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Abstract. The rising popularity of ubiquitous computing has resulted
in a paradigm shift from generic to user-centric solutions, requiring seam-
less integration of heterogeneous devices and sensors in the environment
to constantly monitor and perform tasks traditionally performed by the
user. There is a considerable push, therefore, to develop systems capa-
ble of perceiving user behavior, and adapting to their idiosyncrasies. In
this paper, we discuss limitations of the interpretations of context, and
extend them for improved context awareness. We discuss a user-centric
approach to perception of activity in the environment, and use the ob-
tained knowledge in understanding user activities. We present a system
for perceiving situations, and discuss an approach to empower the user
to develop complex, yet intuitive, rules. We evaluate the performance of
the system in a dynamic ubiquitous environment.
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1 Introduction

Ubiquitous computing represents the concept of seamless “everywhere” comput-
ing and aims at embedding technology unobtrusively within everyday devices [1],
by providing appropriate services and information to users based on their cur-
rent position (location), current applications running on user devices (state),
or activities performed in the environment (situation awareness). A ubiquitous
system should perceive appropriate user context, and develop dynamic rules and
policies customized to user behavior, while reducing user interaction. Behavior
can be described by a finite number of activities, characterized by entities play-
ing particular roles and being in relation within the environment. Indeed, it is
imperative to understand the potential relationship between computation and
context, resulting in the need for effective situation perception.

In this paper, we present a user-centric system for capturing user behavior
and activity in a ubiquitous computing environment. A new definition of context,
focused on activity is proposed, and a new structure called a Situation Tree is
developed to represent context, devices, and actions. Our system dynamically
adapts to user behavior, and empowers users to customize the system according
to their requirements, intuitively, yet efficiently. The performance of the system
is analyzed with two complex user activities.
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2 Motivation and Related Work

Human behavior is defined by a finite number of states called situations, charac-
terized by entities playing particular roles within the environment. Perceptual in-
formation from different environmental sensors is associated to situations, roles,
and relations, connected within a network, where a path describes behavior. Hu-
man behavior and needs evolve over time, requiring an adaptive context model.

Consider the following scenario: John is a patient in an assisted environment,
and his physician uploads the regimen to the system and monitors his progress
remotely, with system alerts to remind John to take his medicine when needed.
Based on his recovery, John’s physician changes his regimen or medication, and
the system now alerts John accordingly. The system also registers usage of med-
ication, and informs John to fill his prescription in advance. This scenario in-
corporates concepts of remote and local patient monitoring, handling sensitive
information, and pro-active predictive actions performed by the system.

Consider another scenario: Mary wants to try a recipe and accesses the ingre-
dients from the refrigerator and pantry. Some of the items required are depleted
during preparation and Mary makes a note to add them to the grocery list. After
cooking, she finds that she wants to store the recipe for future reference. Nor-
mally, Mary would file the recipe for future reference, and add the depleted
items to her grocery list. At a future date, she would need to manually search
for the recipe and check if necessary ingredients are available for preparation.
It would benefit the user if the system could accomplish all these tasks with a
minimal amount of intervention.

The system should perceive user situations, and perform most of the tasks,
reducing user interaction. Recognizing daily activities is challenging, especially
in a home or assisted environment [2, 3], since users can perform these activ-
ities in several ways. Underlying sensors must report features robustly across
various sensing contexts [4]. Human activity recognition in the context of as-
sisted environments using RFID tags has been investigated in [5,6].Though this
approach involves extensive tagging of objects and users, it demonstrates that
hierarchical organization of probabilistic grammars provides sufficient inference
power for recognizing human activity patterns from low level sensor measure-
ments. A sensing toolkit for activity detection and recognition has been discussed
in [7]. Systems deployed in ubiquitous environments are characterized by multi-
ple smart cooperating entities and perform high-level inferencing from low-level
sensor data reporting [8, 9]. Presence of such heterogeneous sensors and devices
drives the need for appropriate perception of situations.

3 Context

Context is defined as “any information relevant to an interaction that can be
used to characterize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and an
application, including the user and application themselves” [10]. This implies
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that context only exists if there is an interaction between the user and the
application, limiting context to an occurrence of an event. If the user is sleeping
and not interacting with any application, we would lose valuable information of
the context (sleeping). In a pressure sensitive floor, when no one walks or sits,
absence of a user is still information. Context therefore, should not be just an
interaction between the user and application, but any information obtained from
the user actions (or inactions) with respect to an application.

Context is more than just data or information - it is knowledge. We define
these three terms in the following way: Data is just an informal piece of in-
formation without explicit structure or format. Information is interpretation of
informal pieces of data which are associated with a particular context. When
contextual information is interpreted and understood, we then have knowledge.

We define Context of an entity as “a collection of measured and inferred
information of a state or environment in which the entity interacts, either pas-
sive or active, to enable perception of the current state of the entity from the
obtained knowledge, which influences inference of the future states”. Our defini-
tion stresses upon information collected from various sensors, and inherent in-
formation obtained from reasoning about the state or environment, which form
knowledge. We use this knowledge to perceive the state of the entity and con-
sider decision making as a function of prior context about an entity, allowing us
to predict future states.

4 Perceiving Situation

Consider the environment shown in Figure 1(a). Let S = {s1, s2, . . . , sm} sen-
sors be distributed in this environment. Each sensor monitors a zone around it,
calculated in the following manner: Draw a straight line connecting a sensor and
its neighbor. The perpendicular bisector of this line forms the edge demarcating
the zones of these adjacent sensors. If a wall is encountered within the zone, then
that wall forms the edge of the zone for the sensor.

Definition 1. Context Element

A context element ci contains the information from sensor si. Therefore, C =
{c1, c2, . . . , cm} contains the data from m sensors distributed in the environment.

Let D = {d1, d2, . . . , dk} be k devices present in the environment. We define
a device as an object in the environment which the user accesses or interacts
with. Sensors and devices are collectively called nodes, and assume n nodes in
the environment, where n = m + k.

In the initial discovery phase, location of all nodes is obtained and a Min-
imum Spanning Tree (MST) is calculated, to enable tracking of user activity
(Figure 1(b)). We represent a user entering and leaving a zone as an edge in the
MST. If an edge is not found, then we log the activity, and upon repeated usage
of that path, we append it to the MST and remove the existing path between the
two nodes. When a user enters a node’s zone, we assume that the node generates
a context element and transmits it to the system.
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(a) (b)

Fig. 1. Ubiquitous computing environment of our system showing (a) Floor plan and
distribution of nodes, (b) Minimum Spanning Tree and calculation of a zone

Definition 2. Situation

A situation γ(t) is a sequence of context elements c1, c2, . . ., terminated by a
device at time t. In other words,
γ(t) = c1c2 . . . , cidj, where i ∈ {1, . . . , n}, j ∈ {1, . . . , k} represents a situation
at time t, γ(t) ∈ Γ .

Context elements correspond to non-terminal, and devices correspond to termi-
nal symbols respectively. As the user moves in the environment, context elements
corresponding to zones in which the user traverses are obtained, with elements
processed in an online manner.

4.1 Capturing Action

In order to capture user activity, we associate action words or “verbs” to each
node. Let vi be a verb associated with node i. Each type of node is assigned verbs
according to their capability. For instance, a sensor capturing user motion would
be assigned verbs “walk”, “stand”, and “sit”. If we assume that a normal person
walks 1 m/s, and average house size is 200 m2, the user would enter an exit a zone
once per second on an average. The nodes, therefore, would need to report with a
very low frequency (about 1 Hz). When the user is within the zone of node i, we
assign vi to it, where the verb would correspond to “walk”. If the user is still in
the same zone after 2 reporting cycle, we upgrade the verb as v

′
i = “stand′′. Some
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verbs associated with devices are “switch on”, “switch off”, “access”, “replace”,
etc. In order to differentiate between verbs of the context element and verbs of
the device, let V = {v1, v2, . . . , vp}, p ≤ m correspond to verbs associated with
context elements and A = {a1, a2, . . . , ap}, q ≤ k correspond to the set of verbs
associated with devices. A situation in our approach is interpreted as an activity
in the environment, and can be represented as user (subject) → verb (action) →
environment (devices, context elements).

4.2 Initial Configuration

Initially, the system has to be trained to perceive user activity. Consider an arbi-
trary user activity pattern where the system informs the user to take medication.
The user, currently in the living room, gets up and moves to the bathroom, via
the bedroom, and accesses the medicine cabinet (d5). This activity is repre-
sented by sequence c2v1c5v1c9v1c10v1c11v1d5v2, with the user’s initial position
as a location in zone of c2. The system obtains the first (context, verb) pair and
compares it with the next (context, verb) pair in the sequence. Since verbs in
both the pairs are similar, it uses the following rule:

Rule 1 Simple Contraction: Sequence xvyv, x, y ∈ N can be represented as
(x, y)v. This rule is commutative, i.e., vxvy, x, y ∈ N is represented as v(x, y).

The system contracts the first two (context, verb) pairs and compares this with
the next (context, value) pair observed, Rule 2 is then used.

Rule 2 Compound Contraction: Sequence (c1, c2)vc3v, {c1, c2, c3 ∈ C} is
contracted to (c1, c3)v. This rule is commutative, contracting the sequence to
v(c1, c3), eliminating redundant context when identical action is performed over
multiple context elements.

Rule 3 Device Listing: Sequence v(d1, d2)vd3, {d1, d2, d3 ∈ D} contracts to
v(d1, d2, d3). This rule captures devices that the user has interacted with.

The system continues contracting the sequence till we obtain (c2, c11)v. The
Situation Tree is constructed upon encountering terminal symbol d5.

Definition 3. An activity is considered complete when any situation si, ter-
minating at device di with verb v is immediately followed by a situation si+1

terminating at the same device, but with verb v
′
.

Rule 4 Complement Rule: Sequence terminating with v(d1, d2, . . . , di), {di ∈
D}, is constructed until complement v

′
(d1, d2, . . . , di), {di ∈ D} is encountered.

This rule ensures that any device accessed/switched-on is replaced/switched-off.

Rule 5 Activity: An activity is defined as usage of a device di if situation γi,
terminating at device di with verb v = “access/switch on′′ is immediately fol-
lowed by a situation γi+1 terminating at di with verb v

′
= “replace/switch off ′′.
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For situations with activities between accessing and replacing a device (for e.g.,
talking on a phone while cooking), the sequence is decomposed into: activity
performed up to device access, intermediate activity, and device release.

Rule 6 Decomposition: If a sequence terminates with a device or a set of
devices, with the subsequent verb not a complement of the prior verb, construct
a new sequence for the current activity, until the complement is encountered.

Using these rules, sequences are represented using a structure called a Situation
Tree. The Situation Tree (S−Tree) is a binary tree constructed bottom-up, from
the sequence of context elements, verbs and devices, and possesses the following
properties:

Property 1. The root of any subtree of a S-Tree is always a verb.

Property 2. The left child of any verb is non-terminal(context element or verb).

Property 3. The right child of the root is either terminal (device) or a subtree
of terminals.

Property 4. The right child of any intermediate verb, whose parent is not its
complement, is a context element.

Property 5. The right child of any intermediate verb, whose parent is its com-
plement, is a terminal or a subtree of terminals.

Property 6. The left subtree of any intermediate verb represents prior activity.

4.3 Designing Complex Rules

In order to resolve perceiving current state of user activity, many systems incor-
porate a form of “Event−Condition−Action”(ECA) rules to perform actions
based on event triggers. An example of an ECA rule is given below:

rule: "Cooking_Rule":
Event: (location == "Kitchen")
Condition

(device == "Oven") &&
(status == "On")

Action:
assign activity == "Cooking"

ECA rules, however, tend to become complex and require manual decomposition
and chaining of logical operations to encompass multiple events, reducing their
user-friendliness. Additionally, since events trigger an action, conditions might
not consider prior user activity (history). For instance, in the activity discussed
in Section 4.2, developers might choose to discard user movement from c2 to c10,
and focus on context information obtained from c11 onwards, resulting in loss of
information, essential in understanding user behavior for situation prediction.
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Our system improves user interaction and allows the user to specify custom
rules naturally. Assume that the user needs to create a rule to turn the television
on when she walks from the bedroom to the living room. Using ECA rules would
involve initial location as “Bedroom”, final location as “Living room”, and a
series of operations to include the activity of walking. Our system handles this
in a graceful manner. The user enters the rule without decomposition as “If
user walks from Bedroom to Living room, turn on the television”. The system
identifies the subject is the user and the rest of the rule, “walks from Bedroom
to Living Room, turn on the television” is the activity. It then parses the rule
sequentially. The first word is a verb “walk” v1 followed by keyword “from”.
From Rule 2, it obtains the next two elements c12, and c3, and constructs the
sequence (c12, c3)v1. It then looks up the MST (Figure 1(b)) and expands the
sequence to c12c10c9c7c5c2c3v1. The segment “turn on (v2) the television” is then
translated to v2d9 and appended to the initial sequence. After parsing the rule,
therefore, we obtain the situation γ(t) = c12c10c9c7c5c2c3v1v2d9.

Suppose the user now moves from the bedroom to the living room along a dif-
ferent path c12c10c9c5c3. The sequence obtained would be c12v1c10v1c9v1c5v1c3v1.
Using Rules 1 and 2, the sequence still reduces to (c12, c3)v1, and the system turns
the television on. It also registers the new path taken by the user, and upon fre-
quent usage, the system perceives that this is a preferred path, and updates its
spanning tree. The system also observes user behavior, and develops dynamic
rules based on user history. The advantages of this approach are two-fold: (1)
The system allows the user to create user-friendly rules (2) The system can be
dynamically customized to user behavior and idiosyncrasies.

5 Analysis

In this section, we analyze our system’s performance using the cooking scenario
described in Section 2. Mary has customized a rule in the system as “Store a new
recipe”. Our system is made to understand the meaning of “recipe” by defining
a recipe with the following steps:

1. Access ingredients from the refrigerator and/or pantry.
2. Spend time at the kitchen counter preparing the ingredients for cooking
3. Cook the ingredients by spending time at the stove with the stove on
4. Switch off the stove and move dish to the dining table.

We assume that all users are honest. A honest user is one who accesses any device
or item with the intent of using the device or item. A single usage is equal to
one unit of the item consumed or one instance of the device being used. We
have also limited recipe generation to entering the sequence of steps observed by
the system, and additional nuances such as stirring, sautéing, etc., along with
quantities of the ingredients are additional user input.

Let us assume that Mary was initially in the zone of c6 (Figure 1(a)), moves to
the kitchen, and accesses ingredients in the refrigerator and pantry. Let d2 and d3

correspond to the refrigerator and pantry respectively, Let {d2−1, d2−2, d2−3, d2−4}
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(a) (b)

Fig. 2. Structure of S-Trees (a) After accessing ingredients, (b)(i) After switching off
the stove, (b)(ii) When d4−2 is misplaced

and {d4−1, d4−2, d4−3} be the ingredients accessed, and verbs v1 = “walk′′, v2 =
“access′′. Initially, the system monitors Mary’s activity and observes her move-
ment from c6 to c8, and terminates the situation when she accesses d2−1. The ini-
tial sequence is therefore, represented as

γ1 = c6v1c7v1c8v1c8v2d2−1 (1)

Since the situation terminated with a device, the system, now observes the next
(context, verb) pair, to satisfy the Complement Rule (Rule 4). Instead, when
it encounters another device (d2−2), it perceives that multiple devices are being
accessed, and therefore, follows Rule 3. It simultaneously continues monitoring
for a (context, verb) pair satisfying Rule 4, until:

γ2 = c8v2d2−1c8v2d2−2c8v2d2−3c8v2d2−4c8v2d4−1c8v2d4−2c8v2d4−3c8v3d3 (2)

The situation at this stage is given by γ(t) = γ1+γ2. When the system encounters
c8v3d3, it perceives that the user has started a different activity. Therefore, from
Rule 6, it creates a new S-Tree, and continues monitoring. The S-Tree for γ(t)
is constructed after applying Rules 1, 2, 3 is represented in Figure 2(a).

When Mary finishes cooking and switches off the oven, the sequence c8v
′
3d3 is

encountered. The system then uses Rules 4, and 5 to ascertain that the activity
of cooking has been completed (Figure 2(b)(i)). When Mary places the dish on
the dining table, the sequence c8v1c7v1c6d8 signals the system that the recipe
is complete and can be filed in the system. When Mary starts replacing the
ingredients, the system deletes the corresponding node in the S-Tree until no
right child exists, and the S-Tree is cleared, as the system perceived that all
tasks are completed.

Occasionally, the user might misplace an ingredient, and the system informs
the user accordingly. Let us assume that Mary misplaced ingredient d4−2 in the
closet(c15) instead of the pantry. The system now has a situation where “access”
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of d4−2 was at c8 but “replace” was at c15, as depicted in Figure 2(b)(ii). The
system would then generate the complement of the expected replace as c8v

′
2d4−2,

and prompts Mary to “replace d4−2 in d4”. Mary then accesses d4−2, thereby
deleting c15v2d4−2 (using Rule 4), and when the ingredient is replaced in the
pantry, all S-Trees related to the activity are cleared.

6 Evaluation

We simulated the environment shown in Figure 1(a) with up to 100 sensors and
200 devices. We initially trained the system with 10 scenarios representing aver-
age daily user activity. We considered a total of 25 verbs, over 10 types of sensors
to describe possible actions. We then simulated user movement, randomizing the
path to introduce perturbations in generated sequences. Additionally, we altered
user path after every 500 runs, to observe our system’s adaptation to new user
behavior. We conducted 10000 simulated runs and present an average of the
results obtained.

The effect of the number of verbs on false positives/negatives is shown in
Figure 3. We observed that our system is not affected by false positives, though
a significant increase in false negatives was observed with increase in the number
of verbs. This could be attributed to the number of verbs assigned to the types of
sensors. For instance, it is difficult for our system to differentiate between a user
standing, or sitting in a location. Resolution of ambiguity required additional
input from surrounding sensors.

We then varied the number of context elements with a fixed set of 10 verbs.
Figure 4 depicts the average of 10000 test runs. While occurrence of false pos-
itives and negatives were comparable, increasing the verbs to 25 resulted in a
significant increase in false negatives. Supplementing context information from
surrounding sensors resolved ambiguity and improved situation perception.

Runs = 5000 Runs = 10000
Number of False False False False

verbs Positives Negatives Positives Negatives

5 1 2 1 1
10 1 4 2 9
15 2 11 3 28
20 4 26 7 68
25 7 47 11 122

Fig. 3. Effect of verbs on False
Positives and Negatives

Fig. 4. Effect of context elements and verbs
over false positives and negatives
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7 Conclusion

In this paper, we presented a user-centric system for capturing user behavior
and activity in a ubiquitous computing environment. We discussed limitations
of current definitions of context, and proposed a definition of context focused
on activity. Situation Trees were developed to represent context, devices, and
actions. We investigated rules required for perceiving situations and evaluated
our system with two complex user activities. We showed how our system dy-
namically adapts to user behavior, and empowers users to customize the system
according to their requirements, intuitively, yet efficiently. Situation Trees are
envisioned to construct dynamic situation grammar customized to user behavior
and history of user activity, and facilitate developers and users to create com-
plex context-aware rules effortlessly to handle diverse scenarios in a ubiquitous
computing environment.
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