an individual class, stopwords from each training documents are 
eliminated and the terms are pooled to form a knowledge base. The knowledge base 
obtained for four different classes are given below: 

K1: categorization,documents,implement,metric,similarity,text  

K2: algorithms,categorization,mining,similarity,video 
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K3: algorithms,efficient,enhancements,filter,image 

K4: algorithms,congestion,networks,protocols,routing. 

The terms present in the knowledge base along with their class labels are stored in a 
B-tree for the purpose of fast retrieval. 

A B-tree of order 3r =  is constructed (Figure 1) to store the distinct terms and each 

term in the B-tree is attached with its respective list of class indices. The index table 
containing all terms for each of the documents to be stored is created as shown in 
Table 1. 

2.2 Classification 

Sequence of occurrence of words in any text plays a major role in understanding the 
text document. However, most of the existing methods do not preserve the sequence 
of occurrence of words as they assume that the word occurrence is independent of text 
representation. 

Simple method to check the sequence of occurrence of words is same as common 
longest substring matching. Thus, one can think that the problem of classifying a test 
document is reduced to the problem of finding out a common longest subsequence of 
terms in the database. In practice, this is not acceptable as the process of substring 
matching has non-deterministic polynomial time complexity. 

Hence, in this section we propose an alternative method of matching and 
classification of text documents. For the purpose of preserving the sequence of 
occurrences of words in a test document we recommend to use the concept of status 
matrix. Status matrix representation was proposed for the purpose of recognition of 
partially occluded object recognition, where status matrix representation is a binary 
matrix preserving the order in which the information occurs. 

2.3 Computational Complexity of Classification 

As there are k  classes and a query document contains qt terms, we require 

( log )q rO t t  computations to create a status matrix of size M . 

A status matrix is a binary matrix where the entries are either 0 or 1. The status 
matrix is of dimension qk t×  where, k  is the number of classes, and qt is the number 

of terms in the query text document after preprocessing. 
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Fig. 1. A B-tree representation to the knowledge base 
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Table 1. The index table for the illustrated example 

Index Terms Index Terms 
T1 Algorithms  T 10 Metric  
T2 Categorization T 11 Mining  

T3 Congestion  T 12 Networks  
T 4 Documents  T 13 Protocols  
T 5 Efficient  T 14 Routing  
T 6 Enhancements  T 15 Similarity   
T 7 Filter  T 16 Text  
T 8 Image  T 17 Video  

T 9 Implement    

 
The B-tree is accessed through in search of each term and the lists of document 

indices corresponding to that term are retrieved from the database. If the thi  term iT  

of the query document is present in the knowledge base of the class jC , then the entry 

corresponding to the row of jC and the column iT  in the status matrix is set to 1, 

otherwise it is set to 0. That is, if M  is a status matrix, then, M  is given by 

{1
0

i jif T C

ij otherwiseM ∈=                                 (1) 

Assuming each row of the status matrix as a binary string, we then look for a row 
with a longest substring containing only 1s. The class corresponding to that row is 
declared to be the class of the test document. 

As an illustration, let us consider the following paragraph as a query document qd . 

“Text categorization is not a trivial problem. The complexity of the problem lies in 
how to define a similarity metric between the documents, and then how to implement 
a computationally efficient algorithm to solve the problem given this similarity 
metric”.  

In order to classify this document we first eliminate stopwords present in it, which 
results with the following set of terms. 

{text, categorization, trivial, problem, complexity, similarity, metric, documents, 
implement, computationally, efficient, algorithms, similarity, metric}.  

This query document totally contains 14 terms. Now it is understood that as there 
are 4 classes and the query document has 14 terms, we have the status matrix of size 
4 14× as shown in Table 2. 

Once the status matrix is constructed we search through the status matrix in search 
of longest matched sequence. Now, the test document is assigned to the class which 
has longest matched sequence of terms present in the query document. Here in this 
example the query document is given the class label 1. 
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Table 2. Status matrix obtained for query document qd  

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 
k1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 
k2 0 1 0 0 0 1 0 0 0 0 0 1 1 0 

k3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

k4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

3 Experimental Setup 

3.1 Dataset 

To test the efficacy of the proposed model, we have used the following five datasets. 
The first dataset is standard 20 Newsgroup Large [19]. It contains 20000 documents 
categorized into 20 classes. The second dataset consists of vehicle characteristics 
extracted from wikipedia pages (vehicles- wikipedia) [20]. The dataset contains 4 
categories that have low degrees of similarity. The dataset contains four categories of 
vehicles: Aircraft, Boats, Cars and Trains. All the four categories are easily 
differentiated and every category has a set of unique key words. The third dataset is a 
standard 20 mini newsgroup dataset which contains about 2000 documents evenly 
divided among 20 Usenet discussion groups. This dataset is a subset of 20 
newsgroups which contains 20,000 documents. In 20 MiniNewsgroup, each class 
contains 100 documents in 20 classes which are randomly picked from original 
dataset. The fourth dataset is constructed by a text corpus of 1000 documents that are 
downloaded from Google-Newsgroup. Each class contains 100 documents belonging 
to 10 different classes (Business, Cricket, Music, Electronics, Biofuels, Biometrics, 
Astronomy, Health, Video Processing and Text Mining). The fifth dataset is a 
collection of research article abstracts. All these research articles are downloaded 
from the scientific web portals. We have collected 1000 documents from 10 different 
classes. Each class contains 100 documents. 

3.2 Experimentation 

In this section, we present the results of the experiments conducted to demonstrate the 
effectiveness of the proposed status matrix based method on all the five datasets viz., 
20 newsgroup large, vehicles wikipedia, 20 mini newsgroup, google newsgroup and 
research article abstracts. During experimentation, we conducted two different sets of 
experiments. In the first set of experiments, we used, 50% of the documents of each 
class of a dataset to create training set and the remaining 50% of the documents for 
testing purpose. On the other hand, in the second set of experiments, the numbers of 
training and testing documents are in the ratio 60:40. Both experiments are repeated 5 
times by choosing the training samples randomly. The minimum, maximum and the 
average value of the classification accuracy of all the 5 trials are presented in Table 3.  

Table 4 shows the comparative analysis of the results on five datasets mentioned 
above. It is clear from the Table 4, that the proposed model achieved good 
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classification accuracy on three benchmark datasets and also on our own dataset 
(Google Newsgroup and Research article abstracts), when compared with other well 
known classifiers viz. Naïve Bayes, KNN and SVM classifier. This is because of the 
proposed model has a capability of classifying the documents at two stages (one is at 
voting stage and the other is at term sequence stage). It is also worth mentioning that 
the incorporation of status matrix improves the performance of a voting classifier.  

Table 3. Classification accuracy of the proposed method on different data sets 

Dataset 
Training 

Vs 
Testing 

Minimum 
Accuracy 

(5 Trials) 

Maximum 
Accuracy 

(5 Trials) 

Average 
Accuracy 

(5 Trials) 

20 
Newsgroup 

Large 

50 vs 50 79.65 84.20 82.64 

60 vs 40 84.35 87.85 86.35 

Vehicles 
Wikipedia 

50 vs 50 70.65 72.85 71.60 

60 vs 40 74.95 76.00 75.45 

20 Mini 
Newsgroup 

50 vs 50 64.65 68.95 66.91 

60 vs 40 71.00 76.85 73.95 

Google 
Newsgroup 

50 vs 50 86.70 89.70 88.74 

60 vs 40 89.85 96.00 93.33 

Research  
Article Abstracts 

50 vs 50 86.25 90.25 88.52 

60 vs 40 89.00 91.25 90.13 

Table 4. Comparative analysis of the proposed method with other classifiers 

Dataset Used 
Voting 

Classifier 

Voting + 
Status 
Matrix 

Classifier 
(Proposed 
Method) 

Naïve 
Bayes 

Classifier 
 

KNN 
Classifier 

 

SVM 
Classifier 

 

20 Newsgroup 
Large 

82.55 87.85 86.50 70.00 85.65 

Google  
Newsgroup 

93.50 96.00 80.00 46.25 48.25 

Vehicle-Wiki 67.50 76.00 74.00 64.50 63.00 

20 Mini 
Newsgroup 

66.25 71.12 
66.22 

 
38.73 

 
51.02 

 

Research Article 
Abstracts 

86.75 91.25 - - - 
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4 Conclusion 

In this paper, we have proposed the classification of text documents using B-Tree. 
Further, we have presented a new datastructure called status matrix through which, 
we make an attempt to preserve the sequence of term occurrence in the query 
document. In addition, in order to avoid sequential matching during classification, we 
propose to index the terms in B-tree, an efficient index scheme. In order to investigate 
the effectiveness and robustness of the proposed method, experimentation is 
conducted on five different datasets. The experimental results tabulated in Table 4, 
indicate that the proposed method offers better performance results than other three 
well-known classifiers. In the proposed method we have pooled the terms of training 
documents of each class to create a knowledge base. For a given query document we 
create the status matrix to preserve the sequence of the term appearance in the query 
document. As we have pooled the terms in the knowledge base we are not preserving 
the term sequence during training stage. Along with this the presence of continuous 
1’s in status matrix do not ensure that the database contains any document having 
same sequence of terms present in the test document. Hence in our future work we try 
to study the sequence of the term appearance using the concept of status matrix even 
on training documents and there by preserving the topological sequence of term 
occurrence in a document useful for semantic retrieval. 
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