
Modeling and Verification of Fiat-Shamir Zero

Knowledge Authentication Protocol

Amit K. Maurya, Murari S. Choudhary, P. Ajeyaraj, and Sanjay Singh

Department of Information and Communication Technology
Manipal Institute of Technology, Manipal University, Manipal-576104, India

sanjay.singh@manipal.edu

Abstract. Model checking is a multi-purpose, automatic technique for
verifying finite-state concurrent systems. Formal verification methods
have quite recently become usable by industry. Presently model check-
ing has been widely used in hardware, software validation and security
protocol analysis. Fiat-Shamir is one of the many zero-knowledge au-
thentication protocol which is used for security authentication purpose.
In this paper, we have proposed a formal model of Fiat-Shamir authenti-
cation protocol using Finite State Machine (FSM). Security requirements
are represented using Computation Tree Logic (CTL). These security re-
quirements are verified and analyzed using symbolic model checker tool
NuSMV. Based on our verification we have identified one of the security
flaw of Fiat-Shamir protocol using the NuSMV model checker.

Keywords: Model Checking, Zero Knowledge Authentication Protocol,
Fiat-Shamir Protocol, CTL, Finite State Machine (FSM).

1 Introduction

An authentication protocol is a type of cryptographic protocol with the pur-
pose of authenticating entities wishing to communicate securely. In password
authentication, the claimant needs to send her secret to the verifier. It leads to
a problem of eavesdropping. In addition, a dishonest verifier could reveal the
password to others or use it to impersonate the claimant.

In challenge-response entity authentication, the claimant’s secret is not sent to
the verifier. The claimant applies a function on the challenge sent by the verifier
that includes her secret. In some challenge response-methods, the verifier actually
knows the claimants secret, which could be misused by the dishonest verifier.
In other methods, the verifier can extract some information about the secret
from the claimant by choosing a preplanned set of challenges. In zero-knowledge
authentication [1][2], the claimant does not reveal anything that might cause
danger to the confidentiality of the secret. The claimant proves to the verifier
that she knows a secret, without revealing it. The interactions are so designed
that they can not lead to revealing or guessing the secret. After exchanging
messages, the verifier only knows that the claimant does or does not have the
secret, nothing more. The result is a yes or no situation.

N. Meghanathan et al. (Eds.): CCSIT 2012, Part II, LNICST 85, pp. 61–70, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

62 A.K. Maurya et al.

To the best of our knowledge there is no work on modeling and verification of
Fiat-Shamir zero knowledge authentication protocols has been reported in the
literature. In this work the Fiat-Shamir Protocol based on the zero-knowledge
authentication has been considered for the modeling and verification purpose.
Many authentication protocols have been proposed and found to have flaws af-
ter the authentication. In order to avoid such problems arising in the design
of protocols, several methods have been proposed to analyze them. Among the
various methodologies proposed, model checking has been proved to be very
useful for this purpose. Model checking [3] [4] is a general purpose, automatic
technique for verifying finite-state concurrent systems. This technique provides
a way to model a system using state-transition system and all the requirements
to be checked is expressed using temporal logic. Given a model and require-
ments a model checker simulates to verify that whether a requirement is satisfied
or not.

The aim of this work is to present a methodology for analyzing cryptographic
protocol and to identify the security flaw of Fiat-Shamir authentication protocol
using a symbolic model verifier NuSMV.

The rest of this paper is structured as follows. Section 2 gives the overview of
the Fiat-Shamir protocol. Section 3 describes model of Fiat-Shamir protocol. In
section 4 key properties of the system are verified. Section 5 provide conclusion
of the work.

2 Overview of the Fiat-Shamir Protocol

In the Fiat-Shamir protocol [2], a trusted third party chooses two large prime
numbers p and q to calculate the value of n = p×q. The value of n is announced
to the public. The values of p and q are kept secret. Alice the claimant, chooses
a secret number s between 1 and n-1. She calculates v= s mod n. She keeps s as
her private key and registers v as her public key with the third party. Verification
of Alice by Bob can be done in four steps shown below:

1. Alice, the claimant, chooses a random number r between 0 and n-1. She
then calculates the value of x = r2 mod n; x is called as witness.

2. Alice sends x to Bob as the witness.
3. Bob the verifier, sends the challenge c to Alice,c is either 0 or 1.
4. Alice calculates the response y = rsc, where r is a random number selected

by Alice in the first step. s is her private key and c is the challenge (0 or 1).
5. Alice sends the response to Bob to show that she knows value of her private

key, s. She claims to be Alice.
6. Bob calculates y2 mod n and xvc. If these two values are equal then Alice

either knows the value of s (she is honest) or she has calculated the value of
y in some other way (dishonest) because we can easily prove that y2 is the
same as xvc in the modulo n arithmetic as given below

y2 = (rsc)2 = r2s2c = r2(s2)c = xvc

Modeling and Verification of Zero Knowledge Protocol 63

These six steps constitute a round; the verification is repeated several times with
the value of c equal to 0 or 1. The claimant must pass the test in each round
to be verified. If she fails one single round, the process is aborted and she is not
authenticated. This entire process is shown in Fig.1.

Fig. 1. Fiat-Shamir protocol

3 Model of the Protocol

Our methodology of analysis is based upon model checking, an automatic tech-
nique for verifying finite state concurrent systems. In the temporal logic model
checking, the concurrent system is modeled as a state transition diagram, whereas
properties are expressed in a temporal logic such as Linear Time Temporal Logic
(LTL) or CTL [4]. The NuSMV model checker [5][6] following the above ap-
proach, adopts a structured input language to describe the model of system and
the temporal logic CTL to express desired properties. The model of protocol has
a modular structure. Each module is associated to an entity of the system and
describes its behavior. The main modules used here are the Alice, Bob and Third
party and they are considered to be honest principals. Model of the system is
represented by a Kripke structure [4].

64 A.K. Maurya et al.

3.1 Kripke Structure

Kripke structure is a 4-tuple M = (Q,I,Δ,I) where:

– Q is a finite set of states.
– I ⊆Q is the set of initial states.
– Δ ⊆ Q × Q is a transition relation which represents a state and its successor

states.
– L:Q→ 2AP is a function which returns the set of atomic proposition that

hold true in a state.

Kripke structure is used to represent the static topology and dynamic behavior
of a system. Each state relates with a set of atomic propositions.

3.2 Specifying a Protocol as a Finite State Machine

Here the protocol is expressed as a state transition diagram. First an initial state
is specified. Then an arc is drawn to another state for each message that can be
sent or received at that point. Fig.2 describes the FSM model of Fiat-Shamir
protocol.

Fig. 2. FSM for Fiat-Shamir protocol

Table 1. Notations Used in the States of FSM

i idle

s sending

t sent

r received

Table.1 gives the different notations used in the states of FSM.
Table.2 gives the messages that are passing between different states of FSM.
Table.3 shows, what different states are representing and also what will be

the state of Bob (verifier) and Alice (claimant) at different input values.
Table.4 gives different states of the FSM and their corresponding labels.

Modeling and Verification of Zero Knowledge Protocol 65

Table 2. Different Messages Exchanged

X−1 First Message X is sent by Alice.

X+1 First Message X is received by Bob.

C−1 Second Message C is sent by Bob.

C+1 Second message C is received by Alice.

Y −1 Third message Y is sent by Alice.

Y +1 Third message Y is received by Bob.

check Event to enter final state.

Table 3. Description of Different States of FSM

Sii Alice and Bob in Idle State.

Ssi Alice is in Sending state and Bob is in Idle state.

Str Alice is in Sent state and Bob is in Received state.

Sts Alice is in Sent state and Bob is in Sending state.

Srt Alice is in Received state and Sent state.

Sst Alice is in Sending state and Bob is in Sent state.

Str Alice is in Sent state and Bob is in Received state.

Sf Alice and Bob will be in final state.

Table 4. States and their Corresponding Labels

State State Label

Sii s, r, n

Ssi x, s, r, n

Str x, s, r, n

Sts x, s, r, n

Srt x, s, r, n, c

Sst x, s, r, n, c, y

Str x, s, r, n, c, y

Sf value1, value2

4 Verification and Analysis

4.1 Variables Used

Following are the list of variables maintained by the third party.

– p and q: These are the two prime numbers used for calculating private and
public key.

– nvalue.n: Here nvalue.n is equal to p∗q and is calculated by the third party
and announced to the public.

66 A.K. Maurya et al.

Following are the list of variables maintained by the principal Alice.

– s: A secret key chosen between 1 and n - 1.
– v: Calculated as,

(alice.s)2 mod (thirdparty.nvalue.n). This is the public key. Alice keeps s as
her private key and registers v as her public key with the third party.

– r: Random number chosen between 0 and n - 1.
– i.info.xx: Temporary variable used by Alice and further assigned to x the

witness. i.info.xx is calculated as (alice.r)2 mod (thirdparty.nvalue.n)
– challenge : boolean: The variable and its value is equal to the challenge that

is sent by Bob, if he is the honest principal otherwise Alice can guess the
value of challenge randomly (0 or 1).

– i.info.yy c1: Temporary variable calculated as (alice.r) × (alice.s) mod
(thirdparty.nvalue.n) when the value of challenge is 1. This value will be
assigned to y and sent to Bob for further calculation.

– i.info.yyy c0: Temporary variable calculated as (alice.r)mod
(thirdparty.nvalue.n) when the value of challenge is 0. This value will be
assigned to y and sent to Bob for further calculation.

Following are the list of variables maintained by the principal Bob.

– challenge : boolean: variable called the challenge is chosen by Bob and the
value is either 0 or 1. This challenge will be sent to Alice.

– value1: If the value of challenge is 1, the variable calculated as,
((alice.r × alice.s)mod (thirdparty.nvalue.n))2 mod
(thirdparty.nvalue.n)
Otherwise if the value of challenge is 0, the variable is calculated as,
(alice.r mod (thirdparty.nvalue.n))2 mod
(thirdparty.nvalue.n) .
this value of value1 will be used for comparison with value2.

– value2: If the value of challenge is 1 then the variable will be calculated as,
(((alice.r)2mod (thirdparty.nvalue.n)) × v.alice)mod
(thirdparty.nvalue.n)
Otherwise, if the value of challenge is 0, the value is calculated as,
(alice.r)2mod (thirdparty.nvalue.n)
After calculating value1 and value2, these values are compared. If these two
values are matching then Alice is authenticated.

4.2 Syntax and Semantic of CTL

Security requirements (properties) are expressed with a temporal logic that is
Computation Tree Logic (CTL). The BNF of CTL syntax is as follows [4]:

Φ ::=⊥|�|(¬Φ)|(Φ ∧ Φ)|(Φ ∨ Φ)|(Φ → Φ)| AXΦ| EXΦ| AFΦ| EFΦ | EGΦ|
A[ΦUΦ]| E[ΦUΦ]

Modeling and Verification of Zero Knowledge Protocol 67

The first symbol of the pair is either ”A” or ”E” where ”A” represents ”all path”
and ”E” represents ”exist a path”. ”A” and ”E” are path operator.

The second symbol of the pair is possibly ”X”, ”F”, ”G” and ”U”. ”X” repre-
sents ”next state”, ”F” represents ”some future state”, ”G” represents ”all cases
in future”, ”U” represents ”until”.

A path operator must accompany with a temporal operator, and vice versa.

4.3 Verification Results

Given the model of the system to analyze, NuSMV the model checker simulates
all its possible behaviors in order to verify whether requirement is satisfied. In
this model authentication is the major requirement. As specified, in Fiat-Shamir
protocol the claimant is authenticated if and only if the values of y2 mod n
and xvc mod are matching. This is possible when the claimant Alice is honest
and she must get the correct challenge from Bob. There is a possibility that a
dishonest user can guess the correct value of challenge and can pass the test.
This problem can be fixed by repeating this authentication process many times.
Claimant is authenticated if and only if she passes all the tests assuming that it
is not possible to guess the value of challenge c properly all the time. There are
two possible cases under consideration:

– Now we will consider the first case where claimant is considered to be hon-
est. If she is honest user then she must receive the correct value of challenge
either 0 or 1. In NuSMV this can be checked using CTL specification,
AF (alice.challenge = bob.challenge− > AF (value1 = value2)). In sim-
ple English it means that in all future states when alice.challenge is equal
to bob.challenge then in all the future states value1 and value2 which are
calculated by Bob should be same.

– Considering the second case, where claimant is considered to be a dishonest
principal. In this case challenge sent by Bob is not equal to the challenge
that is assumed by the Alice. Then the values of value1 and value2 are going
to change because of different interpretation of the value of c by Alice and
Bob. This can be verified by the CTL specification AF (alice.challenge! =
bob.challenge− > AF (value1! = value2)). It means that in all future states
when alice.challenge is not equal to bob.challenge then in all the future
states value1 and value2 which are calculated by Bob should not be same.

Though it is said that in the case of dishonest principal when the value of
challenge sent by Bob and value of challenge assumed by the Alice are different,
protocol is going to give different values for value1 and value2, it is not the
case always. In such situation authentication is going to fail. This is one of the
major flaw noticed in the Fiat-Shamir protocol by this work. It is proved by
running the second CTL specification AF (alice.challenge! = bob.challenge− >
AF (value1! = value2)). While running it is noticed that NuSMV gives the result
as FALSE. It makes sure that in some cases for different values of c it is not at
all possible that value1 and value2 takes the different values.

68 A.K. Maurya et al.

Fig. 3. Observation of Protocol’s Flaw

The Fig.3 shows the verification output of Fiat-Shamir protocol where the
protocol has failed. As we see that the values of challenge of claimant (Alice)
and verifier (Bob) are not equal (i.e 1, 0 respectively) but the value1 and value2
(i.e 10) are still equal, that means if claimant does not have the secret key even
though she could pass the test. It also shows that for some values of challenge
the protocol passes the test that means Fiat-Shamir protocol could identify that
whether claimant has the secret key or not.

Modeling and Verification of Zero Knowledge Protocol 69

Fig. 4. Observation of Protocol

Fig.4 shows one of the observation of the verification where challenge guessed
by Alice and challenge sent by Bob are different (0 and 1). value1 and value2
calculated by Bob are different (1 and 4) and hence the claimant (Alice) is get
disqualified.

5 Conclusion

It has been observed that among the various methodologies proposed, model
checking has been proved to be very useful to avoid the misconceptions arising

70 A.K. Maurya et al.

in the design of protocols. In this paper we have tried to model check Fiat-Shamir
authentication protocol using NuSMV as the symbolic model verifier. We could
able to check the initial configuration of the protocol. Also we could find out the
limitation of the Fiat-Shamir protocol. This major flaw has been proved using
CTL specification over the model.

References

1. Wikipedia: Zero knowledge proof (2011),
http://en.wikipedia.org/wiki/Zero-knowledge_proof/

2. Forouzan, B.A.: Cryptography & Network Security, 1st edn. McGraw-Hill Press,
United Kingdom (2008)

3. Cimatti, A.: Industrial Applications of Model Checking. In: Cassez, F., Jard, C.,
Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 153–168. Springer,
Heidelberg (2001)

4. Huth, M., Ryan, M.: Logic In computer science, 2nd edn. Cambridge University
Press, New Delhi (2004)

5. Cavada, R., et al.: Nusmv 2.5 user manual (2010),
http://nusmv.fbk.eu/NuSMV/userman/v25/nusmv.pdf

6. Cavada, R., et al.: Nusmv 2.5 tutorial (2010),
http://nusmv.fbk.eu/NuSMV/tutorial/v25/tutorial.pdf

http://en.wikipedia.org/wiki/Zero-knowledge_proof/
http://nusmv.fbk.eu/NuSMV/userman/v25/nusmv.pdf
http://nusmv.fbk.eu/NuSMV/tutorial/v25/tutorial.pdf

	Modeling and Verification of Fiat-Shamir Zero
Knowledge Authentication Protocol
	Introduction
	Overview of the Fiat-Shamir Protocol
	Model of the Protocol
	Kripke Structure
	Specifying a Protocol as a Finite State Machine

	Verification and Analysis
	Variables Used
	Syntax and Semantic of CTL
	Verification Results

	Conclusion
	References

