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Abstract. In real world everything is an object which represents particular 
classes. Every object can be fully described by its attributes. Any real world 
dataset contains large number of attributes and objects. Classifiers give poor 
performance when these huge datasets are given as input to it for proper 
classification. So from these huge dataset most useful attributes need to be 
extracted that contribute the maximum to the decision. In the paper, attribute set 
is reduced by generating reducts using the indiscernibility relation of Rough Set 
Theory (RST). The method measures similarity among the attributes using 
relative indiscernibility relation and computes attribute similarity set. Then the 
set is minimized and an attribute similarity table is constructed from which 
attribute similar to maximum number of attributes is selected so that the 
resultant minimum set of selected attributes (called reduct) cover all attributes 
of the attribute similarity table. The method has been applied on glass dataset 
collected from the UCI repository and the classification accuracy is calculated 
by various classifiers. The result shows the efficiency of the proposed method.  

Keywords: Rough Set Theory, Attribute Similarity, Relative Indiscernibility 
Relation, Reduct. 

1 Introduction 

In general, considering all attributes highest accuracy of a classifier should be 
achieved. But for real-world problems, there is huge number of attributes, which 
degrades the efficiency of the Classification algorithms. So, some attributes need to 
be neglected, which again decrease the accuracy of the system. Therefore, a trade-off 
is required for which strong dimensionality reduction or feature selection techniques 
are needed. The attributes contribute the most to the decision must be retained. Rough 
Set Theory (RST) [1, 2], new mathematical approach to imperfect knowledge, is 
popularly used to evaluate significance of attribute and helps to find minimal set of 
attribute called reduct. Thus a reduct is a set of attributes that preserves partition. It 
means that a reduct is the minimal subset of attributes that enables the same 
classification of elements of the universe as the whole set of attributes. In other 
words, attributes that do not belong to a reduct are superfluous with regard to 
classification of elements of the universe. Hu et al. [3] developed two new algorithms 
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to calculate core attributes and reducts for feature selection. These algorithms can be 
extensively applied to a wide range of real-life applications with very large data sets. 
Jensen et al. [4] developed the Quickreduct algorithm to compute a minimal reduct 
without exhaustively generating all possible subsets and also they developed Fuzzy-
Rough attribute reduction with application to web categorization. Zhong et al. [5] 
applies Rough Sets with Heuristics (RSH) and Rough Sets with Boolean Reasoning 
(RSBR) are used for attribute selection and discretization of real-valued attributes. 
Komorowsk et al. [6] studies an application of rough sets to modelling prognostic 
power of cardiac tests. Bazan [7] compares rough set-based methods, in particular 
dynamic reducts, with statistical methods, neural networks, decision trees and 
decision rules. Carlin et al. [8] presents an application of rough sets to diagnosing 
suspected acute appendicitis. 

The main advantage of rough set theory in data analysis is that it does not need any 
preliminary or additional information about data like probability in statistics [9], or basic 
probability assignment in Dempster-Shafer theory [10], grade of membership or the value 
of possibility in fuzzy set theory [11] and so on. But finding reduct for classification is an 
NP-Complete problem and so some heuristic approach should be applied.  

In the paper, a novel reduct generation method is proposed based on the 
indiscernibility relation of rough set theory. In the method, a new kind of 
indiscernibility, called relative indiscernibility of an attribute with respect to other 
attribute is introduced. This relative indiscernibility relation induces the partitions of 
attributes, based on which similarity between conditional attributes is measured and an 
attribute similarity set (ASS) is obtained. Then, the similarity set is minimized by 
removing the attribute similarities having similarity measure less than the average 
similarity. Lastly, an attribute similarity table is constructed for ASS each row of which 
describes the similarity of an attribute with some other attributes. Then traverse each 
row and select the attribute of that row which has maximum similar attributes. Next, all 
the rows associated with the selected attribute and its similar attributes are deleted from 
the table and similarly select another attribute from the modified table. The process 
continued until all the rows are deleted from the table and finally, selected attributes, 
covering all the attributes are considered as reduct, a minimum set of attributes.    

The rest of the paper is organized as follows: Similarity measurement of attributes 
by relative indiscernibility and single reduct generation are described in section 2 and 
section 3 respectively. Section 4 explains the experimental analysis of the proposed 
method and finally conclusion of the paper is stated in section 5. 

2 Relative Indiscernibility and Dependency of Attributes 

Formally, a decision system DS can be seen as a system DS = (U, A) where U is the 
universe (a finite set of objects, U = < x1, x2,..xm>) and A is the set of attributes such 
that A = C ∪D and C ∩ D = ∅ where C and D are the set of condition attributes and 
the set of decision attributes, respectively.  

2.1 Indiscernibility  

A per the discussion in section 2, each attribute a ∈ A defines an information function: 
fa : U →Va, where Va is the set of values of a, called the domain of attribute. Every 
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subset of attributes P determines an indiscernibility relation over U, and is denoted as 
IND(P) , which can be defined as, IND(P) = {(x, y) ∈ U× U | ∀ a ∈ P,  fa (x) = fa (y)}. 
For each set of attributes P, an indiscernibility relation IND(P) partitions the set of 
objects into a m-number of equivalence classes [ ] defined as partition U/IND(P) or 
U/P is equal to {[x]p} where |U/P| = m. Elements belonging to the same equivalence 
class are indiscernible; otherwise elements are discernible with respect to P. If one 
considers a non-empty attributes subset, R ⊂ P and IND(R) = IND(P), then P − R is 
dispensable. Any minimal R such that IND(R) = IND(P) , is a minimal set of 
attributes that preserves the indiscernibility relation computed on the set of attributes 
P. R is called reduct of P and denoted as R = RED(P). The core of P is the intersection 
of these reductions, defined as CORE(P) = ∩RED(P). Naturally, the core contains all 
the attributes from P which are considered of greatest importance for classification, 
i.e., the most relevant for a correct classification of the objects of U. On the other 
hand, none of the attributes belonging to the core may be neglected without 
deteriorating the quality of the classification considered, that is, if any attribute in the 
core is eliminated from the given data, it will be impossible to obtain the highest 
quality of approximation with the remaining attributes. 

2.2 Relative Indiscernibility  

Here, the relation is defined based on the same information function: fa : U → Va where 
Va is the set of values of a, called the domain of attribute. Every conditional attribute Ai 
of C determines an relative (relative to decision attribute) indiscernibility relation (RIR) 
over U, and is denoted as RIRD(Ai), which can be defined by equation (1).  ܴܴܫሺܣሻ ൌ ൛ሺݔ, ሻݕ ∈ ሿݔሾߎ ൈ ሿݔሾߎ ห ݂ሺݔሻ ൌ ݂ሺݕሻ∀ ሾݔሿ ∈ ܷ ⁄ܦ ሽ    (1) 

For each conditional attribute Ai, a relative indiscernibility relation RIRD(Ai) 
partitions the set of objects into a n-number of equivalence classes [ ] defined as 
partition U/ RIRD(Ai) or UD/Ai is equal to ሼሾݔሿ/ವሽ  where | UD/Ai | = n. Obviously, 

each equivalence class ሼሾݔሿ/ವሽ  contains objects with same decision value which are 

indiscernible by attribute Ai. 
To illustrate the method, a sample dataset represented by Table 1 is considered 

with eight objects, four conditional and one decision attributes.  

Table 1. Sample Dataset 

 Diploma(i) Experience(e) French(f) Reference(r) Decision 
x1 MBA Medium Yes Excellent Accept 
x2 MBA Low Yes Neutral Reject 
x3 MCE Low Yes Good Reject 
x4 MSc High Yes Neutral Accept 
x5 MSc Medium Yes Neutral Reject 
x6 MSc High Yes Excellent Reject 
x7 MBA High No Good Accept 
x8 MCE Low No Excellent Reject 
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Table 2. Equivalence classes induces by indiscernibility and relative indiscernibility relations 

Equivalence classes for each attribute 
by relation IND(P) 

Equivalence classes for each conditional 
attribute by relative indiscernibility relation 
RIRD(Ai) 

U/D = ({x1, x4, x7}, {x2, x3, x5, x6, x8})

U/i = ({x1, x2, x7}, {x3, x8}, {x4, x5, x6})

U/e = ({x1, x5}, {x2, x3, x8}, {x4, x6, x7}) 

U/f = ({x1, x2, x3, x4, x5, x6}, {x7, x8}) 

U/r = ({x1, x6, x8}, {x2, x4, x5}, {x3, x7}) 

UD/i = ({x1, x7}, {x2}, {x3, x8}, {x4}, {x5, x6}) 

UD/e = ({x1}, {x5}, {x2, x3, x8}, {x4, x7}, {x6})  

UD/f = ({x1, x4}, {x2, x3, x5, x6}, {x7}, {x8}) 

UD/r = ({x1}, {x6, x8}, {x2, x5}, {x4}, {x3, x7}) 

2.3 Attribute Similarity  

An attribute Ai is similar to another attribute Aj in context of classification power if 
they induce the same equivalence classes of objects under their respective relative 
indiscernible relations. But in real situation, it rarely occurs and so similarity of 
attributes is measured by introducing the similarity measurement factor which 
indicates the degree of similarity of one attribute to another attribute. Here, an 
attribute Ai is said to be similar to an attribute Aj with degree of similarity (or 
similarity factor) δ, and is denoted by Ai→Aj if the probability of inducing the same 
equivalence classes of objects under their respective relative indiscernible relations is 
(δ,×100)%, where δ, is computed by equation (2). The details for computation of 
similarity measurement for the attribute similarity Ai → Aj (Ai ≠ Aj) is described in 
algorithm “SIM_FAC” below. 

 

(2)  

Algorithm: SIM_FAC(Ai , Aj)/* Similarity factor computation for attribute similarity 
Ai → Aj */ 

Input:  Partitions UD/Ai = ሼሾݔሿ/ವሽ and UD/Aj = ሼሾݔሿೕ/ವሽ    

      obtained by applying relative indiscernibility relation  

      RIRD on Ai and Aj respectively.       

Output: Similarity factor δ, 
 
Begin 

   For each conditional attribute Ai { 
   /* compute relative indiscernibility RIRD (Ai) using (1)*/ 



480 S. Sengupta and Kr. Das 

ሻܣሺܴܫܴ      ൌ ൛ሺݔ, ሻݕ ∈ ሿݔሾߎ  ൈ ሻݔሿ ห ݂ሺݔሾߎ  ൌ  ݂ሺݕሻ∀ ሾݔሿ ∈  ܷ ⁄ܦ ሽ  

       RIRD (Ai) induces equivalence classes UD/Ai = ሼሾݔሿ/ವሽ   

    } /*end of for*/                   

    /* similarity measurement of Ai to Aj */ 

,ߜ     ൌ 0 
    For each ሾݔሿ ⁄ ∈  ܷ ⁄ܣ   

    {   max_overlap = 0 

        For each ሾݔሿ ⁄ ∈  ܷ ⁄ܣ   

        {   overlap = | ሾݔሿ ⁄ ת   ሾݔሿ ⁄  | 
            if (overlap > max_overlap) then 

                 max_overlap = overlap 

        } 

          δ, ൌ  δ,  ୫ୟ୶ _௩| ሾ௫ሿ ವ⁄   |  

    } 

    δ, ൌ  δ,ೕ| ವ ⁄  | 
End. 

To illustrate the attribute similarity computation process, attribute similarity and its 
similarity factor are listed in Table 2 for all attributes of Table 1. 

Table 3. Describe the degree of similarity of all pair of attributes 

Attribute 
Similarity  

 

(Ai → Aj)  

Equivalence Classes by 
RIRD(Ai)  

(UD/Ai) 

Equivalence Classes by 
RIRD(Aj)  

(UD/Aj) 

Similarity factor of 
Ai to Aj     ሺδ,) 

 i → e {x1, x7}, {x2}, {x3, x8}, 
{x4}, {x5, x6} 

{x1}, {x5}, {x2, x3, x8}, 
{x4, x7}, {x6} 

δ, = 0.8 

i → f {x1, x7}, {x2}, {x3, x8}, 
{x4}, {x5, x6} 

{x1, x4}, {x2, x3, x5, x6}, 
{x7}, {x8} 

δ,  = 0.8 

 i → r {x1, x7}, {x2}, {x3, x8}, 
{x4}, {x5, x6} 

{x1}, {x6, x8}, {x2, x5}, 
{x4}, {x3, x7}     

δ, = 0.7 

e → i {x1}, {x5}, {x2, x3, x8}, 
{x4, x7}, {x6} 

{x1, x7} , {x2}, {x3, x8}, 
{x4}, {x5, x6} 

δ, = 0.83 

e → f {x1}, {x5}, {x2, x3, x8}, 
{x4, x7}, {x6} 

{x1, x4}, {x2, x3, x5, x6}, 
{x7}, {x8} 

δ, = 0.83 

e → r {x1}, {x5}, {x2, x3, x8}, 
{x4, x7}, {x6} 

{x1}, {x6, x8}, {x2, x5}, 
{x4}, {x3, x7}     

δ, = 0.76 
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Table 3. (Continued) 

f → i {x1, x4}, {x2, x3, x5, x6}, 
{x7}, {x8} 

{x1, x7} , {x2}, {x3, x8}, 
{x4}, {x5, x6} 

δ, = 0.75 

f → e {x1, x4}, {x2, x3, x5, x6}, 
{x7}, {x8} 

{x1}, {x5}, {x2, x3, x8}, 
{x4, x7}, {x6} 

δ,  = 0.75 

f → r {x1, x4}, {x2, x3, x5, x6}, 
{x7}, {x8} 

{x1}, {x6, x8}, {x2, x5}, 
{x4}, {x3, x7}     

δ, = 0.75 

r → i {x1}, {x6, x8}, {x2, x5}, 
{x4}, {x3, x7}     

{x1, x7} , {x2}, {x3, x8}, 
{x4}, {x5, x6} 

δ, = 0.7 

r → e {x1}, {x6, x8}, {x2, x5}, 
{x4}, {x3, x7}     

{x1}, {x5}, {x2, x3, x8}, 
{x4, x7}, {x6} 

δ, = 0.7 

r → f {x1}, {x6, x8}, {x2, x5}, 
{x4}, {x3, x7}     

{x1, x4}, {x2, x3, x5, x6}, 
{x7}, {x8} 

δ, = 0.8 

 
The computation of    δ, of each attribute similarity using equation (2) in Table 2 

can be understood by Table 3, in which similarity i → e in first row of Table 3 is 
considered, where, UD/i = {x1, x7}, {x2}, {x3, x8}, {x4}, {x5, x6}) and UD/e = {x1}, 
{x5}, {x2, x3, x8}, {x4, x7}, {x6}).                         

Table 4. Illustrates the similarity factor computation for i → e  ሾ࢞ሿࡰ/ of ࡰࢁ ⁄ Overlapping ሾ࢞ሿࡰ/ࢋ 
of ࡰࢁ ⁄ࢋ  with ሾ࢞ሿࡰ/ 

of ࡰࢁ ⁄  

ሾ࢞ሿࡰ/ ∩ ሾ࢞ሿࢀ  ࡰ/ࢋ ൌ |ሾ࢞ሿࡰ/| ࡰࢁ∋ ࡰ/ࢋሿ࢞ሾܠ܉ܕ ⁄ࢋ ሺሾ࢞ሿתࡰ/ ሾ࢞ሿࡰ/ࢋሻ 

 

 

{x1, x7} {x1}  

{x4, x7} 

{x1, x7}∩ {x1} 

{x1, x7}∩ {x4, x7} 

12 

{x2} {x2, x3, x8} {x2}∩ {x2, x3, x8} 11 

 {x3, x8} {x2, x3, x8} {x3, x8} ∩ {x2, x3, 
x8} 

22 

{x4} {x4, x7}  {x4} ∩ {x4, x7} 11 

{x5, x6} {x5} 

{x6}) 

{x5, x6} ∩ {x5}  

{x5, x6} ∩ {x6}  

12 

ߜ      ൌ ଵ|ሾ௫ሿ/ವ| ∑ ܶሾ௫ሿ/ವ∈ವ ⁄  =
ଵହ ሺ ଵଶ + 

ଵଵ +
ଶଶ + 

ଵଵ + 
ଵଶ) = 

ସହ = 0.8 
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2.4 Attribute Similarity Set  

For each pair of conditional attributes (Ai, Aj), similarity factor is computed by 
“SIM_FAC” algorithm, described in section 2.3. The similarity factor of Ai → Aj is 
higher means that the relative indiscernibility relations RIRD(Ai) and RIRD(Aj) 
produce highly similar equivalence classes. This implies that both the attributes Ai 
and Aj have almost similar classification power and so Ai → Aj is considered as strong 
similarity of Ai to Aj. Since, for any two attributes Ai and Aj, two similarities Ai → Aj 
and Aj → Ai are computed, only one with higher similarity factor is selected in the list 
of attribute similarity set ASS. Thus, for n conditional attributes, n(n-1)/2similarities 
are selected, out of which some are strong and some are not. Out of these similarities, 
the similarity with δ, value less than the average δf value are discarded from ASS 
and rest is considered as the set of attribute similarity. So, each element x in ASS is of 
the form x: Ai→Aj such that Left(x) = Ai and Right(x) = Aj. The algorithm 
“ASS_GEN” described below, computes the attribute similarity set ASS. 
 
Algorithm: ASS_GEN(C, δf) 

/* Computes attribute similarity set {Ai→Aj} */ 

Input: C = set of conditional attributes and δf =2-D 

contains    similarity factors between each pair 

of conditional attributes.   

Output: Attribute Similarity Set ASS  

Begin 

    ASS = {}, sum_δf = 0 

    /* compute only n(n – 1)/2 elements in ASS */ 

    for i = 1 to |C| - 1 

    {  for j = i+1 to |C|  

       {  if(δ,   δ,)then 
          {   sum_δf = sum_δf + δ, 
              ASS = ASS ∪ {Ai → Aj}  

          } 

          else  

          {   sum_δf = sum_δf + δ, 
              ASS = ASS ∪ {Aj → Ai}  

          } 

      }     

    }      

/* modify ASS by only elements Ai → Aj for which δ,>avg_δf */ 
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ASSmod = {}  

avg_δf = (2× sum_δf) / |C|(|C|-1)  

    for each {Ai → Aj}∈ ASS  
    {   if(δ, avg_δf) then 

        {   ASSmod = ASSmod ∪ {Ai → Aj} 

            ASS = ASS – { Ai → Aj} 

        } 

    } 

    ASS = ASSmod 

End 

Algorithm “ASS_GEN” is applied and Table 4 is constructed from Table 2, where 
only six out of twelve attribute similarities in Table 2 are considered. Thus, initially, 
ASS = {i → f, i → r, e → i, e → f, e → r, r → f} and avg_δf = 0.786.  As the 
similarity factor for attribute similarities i → f, e → i, e → f and r → f are greater than 
avg_δf, they are considered in the final attribute similarity set ASS. So, finally, ASS = 
{i → f, e → i, e → f, r → f }.               

Table 5. Illustrates the selection of attribute similarities 

Attribute Similarity  

 ( Ai→Aj; i ≠ j and      δ, >  δ,   ) 

Similarity factor of Ai to Aj  ሺδ,) 

δ, > δf  

i→f δ,= 0.8 Yes 

 i→r δ, = 0.7  

e→i δ, = 0.83 Yes 

e→f δ, = 0.83 Yes 

e→r δ, = 0.76  

r→f δ, = 0.8 Yes 

Average δf                       0.786 

3 Single Reduct Generation 

The attribute similarity obtained so far is known as simple similarity of an attribute to 
other attribute. But, for simplifying the reduct generation process, the elements in 
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ASS are minimized by combining some simple similarity. The new similarity 
obtained by the combination of some of the simple similarity is called compound 
similarity. Here, all x from ASS with same Left(x) are considered and obtained 
compound similarity is Left(x) → ∪ Right(x) ∀x. Thus, introducing compound 
similarity, the set ASS is refined to a set with minimum elements so that for each 
attribute, there is at most one element in ASS representing either simple or compound 
similarity of the attribute. The detail algorithm for determining compound attribute 
similarity set is given below: 
 

Algorithm:  COMP_SIM(ASS) 

  /* Compute the compound attribute similarity of attributes*/ 

  Input: Simple attribute similarity set ASS 

  Output: Compound attribute similarity set ASS 

  Begin 

        for each x ∈ ASS  
        {   for each y (•x) x) ∈ ASS  
            {   if(Left(x) = = Left(y)) then 

                {   Right(x) = Right(x) ∪ Right(y) 
                    ASS = ASS – {y} 

                } 

            } 

       } 

End 

 
Finally, from the compound attribute similarity set ASS, reduct is generated. First of 
all, select an element, say, x from ASS for which length of Right(x) i.e., |Right(x)| is 
maximum. This selection guaranteed that the attribute Left(x) is similar to maximum 
number of attributes and so Left(x) is an element of reduct RED. Then, all elements z 
of ASS for which Left(z) ⊆ Right(x) are deleted and also x is deleted from ASS. This 
process is repeated until the set ASS becomes empty which provides the reduct RED. 
The proposed single reduct generation algorithm is discussed below: 
 
Algorithm: SIN_RED_GEN(ASS, RED) 

Input: Compound attribute similarity set ASS  

Output: Single reduct RED 

Begin 

      RED = φ 
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      While (ASS •  φ)  
      {    max = 0 

           for each x ∈ ASS  
           {  if(|Right(x)| > max) then 

              {  max = |Right(x)| 

                 L = Left(x) 

              } 

           } 

          for each x ∈ ASS  
           {   if (Left(x) = = L) then  

               {  RED = RED ∪ Left(x) 
                  R = Right(x) 

                  ASS = ASS – {x} 

                  for each z ∈ ASS  
                       if(Left(z) ⊆ R) then 
                           ASS = ASS – {z} 

                   break    

                } 

           } 

      } /*end-while*/ 

     Return (RED) 

End 

Applying “COMP_SIM” algorithm the set ASS = {i → f, e → i, e → f, r → f} is 
refined to compound similarity set ASS = {i → f, e → {i, f}, r → f}. So, the selected 
element from ASS is e → {i, f}, and thus e ∈ RED and ASS is modified as ASS = {r 
→ f}. And, in the next iteration, r ∈ RED and ASS =φ. Thus, RED = {e, r}. 

4 Results and Discussions 

The proposed method computes a single reduct for glass dataset selected from UCI 
machine learning repository [12]. At first, all the numeric attributes are discretized by 
ChiMerge [13] discretization algorithm. To measure the efficiency of the method, k-
fold cross-validations, where k ranges from 1 to 10 are carried out on the reduced 
dataset and classified using “Weka” tool [14]. The proposed method and well known 
dimensionality reduction methods such as ‘Cfs Subset Eval’ (CFS) method [15], 
‘Consistensy Subset Evaluator’ (CON) method [16] are applied on the dataset and 
observed that the proposed method, CFS and CON reduce the number of attributes 
into six, six and seven whereas the actual number of attributes is nine. Then the 



486 S. Sengupta and Kr. Das 

reduced dataset is applied on various classifiers and accuracies are measured, listed in 
Table 5. Average accuracy by proposed method is much higher than that by CFS and 
CON. 

Table 6. Accuracy comparison by proposed, CFS and CON reduction proces 

Classifier Proposed Method CFS CON 
Naïve Bayes 65.73 43.92 47.20 
SMO 62.44 57.94 57.48 

KSTAR 83.57 79.91 78.50 
AdaBoost 44.60 44.86 44.86 
Bagging 76.53 73.83 71.50 
Multi Class Classifier 64.32 66.36 64.49 
J48 72.30 68.69 64.02 
PART 77.00 70.94 68.69 

Average accuracy (%) 68.31 63.31 62.09 

5 Conclusion 

The relative indiscernibility relation introduces in the paper is an equivalence relation 
which induces a partition of equivalence classes for each attribute. Then, the degree of 
similarity is measured between two attributes based on their equivalence classes. 
Since, the target of the paper is to compute reduced attribute set for decision making, 
so application of equivalence classes for similarity measurement is the appropriate 
choice.  
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