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Abstract. Protein-protein interactions play a vital role in identifying the 
outcome of a vast majority of cellular mechanisms. But analyzing these 
complex data to identify community structures which can explain the activities 
of protein networks were always been a challenge. This paper reports the use of 
triangular modularity of protein network as an effective method to identify 
these community structures. 
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1 Introduction 

Proteins involved in the same cellular processes often interact with each other, and 
these protein-protein interactions are fundamental to almost all biological processes 
[1]. The protein systems undergoing interactions with other polypeptides are 
particularly rich of natively unfolded tracts and these unfolded patches were 
discovered to be involved in both protein-protein interactions and aggregation in 
many different systems [2], [3]. Several efforts have been made to identify these 
interactions, so that biological systems can be understood better. With the emergence 
of a variety of techniques like yeast-two-hybrid, mass spectrometry and protein chip 
technologies, enormous amount of protein-protein interaction data are available [4]. 
However, due to the limitations in the techniques to handle such data, analysis of data 
in terms of biological function has not kept pace with data acquisition.  

Protein complexes performing a specific biological function often contain highly 
connected protein modules [4].  These connected modules can be considered as 
community structures of protein networks. Even though community structures can 
better explain the activities of protein networks, this area is not well explored. But as 
identifying these community structures could be able to produce some useful findings, 
there exists some scope in investigating more on this. This motivated us to carry out 
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the present investigations on community structures and the results obtained prove that 
it is a promising method to detect community structures in protein networks. 

A number of methods are proposed to detect community structures in complex 
networks. These include hierarchical clustering, graph partitioning based on network 
modularity, k-clique percolation, and many others [5]. Nevertheless, we preferred to 
make use of the decomposition algorithm (GN algorithm)  proposed by Newman and 
Girvan due to its ability not only to divide networks effectively, but also to refuse to 
divide them when no good division exists.   

2 Methods 

2.1 Triangular Modularity Detection 

The concept of community structure in complex networks was first pointed out in the 
by Girvan and Newman [6], and it refers to the fact that nodes in many real networks 
appear to group in subgraphs in which the density of internal connections is larger 
than the connections with the rest of nodes in the network. One of the most successful 
approaches to identify the community structure of complex networks is through the 
quality function called modularity [6], [7], which will define modules as well as 
provide a quantitative measure to find them. Here, we use motifs in the network to 
detect sub structures in a network. The modularity for weighted directed networks [8] 
is calculated as: 
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the total strength of the network, Ci is the index of the community to which the node i 
belongs, and the Kronecker δ is 1 if nodes i and j are in the same community, and 0 
otherwise. For undirected networks, wi

out= wi
in ≡  wi. 

Given a partition C of an unweighted network, motif modularity can be represented 
as the fraction of motifs inside the communities minus the fraction in a random 
network [9], given by 
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where  

 nij       = wi
out wj

in,  
 wij(C) = wijδ(Ci, Cj) 
 nij(C) = nijδ(Ci, Cj) 
 

This can be extended to find the community of triangles in a network. Applying 
equation (2), triangle motif can be expressed as 
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2.2 Triangular Modularity in Protein Networks 

Protein interactions can be compared with an undirected graph with proteins as 
vertices and interactions as edges. We represented this interaction as an adjacency 
matrix. To detect the community structure in the protein network, we identified the 
triangular motifs in the network. Since we are considering an undirected graph, the 
triangle modularity [10] can be represented as 
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2.3 Spectral Optimization of Triangular Modularity in Protein Networks 

Once we have the triangular modularity, next task is to define some optimization 
algorithm to calculate the modularity value. This is important since large number of 
traids can be formed. Here we propose spectral optimization [10] to perform this task. 
To detect the community structure in a network, eigen spectrum of the modularity 
matrix is used. We compute the leading eigenvector of the modularity matrix and 
divide the vertices into two groups according to the signs of the elements in this 
vector, with vertices whose corresponding elements are positive moves to one group 
and the rest moves to the other group. This process is repeated recursively, giving two 
partitions in each step until no new splits are possible.  
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One of the advantages of this algorithm over conventional partitioning methods is 
that, there is no need to constrain the group sizes or artificially forbid the trivial 
solution with all vertices in a single group. If there is no positive eigenvalues of the 
modularity matrix, then the leading eigenvector is the vector (1,1,1, …) corresponding 
to all vertices in a single group. In this case, the algorithm is telling us that there is no 
division of the network that results in positive modularity. Hence the algorithm has 
the ability not only to divide networks effectively, but also to refuse to divide them 
when no good division possible. 

To perform spectral optimization on the modularity value calculated in equ.(4), we 
need to perform some transformations. In Belkacem Serrour et al [11], triangular 
modularity is reduced to standard spectral form as: 
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2.4 Kernighan-Lin Optimization on Protein Networks 

During each iteration of the algorithm, before dividing the network into two 
communities, the groups created by the spectral optimization is further improved by 
applying Kernighan-Lin optimization [12].  KL algorithm moves the vertices among 
the two groups to increase the modularity. For an arbitrary two-way partition S, the 
algorithm partition S into two sets A and B such that external cost is minimized. 
Suppose A* and B* represents a minimum cost two-way partition, then algorithm 
identifies X A⊂  and Y B⊂ with |X| = |Y| ≤ n/2, such that interchanging X and Y 
produces A* and B*. In order to find X and Y from A and B without finding all 
possible choices, maximize the gain value,  

                                      g = Da + Db – 2ca,b .                      (6) 

where, ca,b is the cost between vertices a and b, and  Da and Db are the difference 
between external and internal cost given by  
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We have applied KL optimization on sub groups created from Spectral optimization. 
Following steps are performed to identify X from A. First, D values for all elements in 
the group are calculated and the one with maximum value is selected as a1. Second, 
set aside a1 and recalculate D for the set A-{a1}.Continue the same until all nodes are 
exhausted, identifying a1, a2, .. an. Repeat the same on B to identify b1, b2, .. bn. 
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Calculate the corresponding gain g1, g2, .. gn. Choose k to maximize the gain 

1

k

i
i

G g
=

=∑ and select X as a1, a2, .. ak and Y as b1, b2, .. bk. If G>0, reduction in cost of 

G can be achieved, which means we can interchange X and Y between A and B. If 
G=0, we have arrived at a local minimum and we have to repeat the steps by taking a2 

and b2 as pivot elements. Results obtained shows that we will be able to reach a global 
optimum maximum in three iterations. 

2.5 Dataset 

For the present study protein interaction data is downloaded from MIPS [13] and 
MINT [14] databases. 

3 Results 

In this section we presents the results of the spectral optimization of triangular 
modularity applied to real protein interaction data from individually performed 
experiments. The results are then simulated using NS2. Fig.1 shows the simulated 
result for data downloaded from MIPS database. It represents the interaction between 
193 different proteins represented as a protein interaction network. Here, shown as 
groups are the communities detected when we optimize the triangular modularity of 
the network. 

 

Fig. 1. Communities detected by optimizing triangular modularity of protein interaction data 
downloaded from MIPS 
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Fig.2 represents the protein interaction network of 205 different human proteins 
downloaded from MINT. From the figure it is clear that the algorithm is able to detect   
communities from this network also. 

 

 

Fig. 2. Communities detected by optimizing triangular modularity of protein interaction data 
downloaded from MINT 

4 Conclusion  

In this paper, we have demonstrated the use of triangular modularity as a promising 
method to analyze protein interactions. The method proved to be powerful in 
extracting community structures from protein networks. To show this, we have used 
Newman-Girvan algorithm to calculate triangular modularity. The modified algorithm 
have been tested on protein interaction data retrieved from databases like MIPS and 
MINT and are able to recover community patterns in protein networks.   Hence 
community structure prediction proposed here can be applied to complex disease 
network to explore the relationship between human genetic disorders and the 
corresponding disease genes.  
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