
N. Meghanathan et al. (Eds.): CCSIT 2012, Part II, LNICST 85, pp. 50–60, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Cognitive Symmetric Key Cryptographic Algorithm

Y.R.A. Kannan, S. Aravind Prasad, and P. Varalakshmi

Department of Information Technology,
Madras Institute of Technology, Chrompet,

Chennai, 600044
{yra.kannan,raja.avi,varanip}@gmail.com

Abstract. Today, Cryptographic schemes play a major role in storage, retrieval
and transfer of data and code in a secured manner. The major factors which
determine the efficiency of a cryptographic system are computational speed,
level of security provided, cost effectiveness and key size of the algorithm.
Choosing the optimal bit size for keys in encryption and decryption algorithm is
necessary for the efficient computation of the algorithm and bit size of the key
is directly proportional to the complexity of the algorithm and in turn cost of the
encryption and decryption algorithm. In this paper, we propose a novel cost-
effective small key size symmetric key algorithm which is suitable to all sizes
of data and all kinds of data such as audio and video because of its low key size
and high computational speed.

Keywords: Key size, Computational speed, Encryption algorithm, Decryption
algorithm, Symmetric key algorithm.

1 Introduction

In today’s world, data security plays a prominent role in all areas and with latest
advancements in the fields of data storage and processing speeds, the focus towards
security is even more increased. Basically cryptography is the way of transforming
the ordinary data or information into meaningless information in order to maintain the
secrecy of its contents. Usually the type of data being dealt with, determines the type
of security model to be used for it. Conversion of plain text to cipher text is referred
to as Encryption and vice versa is termed as Decryption. Usually the major security
goals to be satisfied are Availability, Confidentiality and Integrity.

The most prominent factor in any cryptographic algorithm is the key size which in
turn influences computational speed and level of security provided. As the key size is
directly proportional to the complexity of the algorithm, we make use of 4-bit size key
which can be used to all sizes of data and all kinds of data such as audio and video
because of its low key size and high computational speed.

This paper is organized as follows. The proposed algorithm is given in section 2
and the performance analysis of our algorithm compared with the existing algorithms
is done at section 3. Related work is described in section 4. Finally conclusions are
drawn in section 5.

 Cognitive Symmetric Key Cryptographic Algorithm 51

2 Proposed Mechanism

In our proposed algorithm, dynamic 4-bit key size and different 4-bit keys are used
for different characters in the plain text. Cognitive Symmetric key Cryptographic
algorithm (CSCA) can encrypt and decrypt the large data since there will be no
increase in key size. Even though any one key is identified in CSCA, other keys
cannot be identified because of using different 4-bit keys for different characters
rather than choosing only one 4-bit key and adding one to that initial key. Security is
also enhanced in CSCA by encrypting secret key by using 4-bit shared key which
should be shared securely via Authentication center between the two parties. In order
to extract the secret plain text from the cipher text, first the secret key has to
be decrypted by using shared key and then the character should be decrypted by
using that secret key. In CSCA after decrypting all the characters, plain text will be
found.

2.1 Dynamic 4-Bit Secret Key

Choosing the optimal bit size for keys in encryption and decryption algorithm is
necessary for the efficient computation of the algorithm. If the bit size of the key is
very large, the complexity of the algorithm is increased. This also increases the cost
of the encryption and decryption algorithm. In many encryption and decryption
algorithms the key size is very large. In [1], the dynamic 4-bit key is used for
encryption and decryption for small amount of data. In our proposed algorithm, 4-bit
key size is used for encryption as well as decryption. 4-bit Randomizer is used in our
algorithm which returns the random value from 10 to 15 i.e. from 1000 to 1111 for
encrypting the characters and same key has to be used for decryption since it is a
symmetric algorithm. So only 4-bit key size is used throughout the algorithm but
different keys are used for characters in the plain text by using 4-bit Randomizer.
Hence, our proposed algorithm is used to encrypt and decrypt the large amount of
data with small key size in efficient and secured manner.

2.2 4-Bit Shared Key

In order to increase the security 4-bit shared key can be introduced. This key has to be
shared between sender and receiver of the data in a secured manner via an
Authentication center. The shared key is also 4-bit key. This key is any value between
1000 to 1111 which is chosen by 4-bit Randomizer in Authentication center. This
shared key is used to encrypt and decrypt the secret key by using the proposed
encryption and decryption algorithm for encrypting and decrypting the keys.
Introduction of the 4-bit shared key increases the security and efficiency of our
algorithm.

52 Y.R.A. Kannan, S. Aravind Prasad, and P. Varalakshmi

2.3 Encryption Technique

In this technique first the key generated from the 4-bit Randomizer is used to encrypt
the first character in the Plain text. Since the 4-bit shared key is constant throughout
the encryption and decryption technique consider it as n1. Then the shared key is used
to encrypt the secret key.

CSCA is used to encrypt the data with the 4-bit secret key which is given in
Fig 1.

Step1 : 4-bit Randomizer generates a key value that varies between 10 to 15 and
 considers it as n.
Step2 : Convert the generated value into binary value in 4 bits which is the secret

 key for encrypting a character.
Step3 : Compute the ASCII value for the character in the plain text and convert
 ASCII value into binary representation in 8 bits.
Step4 : Perform left circular shift operation for n (the value generated in Step1)
 times on the binary representation of ASCII value.
Step5 : Divide the result from step 4 by the secret key.
Step6 : Represent the remainder in first four bits and quotient in the last five bits
 which gives 9-Bit cipher text for the character.
Step7 : Represent the 4-bit key in 8 bits.
Step8 : Perform left circular shift operation for n1 times on these bits.
Step9 : Divide these bits with the 4-bit shared key.
Step10: Represent the remainder in first four bits and quotient in the last five bits
 which gives 9-Bit cipher text for the secret key.
Step11: Form 18-Bit cipher text by using 9-Bit cipher text for secret key and 9-Bit
 cipher text for the character.

Repeat the above steps for encrypting each character in the plain text. If P is the
plain text, Ch1 is the first character, Ch2 is the second character then C1 is 9-bit cipher
text for Ch1 encrypted with key K1 and C2 is 9-bit cipher text for Ch2 encrypted with
key K2. EK1 is 9-bit cipher text for K1 encrypted with Shared key and EK2 is 9-bit
cipher text for K2 encrypted with Shared key. The pattern of the resultant Cipher text
from this Encryption Technique for Plain Text P will be EK1C1EK2C2EK3C3EK4C4…

Fig. 1. CSCA for Encryption

2.3.1 Flowchart
The flowchart for Cognitive Symmetric Key Encryption Algorithm for Encryption is
given in Fig 2.

 Cognitive Symmetric Key Cryptographic Algorithm 53

Fig. 2. Encryption Technique in CSCA

2.3.1 Case Study
Let us consider the plain text as “HI”. The encryption technique has to be done for
each and every character in the plain text individually. First we will consider the
character H in plain text HI. Let us consider shared key as 1010 i.e. 10 (n1).

54 Y.R.A. Kannan, S. Aravind Prasad, and P. Varalakshmi

Step1 : Let say 4-bit Randomizer generates the value 1000.
Step2 : Decimal value of 1000 is 8 and considers it as n.
Step3 : ASCII value for H is 72 and 8-bit binary representation for 72 is
 01001000.
Step4 : Perform left circular shift on 01001000 for n times i.e. 8 times which
 gives the result as 01001000.
Step5 : Divide 01001000 by secret key 1000. Quotient is 01001 and the
 remainder is 0.
Step6 : The 9-Bit cipher text is 000001001.
Step7 : 8-bit representation of secret key is 00001000.
Step8 : Perform the left circular operation on 00001000 for n1 times i.e. 10 times
 which gives the result as 00100000.
Step9 : Divide 00100000 by shared key 1010. Quotient is 00011 and remainder is
 0010.
Step10: The 9-Bit cipher text is 001000011.
18-Bit Cipher Text for the character H: 001000011000001001.

Let us consider the secret key for I is 1011. Then Final Cipher text for the text “HI” is
001000011000001001010000100100000110.

2.4 Decryption Technique

In this technique first the secret key has to be decrypted from the 9-bit cipher text by
using the shared key then the character has to be decrypted by using the respective
secret key.

Reverse of CSCA is used to decrypt the characters in the plain text from cipher
text.

Step1: Extract 18 bit cipher text from the received bits and extract the quotient and
 remainder from the first 9-bit cipher text for finding the secret key.
Step2: Multiply the quotient with the shared key and add it with the remainder.
Step3: Perform the right circular shift operation for n1 times on these bits and this
 computes the secret key.
Step4: Compute the decimal value for the secret key and consider it as n2.
Step5: Extract the quotient and remainder from the next 9-bit cipher text for
 finding the character.
Step6: Multiply the quotient with the secret key and add it with the remainder.
Step7: Perform the right circular shift operation for n2 times on these bits and
 compute the decimal value.
Step8: Find the secret character based on its ASCII equivalent.
The above steps have to be repeated until all the secret characters in the plain text

are found.

Fig. 3. CSCA for Decryption

 Cognitive Symmetric Key Cryptographic Algorithm 55

2.4.1 Flowchart

Fig. 4. Decryption Technique in CSCA

56 Y.R.A. Kannan, S. Aravind Prasad, and P. Varalakshmi

2.4.2 Case Study
Let us consider for the decryption of character H. The Cipher text for H is
001000011011100001.

Step1: Quotient and remainder are extracted from first 9 bits as 00011 and 0010.
Step2: Multiply 00011 with shared key 1010 and add it with remainder 0010 and
 this gives the result as 100000.
Step3: Perform right circular operation on 00100000 for n1 times i.e. 10 times
 which gives the secret key as 1000.
Step4: Decimal value for 1000 is 8 and considers it as n2.

Step5: Quotient and remainder are extracted from next 9 bits as 01001 and 0.
Step6: Multiply 01001 with 1000 and add it with 0 which gives the result as
 01001000.
Step7: Perform right circular operation on 00001111 for n2 times i.e. 8 times
 which gives the result as 01001000.
Step8: Decimal value for 01001000 is 72 and the corresponding character based on
 ASCII equivalent “H” is found.

Similarly the character “I” is found by using this decryption technique to get the plain
text “HI”.

3 Performance Evaluation

In this section, we show performance evaluation of the proposed Cognitive
Symmetric Key Cryptographic Algorithm (CSCA) compared to the various existing
Algorithms. For our simulations, we made use of Crypto++ tool.

Fig. 5. Key sizes of Algorithms

 Cognitive Symmetric Key Cryptographic Algorithm 57

Fig 5 provides the visual representation of various cryptographic algorithms with
different key sizes and clearly depicts the low and effective key size of our proposed
algorithm. With larger key sizes, the complexity increases and leads to decrease in
cost effectiveness and computational speed of the encryption and decryption
processes of the entire message.

Fig. 6. Time consumption of various Algorithms

Fig. 7. Throughput for different Algorithms

58 Y.R.A. Kannan, S. Aravind Prasad, and P. Varalakshmi

Fig 6 shows the time consumed by various algorithms. It has to be noted that our
algorithm occupies the lowest position among all existing algorithms. Again with the
low time consumption, our proposed algorithm performs better than almost all
existing algorithms. In the above figure, CTR, OFB, CFB and CBC represent Counter
mode, Output Feedback Mode, Cipher Feedback Mode and Chain Block Chaining
Mode respectively. Time consumption of operations performed in CSCA is low when
compared to other algorithms as shown in Fig 6.

Fig 7 provides the comparison of throughputs of various existing algorithms and
with the higher throughput and clearly our algorithm proves to be highly cost-
effective and faster when compared to other algorithms.

Table 1. Megabytes processed for various algorithms using Crypto++ tool for Performance
evaluation

Algorithm Megabytes
processed

Time
consumed

Key size

Blowfish 256 3.79 32 up to 448 bits

Rijndael (128-bit key) 256 4.41 128

Rijndael (192-bit key) 256 4.52 192

Rijndael (256-bit key) 256 5.1 256

Rijndael (128) CTR 256 4.26 128

Rijndael (128) OFB 256 4.71 128

Rijndael (128) CFB 256 5.2 128

Rijndael (128) CBC 256 4.4 128

DES 128 6.123 40/56

CSCA 256 2.97 4

4 Related Work

The two techniques used for cryptography are symmetric and asymmetric
cryptographic techniques. Symmetric key encryption is simple, fast and most
commonly used. In this technique, same key has to be used for encryption and
decryption and so this key has to be shared between the two parties in secured
manner. In asymmetric cryptographic technique, two different keys are used for
encryption and decryption. Some examples of symmetric key algorithms are DES,
RC4, AES, Blowfish, IDEA. According to the symmetric algorithm proposed in [1],
4-bit key size is used for encryption and decryption. In [1], the initial key is chosen as
any value from 1000 to 1111 for encrypting and decrypting the first character. For
remaining characters in the plain text, the secret key is increased by 1 from the initial
value. I.e. If the initial key is 1000 then the keys for the remaining characters will be
1001, 1010, 1011, 1101, 1110, 1111, 10000… Because of increasing the keys, the key
size also increases and so error will occur if we encrypt and decrypt the larger amount

 Cognitive Symmetric Key Cryptographic Algorithm 59

of data according to the encryption and decryption algorithm proposed in [1]. Also in
[1], if any one key is determined then other keys can be easily determined either by
adding or subtracting 1 to key which is found.

In [1], ASCII values of the letters in plain text are divided by the secret key and
cipher text is generated by using the quotient and remainder of the division.
Computational speed is high because of using small key size. But using the algorithm
in [1], some letters cannot be encrypted because of using 3 bits in remainder. This
problem is solved by using 4 bits in the remainder according to the algorithm
proposed in [2]. In these two algorithms, only small data can be encrypted and
decrypted because of incrementing keys, key size will be increased and hence error
will be occurred while encrypting and decrypting the large data. Also in [1] and [2], if
any one key is found then other keys can be easily generated by either adding or
subtracting one to the key which is found.

5 Conclusion

Hence our proposed cost-effective small key size Cognitive Symmetric key
Cryptographic Algorithm (CSCA) is suitable to all sizes of data and all kinds of data
such as audio and video because of its low key size and high computational speed.
The bit shifting operations and the independency of keys used from the previous set
of keys makes it really challenging and the performance analysis clearly shows the
superiority of our algorithm compared to all the existing algorithms in terms of time
consumed, throughput and key size which in turn reflects the cost effectiveness and
decreased overhead.

References

1. Sarker, M.Z.H., Parvez, M.S.: A Cost Effective Symmetric Key Cryptographic Algorithm
for Small Amount of Data. In: 9th International Multitopic Conference, IEEE INMIC
(2005)

2. Kumar, R.S., Pradeep, E., Naveen, K., Gunasekaran, R.: A Novel Approach for
Enciphering Data of Smaller Bytes. International Journal of Computer Theory and
Engineering 2(4) (August 2010)

3. Performance Analysis of Data Encryption Algorithms,
http://www1.cse.wustl.edu/~jain/
cse567-6/ftp/encryption_perf/index.html

4. Elminaam, D.S.A., Kader, A.M.A., Hadhoud, M.M.: Performance Evaluation of
Symmetric Encryption Algorithms. IJCSNS International Journal of Computer Science
and Network Security 8(12) (December 2008)

5. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks.
In: IEEE Symposium on Research in Security and Privacy. IEEE Press (2003)

6. Liu, J.K., Au, M.H., Susilo, W.: Self-generated certificate public key cryptography and
certificateless signature/encryption scheme in the standard model. In: ACM Symposium on
Information, Computer and Communications Security. ACM Press (2007)

60 Y.R.A. Kannan, S. Aravind Prasad, and P. Varalakshmi

7. Malan, D.J., Welsh, M., Smith, M.D.: A public-key infrastructure for key distribution in
TinyOS based on elliptic curve cryptography. In: IEEE International Conference on Sensor
and Ad Hoc Communications and Networks. IEEE Press (2004)

8. Deng, J., Han, Y.S.: Multipath Key Establishment for Wireless Sensor Networks Using
Just-enough Redundancy Transmission. IEEE Transactions on Dependable and Secure
Computing (2008)

9. Boris, K., Markus, D.: A Provably Secure And Efficient Countermeasure Against Timing
Attacks. In: IEEE Computer Security Foundations Symposium. IEEE Computer Society
(2009)

10. Massey, J.L.: Guessing and Entropy. In: IEEE Symposium on Information Theory. IEEE
Computer Society (1994)

11. Zhu, S., Xu, S., Setia, S., Jajodia, S.: Establishing Pairwise Keys for Secure
Communication in Ad Hoc Networks: A Probabilistic Approach. In: IEEE International
Conference on Network Protocols. IEEE Press (2003)

12. MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.J.: An optimal algorithm for assigning
cryptographic keys to control access in a hierarchy. IEEE Transactions on Computers
(1985)

13. Kumar, K., Begum, J.N., Sumathy, V.: Efficient Region-Based Class Key Agreement
Protocols for Ad Hoc Networks using Elliptic Curve Cryptography. In: IEEE International
Advance Computing Conference. IEEE Press (2009)

	Cognitive Symmetric Key Cryptographic Algorithm
	Introduction
	Proposed Mechanism
	Dynamic 4-Bit Secret Key
	4-Bit Shared Key
	Encryption Technique
	Decryption Technique

	Performance Evaluation
	Related Work
	Conclusion
	References

